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Abstract1 

Central banks use annual inflation-targeting regimes to achieve and maintain 
price stability. However, the annual inflation rate, considered as a moving 
average filter of the annualized inflation rate, shows undesirable statistical 
characteristics, namely the time delay and spurious cycles. The source of the 
cyclical process are the jumps and the seasonality in the ln CPI and, 
subsequently, that of the annualized inflation rate. Therefore, the annual 
inflation cycles cannot be directly influenced and adjusted, and the commonly 
pursued inflation-targeting policies are ineffective. Another area for 
improvement is methodological. The banking authorities target the slope 
estimate of the linear deterministic CPI trend model, but they should target the 
slope parameter. But this approach also has weak points.  

1. Introduction 
Over the last three decades, central banks in industrialized, 

developing, and emerging market economies have adopted inflation-
targeting policies to control price level growth, thereby maintaining price 
stability. An extensive body of academic literature analyzes this monetary 
strategy from various economic and financial perspectives. 

In this paper, the issue of inflation targeting (IT) is approached 
unconventionally, marking the shift in focus from generic economic 
concepts to statistical and econometric aspects. The paper follows Arlt 
(2023), who analyzes the properties of the annual inflation rate indicator in 
detail. The annual inflation rate can be understood as a one-sided moving 
sum of the monthly inflation rate or as a moving average of the annualized 
inflation rate, its features being the subject of long-term research. Koopmans 
(1974) indicates through the decomposition of the frequency response 
function that a one-sided simple moving average has a non-zero phase 
function representing its lag of half the length of this moving average. It 
follows that the information in the annual inflation rate is misinterpreted as it 
is assigned to the last date of the moving window. However, it represents the 
entire window and should be thus assigned to its middle date. The same 
result is drawn, for example, by Oppenhaim and Schafer (1989), Ladiray and 
Quenneville (2001), or Dagum and Bianconcini (2016). Slutzky (1937) and 

                                                           
https://doi.org/10.32065/CJEF.2024.04.01 

I would like to thank the anonymous reviewers for their valuable comments and suggestions. 

mailto:arlt@vse.cz
https://doi.org/10.32065/CJEF.2024.04.01


Finance a úvěr-Czech Journal of Economics and Finance, 74, 2024 no. 4                                                367 

Youle (1927) showed that both weighted and unweighted sums and averages 
of purely random numbers produce new time series with spurious cyclical 
behavior reminiscent of the macroeconomic business cycle. The annual 
inflation rate also implies the risk of spurious cyclicality, which does not 
reflect the actual inflationary behavior.  

The results mentioned above may lead to the misinterpretation of 
inflation trends and central banks´ erroneous monetary policy decisions that 
affect the entire economy. The present study aims to address this issue 
consistently. 

Framed by an introduction and conclusion, the article consists of 
three main sections (2–4). Section 2 sets out the IT process, briefly 
describing how it works. Section 3 goes into the properties of the annual 
inflation rate. First, the time delay is detected, then an actual data-based 
model is constructed, and stationarity and non-invertibility are finally 
assessed. In this context, the spurious cyclical behavior of the annual 
inflation rate, manifested in increased persistence, is justified. Building on 
the insights from the previous parts, Section 4 explains why the current 
annual inflation targeting regime cannot work effectively and proposes an 
alternative approach. 

2. Inflation Targeting 
The first country to introduce inflation targeting in response to high 

inflation in the 1970s was New Zealand in 1989. IT then spread to other 
countries; for example, Canada adopted the IT regime in 1991, the UK in 
1992, Sweden, Finland, Australia in 1993, and the Czech Republic in 1997. 
The first inflation targeters were advanced economies, developing and 
emerging-market economies having adopted IT since 1997. The IT principle, 
as described, for example, by Bernanke et al (1998), Hammond (2001), 
Truman (2003), Svensson (2010), Niedźwiedzińska (2023) and others, is 
simple and straightforward. The central bank creates forecasts of annual 
inflation rate development, comparing it with an expressly set goal, i.e., with 
the target inflation rate, which is considered appropriate for the economy. 
The difference between the forecast and the target determines the necessary 
adjustment of monetary policy so that the actual inflation approaches the 
target in the future.  

The principal concern is the level and form of the target inflation rate. 
The inflation targets differ from country to country. Inflation targets are 
usually set slightly above zero because, according to Hammond (2011), 
measured inflation tends to overstate actual inflation. Another reason is, for 
example, that a positive target decreases the risk of deflation. According to 
Hammond (2011), the consensus seems to be accepted that the year-on-year 
price level increase above 3%–4% imposes higher welfare costs, and below 
2%, the plausible gains from reducing inflation are unlikely to outweigh the 
advantages of a positive inflation target. Lockyer (2022) or Adam and 
Hennig (2020) deal with determining the optimal amount of the inflation 
target. All central banks use the headline Consumer Prices Index (HCPI) to 
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measure the price level, with monthly data available. Most banks set point 
targets with symmetrical tolerance bands; others identify only the point 
targets or target ranges. Depending on the country, the inflation target time 
horizon is usually intermediate, i.e., two or more years; in other cases, it 
ranges either from 12 (exceptionally) to 18 or from 18 to 24 months. 

 Monetary policy committees vary in size, staffing, and organization across 
countries, and they hold regular meetings, usually 8–12 times a year. Setting optimal 
interest rates to reach the inflation targets is "technically" supported by the 
departments creating economic models for inflation and output forecasting. Central 
banks use, e.g., ARIMA, VAR, ECM, and DSGE models, both theoretically- and 
data-based.  

3. Annual Inflation Rate and its Properties 
 This part is based on the article by Arlt (2023), which deals in detail 

with the justification of the time shift and the issue of the spurious cycling of 
the annual inflation rate. This section describes the main conclusions of this 
article to the extent necessary for understanding the principle of analysis and 
criticism of inflation targeting, presented in the following section. 

 Based on the monthly time series of the Consumer Price Index (CPI), three 
inflation rates are computed, monthly, annualized, and annual. 

In calculating inflation rates, there are options for assuming either the 
geometric or the exponential growth of CPI. In statistical and economic practice, the 
assumption of regular geometric growth 1(1 )gm

t t tp p p−= +  is used for the computation 
of the monthly inflation rate in the form 

1

1 1

1gm t t t
t

t t

p p p
p p

p −

− −

−
= = − , (1) 

where pt is the CPI in month t. Similarly, the annual geometric growth 
12 (1 )ga

t t tp p p−= +  is the basis for the computation of the annual inflation rate, i. e. 

12

12 12

1ga t t t
t

t t

p p p
p p

p −

− −

−
= = − . (2) 

Then, the restriction for the annual inflation rate is given by a non-linear relationship 

11

0

(1 ) 1ga gm
t t i

i

ππ  −
=

 
= + − 

 
∏ . (3) 

In the econometric modeling, the assumption of the regular exponential 
growth 1

m
t

t tp p ep
−=  is used for the computation of the monthly inflation rate of the 

form 

1ln lnm
t t tp pp −= −  (4) 
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and from the annual exponential growth 12

a
t

t tp p ep
−=  the annual inflation rate is 

computed, i. e. 

 12ln lna
t t tp pp −= − . (5) 

Then, the restriction for the annual inflation rate is given by a linear relationship 

 
11

0

a m
t t i

i
ππ  −

=

= ∑ . (6) 

From the definition of Euler´s Number and Binomial Theorem, it follows 
that exponential growth can be expressed as 

( ) ( )2 3

1 1 1 ...
2! 3!

m
t

m m
t tm

t t t tp p e pp
p p

p− −

 
 = = + + + +
 
 

. (7) 

Comparing this relationship with the formula for geometric growth, it is evident that 
for a monthly inflation rate of several percentage points, the difference between these 
two growths is negligible because the third and other elements in the formula (7) 
parentheses are extremely small. The same holds for the annual growths. 

 It is obvious why rates based on exponential growth are used in this article. 
It is the restriction (6), meaning that the annual inflation rate is a simple sum of 
twelve monthly inflation rates. This considerably simplifies econometric modeling 
(e.g., Tsay (2005)). The most practically applied econometric models are based on 
the linearity assumption. At the same time, the monthly and annual inflation rates 
based on the exponential growth are almost identical with those based on the 
geometric one, or the values are copied at a not great distance when extremely high. 
There is no loss or addition of information, distortion, or new cycle. 

The monthly inflation rate based on exponential growth (as the monthly 
inflation rate based on geometric growth) removes both the stochastic and 
deterministic trends from the CPI, assuming that it is generated by a random walk 
process with a drift. When the level of inflation over one year is required, the 
annualized inflation rate in the form m

t
ma
t ππ 12=  is used. Like the monthly inflation 

rate, it includes strong seasonal and non-systematic components, which make the 
interpretation of the course of inflation somewhat tricky. The annual inflation rate 
can be expressed also as 

11

0

1
12

a ma
t t i

i
ππ  −

=

= ∑ . (8) 

The formulas (6) and (8) are a one-sided moving sum of twelve monthly 
inflation rates and a one-sided moving average of twelve annualized inflation rates 
set at the end of the calculation period. 
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Figure 1 Consumer Price Index Logarithm 
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Figure 1 shows the log-transformed CPI in the five countries that have 
imposed IT regimes (the Czech Republic, Hungary, Norway, Poland; Jan. 2002–Aug. 
2022, and the UK; Jan. 2002–Nov. 2020), four Eurozone countries (France, 
Germany, Austria, and Italy; Jan. 2002–Aug. 2022), the EU-27 (Jan. 2002–Aug. 
2022), and the five countries that have not adopted an IT policy (Bulgaria, Croatia, 
Denmark; Jan. 2002–Aug. 2022), the US (Jan. 2002–April 2022) and Switzerland 
(Dec. 2004–Aug. 2022). All the time series are similar, characterized by upward 
trends and seasonal movements.  
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Figure 2 Annualized and Annual Inflation Rates 
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Figure 2 Annualized and Annual Inflation Rates Continued 
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Figure 2 captures the annualized and annual inflation rates in the above 14 
countries and the EU (27 countries). Annual inflation rates smooth out the annualized 
ones by cyclical behavior.  

3.1 Annual Inflation Rate Time Delay 
The moving average property can be investigated through the frequency-

domain representation of time series by decomposing the frequency response 
function. 

 Frequency response, gain, phase, and time shift functions of a moving 
average of the length m1 + m2 + 1 have the following forms 

2 1( )/ 21 2

1 2

sin[ ( 1) / 2]1( ) e
1 sin( / 2)

i m mm mH
m m

ωω
ω

ω
− −+ +

=
+ +

. (9) 

1 2

1 2

sin[ ( 1) / 2]( ) ( ) ,0 1/ 2
( 1)sin( / 2)

m mG H f
m m

ω
ω ω

ω
+ +

= = ≤ ≤
+ +

, (10) 

2 1( ) ( ) / 2m mϕ ω ω= − − , 2 1( ) ( ) / 2,0 1/ 2m m fτ ω = − − ≤ ≤ . (11) 

It follows from (11) that in the symmetric moving average, where m1 = m2, 
both the shifts are equal to zero. When using an asymmetric moving average, where 
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m1 = 0, phase as well as time shifts for 12/10 << f  (i.e., for both trend and cyclical 
movements longer than one year) are 

2 2( ) ( / 2), ( ) ( / 2)m mϕ ω ω τ ω= − = − . (12) 

As the annual inflation rate (8) is an asymmetric moving average with m2= 11, 
it lags behind the monthly and annualized inflation rates by ( ) 5.5τ ω = −  months. 
For illustration, in the case of extremely high January monthly or annualized inflation 
rates, when the other values in the time series decrease symmetrically towards the 
past and into the future for at least five months and then do not change, the highest 
value of the annual inflation rate is in June and July, i. e. on average by five and half 
month later than it is logically expected to be. The delay given by the construction of 
the annual inflation rate leads to serious interpretation problems, especially in the 
case of unstable CPI development, manifested by high values or seasonal 
irregularities in the monthly and annualized inflation rates. A careful reading of the 
graphs in Fig. 2 makes this clear.  

The properties of moving averages have long been known, the above results 
being based on Koopmans (1974), and Oppenhaim and Schafer (1989). However, 
Arlt (1998), Arlt and Bašta (2008, 2010) and Arlt (2021) were the first to 
demonstrate that even the annual inflation rate is delayed relative to the annualized 
and monthly rate as well as to the Consumer Price Index. 

3.2 Annual Inflation Rate Model 
Table A1 in Appendix presents the results of the ln CPI HEGY test (cf. 

Hylleberg et al., 1990; Beaulieu and Miron, 1992; Franses and Hobijn, 1997) for the 
group of 14 countries and the EU-27, computed using the EViews 11 software. AIC 
and BIC information criteria (cf. Akaike, 1974 and Schwarz, 1978, respectively) are 
used (the latter in parentheses) for setting the number of lags in the test model. 
Regression models include constants, trends, and eleven seasonal dummies. It is clear 
from Table A1 that regular unit roots are not rejected in all the cases. The maximum 
number of non-rejected seasonal unit roots is three (Switzerland); two or one roots 
are not rejected in five cases and all seasonal unit roots are rejected in nine cases (5% 
sign. level). When the BIC is applied, the results are similar. Suppose the regression 
equations include only constants and trends; using the AIC, there are at most four 
non-rejected seasonal unit roots (the EU-27), three and two unit roots are not rejected 
in three, and one root in four cases, all seasonal unit roots being rejected in seven 
cases. When applying the BIC, a maximum of four non-rejected unit roots occurs in 
one case (the EU-27). It is, therefore, clear that regular differencing is sufficient to 
make the ln CPI stationary, this transformation representing the monthly rate of 
inflation. The seasonal difference in time series that contains only some seasonal unit 
roots leads to over-differencing.  

The HEGY test results indicate the following model for ln CPI 
12

2
ln t s st t

s
p t D zα β δ

=

= + + +∑ , (13) 
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where t is a time variable, Dst is a seasonal dummy and zt is an nonstationary, I(1) 
stochastic process 

1

t

t j
j

z e
=

= ∑ , (14) 

assumed to be driven by a stationary, invertible, zero-mean SARMA(p, q)(P, Q) 
model, termed a stochastic trend. The monthly inflation rate is then stationary with 
the model  

12 12

2 1 1
(1 ) ln (1 )[ ]

t
m
t t s st j s st t

s j s
B p B t D e D ep α β δ γ

= = =

= − = − + + + = +∑ ∑ ∑ , (15) 

where 1 12 2 2 1, , s s sγ β δ γ β δ γ β δ δ −= − = + = + −  for s = 3, 4, …, 12, and B is the backshift 
operator (Bjyt = yt-j). 

Empirical analysis of monthly inflation rates for the countries mentioned 
above results in three stationary models of the et components in (15):  

 
(A) SARMA(1, 0)(0, 0) 

 1 1t t te e aφ −= + , (16) 

(B) SARMA(0, 0)(1, 0) 
 12 12t t te e aφ −= + , (17) 

(C) SARMA(1, 0)(1, 0) 
                                                                 1 1 12 12t t t te e e aφ φ− −= + + , (18) 

 
where at are the white noise innovations. Parameter estimates as well as the P-values 
of the t-tests for models (15), (16), (17), and (18), are presented in Table A2 in 
Appendix (computations made using EViews 11). Durbin-Watson statistics varying 
between 1.7851 and 2.2636, the Ljung-Box tests reject the null of no autocorrelation 
in seven out of fifteen cases. The ARCH(1) and ARCH(5) tests reject the null of no 
conditional heteroscedasticity in ten cases. The Jarque-Bera tests reject the null of 
normality in fourteen out of fifteen cases. All diagnostic tests are performed at a 5% 
level of significance. The coefficients of determination R2 lie in the interval between 
0.3283 and 0.8688. 

The annual inflation rate, which is represented by the seasonal difference of 
the CPI logarithm, takes the following model form 

 
12 2 11(1 ) ln (1 )(1 ... ) lna

t t tB p B B B B pp = − = − + + + + = 

..
12

2 11

2 1 11
(1 )(1 ... ) 12

t t

s st j j
s j j t

B B B B t D e eα β δ β
= = = −

 
= − + + + + + + + = + 

 
∑ ∑ ∑ . 

(19) 

Seasonal differencing removes the deterministic trend, deterministic 
seasonality, and stochastic trend from the ln CPI, adding, however, truncated 



Finance a úvěr-Czech Journal of Economics and Finance, 74, 2024 no. 4                                                375 

cumulative stationary innovations as a result of over-differencing (cf., e.g., Maravall, 
1995) which creates the spurious cyclical behavior of the annual inflation rate.  

The source of this effect can also be looked at from another angle. The 
seasonal difference consists of the regular difference and the truncated cumulation. 
The regular difference forms the monthly inflation rate from the ln (CPI), and the 
truncated cumulation then forms the annual inflation rate from the monthly inflation 
rate. So, part of the seasonal difference is restriction (6), which causes the spurious 
cycle when most of the seasonal unit roots are not in the ln (CPI). To illustrate, from 
formulas (15) and (19), it follows that a single jump in the CPI, which manifests as 
an unusually high monthly inflation rate, say in January, increases the annual 
inflation rates in the following months until December of the same year. However, it 
no longer affects annual inflation rates in the next months. 

Equation (13) represents the univariate model of ln(CPI). Other model types 
can be imagined, univariate or multivariate, with different explanatory variables. 
However, whatever this model is, the definitions of monthly inflation rate (4), annual 
inflation rate (5), and restriction (6) will always apply. The model of the monthly and 
annual inflation rate must be based on the definitions of these rates, and at the same 
time, the restriction (6) must apply. Thus, the effect of the spurious cycle must be 
present in the annual inflation rate regardless of the type of model for the CPI and the 
monthly inflation rate. If the annual inflation rate model were constructed directly, 
restriction (6) validity would not be guaranteed, and the annual inflation rate would 
be artificially detached from the CPI and the monthly inflation rate, leading to 
meaningless conclusions and other problems, see below. 

Annual Inflation Rate Stationarity 
The annual rate of inflation (19) based on the SARMA(0, 0)(1, 0) model has 

the following MA(∞) representation 
11

12
12

0 0
12a i i

t t j
i j

B aπ β φ
∞

−
= =

= + ∑ ∑ . (20) 

It follows that the unconditional mean of the annual inflation rate is  

( ) 12a
tE π β=  (21) 

and the unconditional variance has the form 

2

2
12

12( )
1

a a
tD σπ

φ
=

−
. (22) 

Hassler and Demetrescu (2004) derived the autocorrelation function of the annual 
inflation as 
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12 12 12( ) (1 ), 12 , 1,...,12, 0,1,...
12a

r r sh h r s s r
π

r φ φ φ= − − = + = = . (23) 

Shock weights of the model (20) quickly converge to zero after the twelfth lag. The 
unconditional mean, unconditional variance, and autocorrelation functions are 
constant in time, implying that the annual inflation rate is stationary. Although it has 
a higher persistence than the monthly rate of inflation, which manifests itself as a 
spurious cyclical behavior, it always ultimately returns to its equilibrium state, to the 
unconditional mean. 

 For the annual inflation rate with a stochastic AR(1) element of the form 
(16), Arlt (2023) obtained similar results. The same holds for the annual inflation rate 
with the SARMA(1, 0)(1, 0) element (18). 

The cyclical behaviors of annual inflation rates are illustrated in Fig. 2. It is 
obvious that annual inflation rates fluctuate around the estimates of the unconditional 
means ˆ12β .  

It follows from models (15) and (19) that restriction (6) guarantees the 
stationarity of the annual inflation rate. Suppose this restriction is not considered, and 
a model is sought directly for the annual inflation rate. In that case, spurious cycling 
causes a fundamental problem, and identifying the correct model is practically 
impossible, as illustrated by the simulation study in Arlt (2023), which will be 
presented here in an abbreviated version. 

A fundamental question that must be answered when searching for a suitable 
time series model (univariate or multivariate) is whether the analyzed time series is 
stationary or not. From the above, it follows that the ADF test (Dickey and Fuller, 
1979) and the PP test (Phillips and Perron, 1988) should reject the tested hypothesis 
of the presence of a unit root. Based on the simulation study, the powers of both tests 
were determined, i.e., the probability that the tests correctly reject the null hypothesis 
of unit root presence in the annual inflation rate. 

Data with T = {200; 300} observations were generated based on the models 
(19), (16) and (17), where at are standard Gaussian white noise innovations and 
parameters φ1 and φ12 of the models (16) and (17) with values 0, 0.2, 0.4, 0.6, 0.8, 1.0 
and β = 0.002. The powers of ADF and PP unit root tests in Tables A3 and A4 in 
Appendix were computed from 5000 replications. For the simulation study, the urca 
package for R (Pfaff, Zivot and Stigler, 2016) was used.  

The powers of ADF and PP tests were found to be low and decreases with 
growing parameters φ1 and φ12. For model (17), they are lower than for model (16), 
and logically, they are also lower for shorter time series. Even if the annual inflation 
rate is stationary, both the ADF and PP unit root tests too often do not reject the zero 
hypothesis of the unit root presence. The reason for these erroneous conclusions is 
precisely a high spurious persistence manifested as spurious cycling, which is more 
robust with a higher value of the parameters φ1 and φ12. The risk of a false conclusion 
of the test for the analysed time series can be estimated by comparing the estimates 
of φ1 and φ12 parameters in Table A2 with the corresponding columns in Tables A3 
and A4 in Appendix. Similar issues are discussed, for instance, by Hassler and 
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Demetrescu (2004) and Frances (1991), the latter dealing with the HEGY unit root 
test. 

Table A5 in Appendix presents the results of ADF and PP tests (EViews 11) 
on annual inflation rates for group of fourteen countries and EU 27. The only 
exception where the null hypothesis was rejected was the annual inflation rate in 
Norway; the PPc test rejected the null hypothesis of the presence of the unit root at 
the 10% significance level and PPc,t at the 5% significance level. In other cases, the 
null hypothesis was not rejected. One might argue that such a strong result was 
caused by the sudden acceleration of CPI growth in 2021 and 2022. However, if the 
time series were shortened, the unit root tests would still mostly fail to reject the 
tested hypothesis (Arlt (2023)). When the time series is extended, the values will 
revert to the mean value, and the fluctuation in the series will remain. 

What are the implications of identifying the annual inflation rate as a type I(1) 
non-stationary time series? The inverse transformation to truncation cumulation leads 
to the following relationship between the monthly and annual inflation rates 

12 12 1

0
( )m i i a

t t
i

B Bππ
∞

+

=

= −∑ , (24) 

from which it is clear that the monthly inflation rate is also non-stationary of I(1) 
type. The ln(CPI) received from the monthly inflation rate through its discrete 
cumulation (inverse operation to regular differencing) must be non-stationary of the 
I(2) type. However, this contradicts the results of the empirical analysis in Section 
3.2, where ln(CPI) is shown to be non-stationary of I(1) type, and the monthly 
inflation rate is stationary. It is clear here that disregarding the restriction (6) and 
modelling the annual inflation rate directly does not allow retroactively 
reconstructing and predicting the monthly inflation rate and the consumer price 
index, which is why this procedure is entirely wrong. 

The practical impossibility of correctly determining the character of the time 
series of the annual inflation rate is a fundamental problem for constructing one-
dimensional and multidimensional prediction models because they make it possible 
to build misleading, non-converging forecasts with indefinitely expanding forecast 
intervals. The multidimensional models additionally do not allow for the distinction 
of true and spurious relationships between time series and exclusion of nonsense 
relationships. 

But there is also a problem with the interpretation of the development of the 
annual inflation rate because its identification as non-stationary implies that a 
significant fluctuation does not have the character of a cycle that disappears after a 
certain period but instead of a trend that can, on the contrary, expand. Cases of such 
annual inflation rate developments can be found in history, but they appeared rarely 
and resulted from tragic war events or non-standard social development caused, for 
example, by revolutions. 

Annual Inflation Rate Non-Invertibility 
Non-converging AR(∞) representation of the annual inflation rate (19) with 

the SARMA(0, 0)(1, 0) 
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12 12 12 1
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i
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+

=

− − = − +∑  (25) 

indicates the non-invertibility of the model (20). This is due to the absence of most 
seasonal unit roots in the ln CPI (e.g., Franses and Taylor, 2000; or Maravall, 1995). 
As is evident, using the model (25) to make forecasts is impossible because of an 
infinite number of lags with nonconverging weights. The annual inflation rate can 
only be predicted using the MA model representation (20) in a truncated form 

11
12

12
0 0

12
k

a i i
t t j

i j
B aπ β φ −

= =

= + ∑ ∑ . (26) 

When the parameters φ12 and β are known, the forecast with the horizon h and 
prediction threshold T has the form  

11
12

12
0 0

( ) 12 ( )
k

a i i
T T

i j
h B a h jπ β φ

= =

= + −∑ ∑ , (26) 

where 1( ) (1)a a
T T l T l T la l aππ + + − += − =  for 0l ≤ , and ( ) 0Ta l =  for 1l ≥  (e.g., Wei, 2006, 94). 

Apparently, the forecasts for the horizon h > 1 converge very quickly to the 
unconditional mean of the annual inflation rate, for h > 12 practically equaling it, i.e., 

( ) 12a
T hπ β≈ . The annual inflation rate MA model with stationary components (16) and 

(18) leads to similar results, whereas the model with an AR(1) component converges 
even faster. 

But the real situation is still more complicated. The parameters of MA 
representation (26) and the MA representations based on the components (16) and 
(18) are usually unknown and must be estimated. However, as shown in the 
simulation study in Arlt (2023), the estimates are biased and inaccurate. Moreover, as 
mentioned in Section 3.1, the annual inflation rate is delayed by approximately six 
months. Therefore, effective forecasts can be obtained for a maximum of six months, 
which are difficult to apply. 

As mentioned above, respecting restriction (6) is necessary to identify the 
correct model of the annual inflation rate; on the other hand, respecting this 
restriction always and regardless of the type of model for the CPI and the monthly 
rate of inflation leads to a non-invertible model of the annual rate inflation. The non-
invertibility is not the implication of the model type but the construction of the 
annual inflation rate indicator. 

4. Inflation Targeting with the Annual Inflation Rate 
Setting a specific inflation objective is a crucial in the IT process. As 

mentioned above, the inflation target is defined as a certain level of the 
annual inflation rate, discussed in Section 3 as a moving average (length 12) 
of the annualized inflation rate. The target is, therefore, a specifically 
smoothed (seasonally adjusted) annualized inflation rate. However, 
distinctive characteristics of annual inflation rate, such as the time shift and 
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spurious cyclical fluctuations, prevent it from accurately reflecting the 
economic situation, especially in unstable periods. In addition, the annual 
inflation rate is generated by a non-invertible MA process, not allowing 
meaningful forecasts to be constructed. The predictions based on the 
truncated MA representation converge very quickly to the unconditional 
mean of annual inflation rates; at the target horizon of 18–24 months, they 
are virtually equal to this value.  

The cyclical pattern of the annual inflation rate does not depend on 
the long-term ln CPI trend-cycle movement caused by the cumulated 
stationary stochastic elements because seasonal differencing removes it in 
the same way as regular differencing. Its source comes from the missing 
seasonal unit roots, shown in Table A1 in Appendix, containing the seasonal 
unit root test results for the countries analyzed. If no seasonal unit root is 
rejected in the ln CPI, cyclical movements do not load the annual inflation 
rate. The following hypothetical ln CPI model can illustrate this 

12

1
ln t s st t

s
p t D zα β δ

=

= + + +∑ , (28) 

where t is a time variable, Dst is a seasonal dummy variable and zt is a seasonally 
integrated stochastic component 

12
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−
=

= ∑ , where [ ]int /12 1t t′ = −  (int[.] rounds the number up), (29) 

driven by a stationary and invertible zero-mean SARMA(p, q)(P, Q) process. Using 
the backshift operator, the monthly inflation rate model then takes the form 

12 12

12 12
2 0 1 0

(1 ) ln (1 )[ ]
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s j s j
B p B t D e D ep α β δ γ
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where 1 12 2 2 1, , s s sγ β δ γ β δ γ β δ δ −= − = + = + − for s = 3, 4, …, 12, and 

12 12 12 1t j t j t je e e− − − −∆ = − . It follows that, apart from deterministic seasonality, the 
monthly inflation rate also contains stochastic seasonality guaranteed by the presence 
of all seasonal unit roots in the ln CPI. 

The annual inflation rate can be expressed as 

12
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Seasonal differencing removes the deterministic trend, deterministic seasonality, 
non-seasonal unit roots (stochastic trend), and all seasonal unit roots (integrated 
seasonality) from the ln CPI. The fundamental distinction between annual inflation 
rates (31) and (19) lies in the absence of the truncated cumulation of stationary 
innovations creating the cyclical component. The presence of all seasonal unit roots 
in the ln CPI manifests as a pronounced long-term cyclical seasonality. Other forms 
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of ln CPI seasonality, which can be very diverse (incl. regular, constant, or no 
seasonality), lead to cyclically varying annual inflation rates. The presence of jumps 
in the ln CPI can also cause a specific cyclical behavior in the annual inflation rate. 
Some forms of the original time series´ seasonality and resulting seasonal differences 
are illustrated on simulated data in Franses, Paap, and Fok (2005). Only cycles in 
stationary components et can move from the ln CPI to the annual inflation rate. As 
shown in Table A2 in Appendix, however, the model parameters of these 
components are usually low, with cyclical components not occurring. 

The above analysis yields a strong argument against the standard IT approach, 
justifying that there is no point in directly influencing cycles in the annual inflation 
rate; it can only be done by changing ln CPI seasonality or adjusting jumps in the ln 
CPI. Moreover, the source of spurious cycling cannot cause a long-term departure 
from the equilibrium state; the annual inflation rate always ultimately returns to the 
unconditional mean, even without outside intervention. 

Price-level targeting could be used instead, but what instruments 
should be applied to achieve the desired ln CPI seasonality needs to be 
clarified. To the author’s knowledge, none of the numerous studies that have 
examined price-level targeting deal with the link between CPI seasonality 
and cycles in the annual inflation rate. 

The IT approach needs to be revised. The intention of the banking 
authorities to target a specific value of the annual inflation rate is wrong 
from several different points of view. It should be noted that, they target 
twelve times the estimate of the slope of the linear deterministic CPI trend 
model obtained as a moving average of twelve monthly inflation rates. First, 
the moving window is too narrow for the parameter estimate not to be 
affected by the nature of seasonality and short-term fluctuations in the ln 
CPI. Second, the linear deterministic trend model is incomplete, missing 
both the deterministic seasonal and stochastic parts. Third, as mentioned in 
Section 3.1, the interpretation of the annual inflation rate is incorrect. As is 
given by the average monthly rate in the 12-month wide window, it 
represents the whole window and should not be assigned to the last date in it.  

Instead of the estimator, the parameter should be targeted, i.e., ptarg = 
12β, where β is the slope of the ln CPI model (13). It represents the 
unconditional mean of the annual inflation rate (the same as the mean of the 
annualized inflation rate), i.e., the mean annual growth of the ln CPI. The 
β  parameter itself characterizes the mean monthly ln CPI growth. The 
model (13) has an alternative form of 

12

1
1

ln lnt t s st t
s

p p D eβ ω−
=

= + + +∑ , (32) 

where 1 12 2 2 1, , s s sω δ ω δ ω δ δ −= − = = −  for s = 3, 4, …, 12, and 12

1
0ss

ω
=

=∑ . So, it is clear 
that the ln CPI is driven by a random walk with the drift and short-term cyclicality 
given by the autoregressive term, which is consistent with the literature (see, e.g., 
Cobrae and Ouliaris, 1989; Hassler and Demetrescu, 2004; Kahn, 2009).  
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Verification of the inflation target achievement is then performed empirically 
by comparing the target, i.e., 12β , with its point and interval estimate, which can be 
interpreted as a point and interval estimate of the unconditional mean of the annual 
inflation rate or as a point and interval forecast of the annual inflation rate; see the 
passage on the annual inflation rate non-invertibility in Section 3.2. 

From (8), it follows that the annual inflation rate can be written as 
11

0
12((1/12) ))a m

t t ii
ππ  −=

= ∑ , i.e., twelve times the average monthly inflation rate 

computed from the moving window of the width λ = 12 months. As mentioned 
above, for particular time series (i.e., realizations of the stochastic process), this 
average monthly inflation rate is, in fact, the moving point estimate of the slope of 
the linear deterministic trend model of the ln CPI. Generally, the ML estimate of the 
parameter β from the model (13), computed from a moving window of the width λ, 
i.e., ,

ˆ
t λβ , represents the same, but at a more complex and precise level. The time 

series of the annual inflation rate can then be written as ,
ˆ12 t λβ , its shape depending 

not only on the time t, but also on the width λ. With the widening window, the 
annual inflation rate indicator is less affected by the nature of seasonality and 
irregularities in the monthly inflation rate, the cycles being longer, less pronounced, 
and flatter. However, more considerable delay still has adverse effects, especially in 
the case of significant spurious cycling of the annual inflation rate, i.e., in certain 
types of seasonality and extreme values in the monthly inflation rate.  

The question remains: How wide should the moving window be for β 
parameter estimation? It is clear from the above that the twelve months are not 
enough. The window width must be chosen to reasonably eliminate the risk of 
spurious cyclicality with a reasonable delay; it is always a compromise, and there is 
no objective criterion. 

The following illustration analyzes inflation targeting in the Czech Republic 
based on the CPI from Jan. 2000 to Sept. 2022 (source: the Czech Statistical Office). 
Figure 3 plots the annual inflation rate in both point and interval form (95% tolerance 
limit) computed as the point and interval estimates of the parameter β in the model 
(13) and (16) for the window of the width λ = 24 months. The horizontal lines 
represent the inflation targets. 
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Figure 3 Annual Inflation Rate - 24 Months Window, Interval and Point Inflation 
Target (3–5% Linearly Declining Band from January 2002, 3% from January 
2006, 2% from January 2010) 
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Source:  Author´s own computations,  

https://www.cnb.cz/en/monetary-policy/inflation-target/history-of-cnbs-inflation-targets/ 

Section 3.1 suggests that this annual inflation rate is delayed by twelve 
months, the date-specific values in Fig. 3 indicating the annual (point and interval) 
rates of inflation valid a year ago, the latest point and interval inflation rate 
representing the point and interval forecasts set a year ago for any time horizon. 
These values should be compared with the inflation target to assess its performance. 
As shown in Fig. 3, the inflation target was met until about 2014; the annual inflation 
rate was below the target between 2014 and 2017, rising above it in 2018 and 
accelerating its point growth from 2021 onwards. Since then, inflation intervals have 
been widening, increasing future developments´ uncertainties. 

However, as analyzed before, the annual inflation rate calculated from a 24-
month window still contains some spurious cyclicality. Thus, it makes sense to 
extend the window to 60 months. The point and interval annual inflation rates and a 
3% and 2% inflation targets are captured in Figure 4 below.  
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Figure 4 Annual Inflation Rate - 60 Months Window, Point Inflation Target (3% from 
January 2006, 2% from January 2010)  
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https://www.cnb.cz/en/monetary-policy/inflation-target/history-of-cnbs-inflation-targets/ 

The delay of this annual inflation rate is 30 months, its level being 
significantly lower than the previous one. Suppose the annual inflation is moved back 
by two and a half years. In that case, a similar cyclical behavior like in the Czech 
Republic’s CPI can be seen (cf. Fig. 1), which can be understood as a subjective 
confirmation of the correctness of the window length. The annual inflation rate has 
been above the inflation target since mid-2018. 

 The weak points of this approach can be seen in Fig. 3 and 4. First, the 
spurious cycle of the annual inflation rate depends on the subjectively chosen length 
of the moving window. Second, the delay makes it difficult to verify that the inflation 
target has been met. The only way to solve this problem is to construct a forecast of 
the annual inflation rate. However, as argued in Arlt (2023), the annual inflation rate 
is a time series generated by a non-invertible process that cannot be used for 
forecasting. The forecast can only be obtained through the CPI or monthly inflation 
rate forecast. However, the longer the forecast horizon, the less accurate the forecast, 
especially for jumps and irregular seasonality. Third, as the annual inflation rate 
increases, the confidence interval widens, i. e., even when it is evident that the target 
is being exceeded, this method indicates otherwise. This follows from the fact that 
the annual inflation rate with a window of various lengths can only be obtained as an 
estimate of β parameter of the CPI model (20). Logically, a sudden increase in CPI 
values increases the standard error and, thus, the confidence interval. It follows from 
the work of Arlt (2023) that the annual inflation rate model cannot be used because 
the standard error of the estimate would always be considerably overestimated. 

Conclusions 
To achieve price stability, central banks implement annual inflation-targeting 

policies. The annual inflation rate, however, was found to have some statistical 
weaknesses. The asymmetry of the one-sided simple moving average of the 
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annualized inflation rate has proven to account for a 5.5-month lag behind the 
annualized rate of inflation and the CPI. The empirical analysis of the CPI revealed a 
similar behavior of all the time series examined – for two groups of five countries 
each that do and do not practice inflation targeting, respectively, for the four selected 
eurozone countries and the EU. The time series share linear deterministic and 
stochastic trends, deterministic seasonality, and stationary non-seasonal and seasonal 
movements. A regular unit root and the absence of most seasonal unit roots in the ln 
CPI appear as a spurious cyclical behavior in a stationary annual inflation rate.  

The stationarity is guaranteed by the restriction that the annual inflation rate is 
an aggregate of twelve monthly inflation rates. Suppose this restriction is not 
respected, and the annual inflation rate is modeled directly regardless of the monthly 
inflation rate and consumer price index. In that case, spurious cycling causes a 
fundamental problem; the unit root tests do not reject the tested hypothesis of the 
presence of a unit root, and the series is considered nonstationary. Consequently, the 
annual inflation rate models do not allow retroactively reconstructing the monthly 
inflation rate and the consumer price index. In addition, they make it possible to 
build misleading, non-converging forecasts with indefinitely expanding forecast 
intervals, and the multidimensional models do not allow for the distinction of true 
and spurious relationships between time series and exclusion of nonsense 
relationships. 

Another problem is connected with the interpretation of the development of 
the annual inflation rate because its identification as non-stationary implies that a 
significant fluctuation in development does not have the character of a cycle that 
disappears after a certain period but a trend instead that can, on the contrary, expand. 
This can lead to confusing economic and political discussions with negative social 
consequences. The very presence of a spurious cycle (which can arise from just one 
high value of the monthly inflation rate!) is misleading. Still, its substitution for a 
trend can strengthen disproportionate and unjustified economic responses. 

On the other hand, respecting the restriction that the annual inflation rate is an 
aggregate of twelve monthly inflation rates leads to a non-invertible MA(∞) 
representation of the annual rate inflation, meaning its non-converging AR(∞) 
representation, which does not allow to construct forecasts of annual inflation rates. 
Even the truncated MA model does not lead to reasonable forecasts. 

Given a regular unit root presence, the long-run cyclical movement in the ln 
CPI does not correspond to that in the annual inflation rate since it is removed by 
seasonal differencing from the ln CPI. A short-term cycle may be present in the 
annual inflation rate due to strong autocorrelation transmitted from the ln CPI. If the 
ln CPI included all or most of the seasonal unit roots manifested in long-term cyclical 
seasonality, then the derived annual inflation rate would be stationary with neither 
additional persistence nor cyclical movements. However, most seasonal unit roots are 
missing in the real ln CPI, implying that the source of cyclical fluctuations in the 
annual inflation rate is a different form of ln CPI seasonality than the one mentioned 
above. Hence, cycles in the annual inflation rates cannot be influenced and modified 
directly, but only via the changes in ln CPI seasonality and outliers, which is a 
powerful argument against inflation targeting in its commonly used form. Another 
argument is methodological. The banking authorities target twelve times the estimate 
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of the slope of the linear deterministic CPI trend model obtained as a moving average 
of twelve monthly inflation rate values. Correctly, they should not target the 
parameter estimate but its actual value. Verification of whether the inflation target is 
met is then performed by comparing it with this parameter's point and interval 
estimate. However, this approach has weak points. The width of the estimation 
window is always a compromised and subjective solution. The delay problem 
remains, making it difficult to verify that the inflation target has been met. As the 
annual inflation rate increases, the confidence interval widens, which makes it 
practically impossible to identify periods where the inflation target needs to be 
achieved. 
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APPENDIX 

Table A1 HEGY Test Results for Unit Roots in CPI 
  0 p/6  

(1/12) 
p/3  

(2/12) 
p/2  

(3/12) 
2p/3  
(4/12) 

5p/6  
(5/12) 

p  
(6/12) 

 

Country Lags  t1 F11,12 F7,8 F3,4 F5,6 F9,10 t2 #SUR 

CR 0 (0) 0.9814 0.0002 0.0000 0.0002 0.0002 0.0000 0.0056 0 (0) 
Hungary 1 (0) 0.9531 0.0178 0.0000 0.0000 0.0000 0.0000 0.0413 0 (0) 
Norway 1 (1) 0.9730 0.0000 0.0002 0.0002 0.0000 0.0000 0.0056 0 (0) 
Poland 0 (0) 0.8996 0.0000 0.0000 0.0000 0.0000 0.0000 0.0413 0 (1) 
UK 0 (0) 0.9307 0.0002 0.0002 0.0002 0.0000 0.0000 0.0319 0 (0) 
France 4 (1) 0.5677 0.0000 0.0000 0.0002 0.0054 0.0084 0.0483 0 (0) 
Germany 2 (1) 0.4014 0.1236 0.0076 0.0002 0.0002 0.0000 0.0183 1 (0) 
Austria 1 (1) 0.3709 0.0016 0.0829 0.0146 0.0443 0.0000 0.0056 1 (1) 
Italy 1 (1) 0.4075 0.0000 0.3544 0.0000 0.3220 0.0000 0.0209 2 (2) 
EU 27 1 (1) 0.6604 0.0000 0.0010 0.0000 0.0084 0.0000 0.0073 0 (0) 
Bulgaria 10 (0) 0.5816 0.0076 0.0005 0.0000 0.0002 0.1217 0.0073 1 (0) 
Croatia 4 (1) 0.3821 0.0000 0.0000 0.0005 0.0203 0.0021 0.0056 0 (0) 
Denmark 4 (1) 0.7450 0.0000 0.0611 0.0106 0.8723 0.0047 0.0343 2 (1) 
Switzerland 4 (1) 0.6043 0.0002 0.1973 0.0000 0.0802 0.0270 0.2467 3 (2) 
US 4 (1) 0.6083 0.0000 0.0000 0.0000 0.0000 0.0000 0.0056 0 (0) 

Notes: 1. Unit roots at the frequencies f = 0 and f = 6/12 are tested by one-sided t-tests, their low values 
supporting alternative hypotheses. Seasonal unit roots at the frequencies f = 3/12, 5/12, 1/12, 4/12, 2/12 are 
tested using joint F-tests. 2. Lags is the number of lags p in the test model, applying the AIC (BIC in 
parentheses). 3. The test results are in the form of P-values. 4. #SUR means the number of non-rejected 
seasonal unit roots (5% sign. level; by the BIC in parentheses). 4. The testing equations include constants, 
trends and eleven seasonal dummies. 5. All the time series are in the log transformation. 
Source: Author´s own computations 
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Table A3 Unit Root Test Power 

 T TEST φ1 
0.0 0.2 0.4 0.6 0.8 0.9 0.95 1.0 

200 ADFc 0.8288 0.8358 0.8540 0.8784 0.8678 0.7436 0.5214 0.1470 
ADFc,t 0.5890 0.6160 0.6654 0.7050 0.7428 0.6288 0.4402 0.2136 
PPc 0.8342 0.6668 0.4888 0.2746 0.0638 0.0158 0.0124 0.0384 
PPc,t 0.4686 0.2392 0.1088 0.0366 0.0068 0.0026 0.0034 0.0118 

300 ADFc 0.9916 0.9900 0.9922 0.9938 0.9890 0.9190 0.6872 0.1312 
 ADFc,t 0.9318 0.9342 0.9416 0.9570 0.9470 0.8286 0.5696 0.1972 
 PPc 0.9984 0.9862 0.9558 0.8908 0.4932 0.0944 0.0234 0.0284 
 PPc,t 0.9478 0.8352 0.6836 0.4522 0.1120 0.0094 0.0066 0.0108 

Notes: 1. The table reports the power of unit root tests. ADFc and PPc denote tests with a constant, ADFc,t  
and PPc,t  denoting those with a constant and linear time trend. 2. The number of lags in the ADF test is 
determined by the AIC with the maximum number of lags 2/94( /100)T   , the number of Newey-West lags 

in the PP test being 1/44( /100)T   . 3. The annual inflation rate is generated by the models (14) and (11), 

with standard Gaussian white noise innovations at t. The number of Monte Carlo replications is 5000. 
Source: Author’s own computations 

 

Table A4 Unit Root Test Power  

 T TEST φ12 
0.0 0.2 0.4 0.6 0.8 0.9 0.95 1.0 

200 ADFc 0.8288 0.6164 0.3600 0.1800 0.0804 0.0712 0.0558 0.0532 
ADFc,t 0.5890 0.3830 0.2016 0.1086 0.0648 0.0588 0.0552 0.0554 
PPc 0.8342 0.5864 0.3264 0.1678 0.0844 0.0684 0.0598 0.0580 
PPc,t 0.4686 0.2810 0.1454 0.0856 0.0554 0.0550 0.0616 0.0570 

300 ADFc 0.9916 0.9250 0.6852 0.3448 0.1222 0.0764 0.0630 0.0488 

ADFc,t 0.9318 0.7370 0.4298 0.1972 0.0812 0.0698 0.0622 0.0572 

PPc 0.9984 0.9446 0.7032 0.3402 0.1188 0.0788 0.0670 0.0590 

PPc,t 0.9478 0.7274 0.3972 0.1794 0.0756 0.0666 0.0628 0.0574 

Notes: 1. The table reports the power of unit root tests. ADFc and PPc denote tests with a constant, ADFc,t  
and PPc,t  denoting those with a constant and linear time trend. 2. The number of lags in the ADF test is 
determined by the AIC with the maximum number of lags 2/94( /100)T   , the number of Newey-West lags 

in the PP test being 1/44( /100)T   . 3. The annual inflation rate is generated by the models (14) and (12) 

with standard Gaussian white noise innovations at The number of Monte Carlo replications is 5000. 
Source: Author’s own computations 
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Table A5 ADF and PP Test Results for Unit Roots in Annual Inflation Rates 
 ADF PP 

Country c c, t c c, t 
CR 0.9501 0.9915 0.9805 0.9960 
Hungary 0.9581 0.9998 0.9796 0.9999 
Norway 0.5316 0.5576 0.0715 0.0442 
Poland 0.9818 0.9995 0.9993 0.9999 
UK 0.5773 0.7454 0.2171 0.4174 
France 0.6941 0.9921 0.6083 0.9460 
Germany 0.3499 0.7751 0.9551 0.9944 
Austria 0.7533 0.9479 0.9715 0.9956 
Italy 0.6904 0.9889 0.9184 0.9997 
EU 27 0.7632 0.9989 0.9893 0.9999 
Bulgaria 0.6176 0.9679 0.5712 0.9259 
Croatia 0.6347 0.9755 0.9350 0.9993 
Denmark 0.9179 0.9991 0.9920 0.9999 
Switzerland 0.3111 0.7649 0.1863 0.5549 
US 0.6349 0.9606 0.1650 0.4702 

Notes: The test results are in the form of P-values. Letter c denotes a constant and t denotes a linear time 
trend. The number of lags in the ADF test is determined by the AIC, the number of Newey-West lags in the PP 
test being determined automatically. 
Source: Author’s own computations 
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