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Abstract1 

We investigate the predictability of global expected stock returns across various 
forecasting horizons using machine learning techniques. We find that the predictability of 
returns decreases with longer forecasting horizons both in the U.S. and internationally. 
Despite this, we provide evidence that using firm-specific characteristics can remain 
profitable even after accounting for transaction costs, especially when we consider longer 
forecasting horizons. Studying the profitability of long-short portfolios, we highlight a 
trade-off between higher transaction costs connected to frequent rebalancing and greater 
returns on shorter horizons. Increasing the forecasting horizon while matching the 
rebalancing period increases risk-adjusted returns after transaction costs for the U.S. We 
combine predictions of expected returns at multiple horizons using double-sorting and a 
turnover reducing strategy, buy/hold spread. Double sorting on different horizons 
significantly increases profitability in the U.S. market, while buy/hold spread portfolios 
exhibit better risk-adjusted profitability. 

1. Introduction 
Asset pricing literature introduces an array of potential predictor variables, 

commonly referred to as anomalies. Forecasting cross-sectional stock returns using 
machine learning has proven successful in comparison to more traditional methods. 
So far, the focus has been mainly on the one-month prediction horizon. 

This study explores the impact of longer forecasting horizons on the 
predictability of cross-sectional equity returns. We show a diminishing predictability 
of cross-sectional stock returns with longer forecasting horizons, both in the U.S. and 
globally. Shorter horizon portfolios provide greater profitability but come with higher 
transaction costs stemming from frequent rebalancing and high turnover. After 
accounting for transaction costs, the risk-adjusted profitability of long-short decile 
portfolios increases with longer horizons in the U.S. Combining shorter and longer 
horizon forecasts using double-sorting significantly improves profitability in the U.S. 
Further, with the use of turnover-reducing strategy and combination of forecasts, we 
get better risk-adjusted returns in the U.S. International portfolios offer higher risk-
adjusted returns compared to U.S.-only strategies. Global portfolios using longer 
horizons forecasts have similar or lower risk-adjusted returns compared to the one-
month portfolio. 
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Recent research has demonstrated the effectiveness of combining anomalies2 

through machine learning-based predictive regression in achieving unprecedented 
out-of-sample expected returns predictability, see Gu et al. (2020), Giglio and Xiu 
(2019), Kelly et al. (2019), Kozak et al. (2020), Chen et al. (2020), Bryzgalova et al. 
(2020) and Freyberger et al. (2017). This superior predictability is not a consequence 
of adding more predictive variables than previous literature but of allowing nonlinear 
interaction of predictive variables and incorporating regularization. Avramov et al. 
(2023) study the economic viability of these strategies and document that machine 
learning portfolios extract profitability from microcap and difficult-to-arbitrage 
stocks, and profitability is attenuated after accounting for transaction costs due to 
frequent rebalancing and high turnover. 

However, most of the empirical results in the asset pricing literature, 
including the recent work using machine learning, are focused on a one-month 
forecasting horizon. Investors are not horizon agnostic, though. Only an investor with 
a logarithmic utility function would allocate his portfolio the same way for single and 
multiple horizons. Since stock returns are not independent and identically distributed, 
an investor could use time and cross-sectional variation in expected stock returns to 
his advantage. 

We examine the predictability of expected stock returns across multiple 
horizons using machine learning. 153 anomalies from Tobek and Hronec (2021) are 
used as variables in predictive regressions of expected cumulative returns from one 
month to two years ahead. We find decreasing predictability with longer horizons for 
both the U.S. and internationally. This is consistent with Baba Yara (2020), who 
proposes an economically restricted machine learning model and documents the 
decreasing predictability of cross-sectional returns on longer horizons in the U.S. On 
the other hand, it differs from the conclusion of Gu et al. (2020), who document 
higher predictability on a one-year horizon compared to a shorter, one-month 
horizon. This could be a result of different information sets being used, e.g. inclusion 
of macroeconomic variables and different universe definitions. 

So far, literature looking at longer forecasting horizons of cross-sectional 
stock returns is mainly limited to the U.S. stock market. Blitz et al. (2023) and Cakici 
et al. (2023) compare different machine learning approaches and look at the 
profitability of portfolios. Blitz et al. (2023) show that one-month portfolios can be 
outperformed by longer horizons portfolios by using a turnover-reducing portfolio 
construction. Cakici et al. (2023) document decreasing profitability with a longer 
forecasting horizon, larger firm size and in more recent times. Leung et al. (2021) use 
stochastic gradient trees to contrast one and six-month forecasts, concluding that 
profitability depends on the ability of investors to execute trades efficiently. These 
studies do not incorporate transaction costs into their portfolios but rather use fixed 
costs or calculate break-even transaction costs.  

                                                             
2 This predictability is typically based on individual firm characteristics, and it is common to use the 
terms anomaly and firm characteristic interchangeably. Examples of firm characteristics used as stock 
return predictors are momentum (Jegadeesh and Titman, 1993), accruals (Sloan, 1996), size and book-
to-market ratio (Fama and French, 1992a). For the comprehensive list of anomalies documented in the 
literature, please see the large replication study of Hou et al. (2020). 
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Avramov et al. (2023) study the economic viability of machine learning 
strategies and document that they extract profitability from the microcap and 
difficult-to-arbitrage stocks, and profitability is attenuated after accounting for 
transaction costs due to the high turnover of these portfolios. Other papers examining 
transaction costs when combining multiple anomalies are, for example, Frazzini et al. 
(2012) and DeMiguel et al. (2020). 

We study how the performance of portfolios using longer horizon forecasts 
compares to one one-month portfolio benchmark and provide evidence from the U.S. 
market and internationally. We construct multiple portfolios with varying turnover 
levels, enabling us to use either a single horizon forecast or a combination of 
forecasts from different horizons. We look at portfolios’ performance after 
accounting for transaction costs. Using estimated transaction costs allows us to better 
compare different portfolios and allows us to get a more accurate picture as 
transaction costs decrease over time. Gu et al. (2020) and Tobek and Hronec (2021) 
focus on the monthly horizon and document strong predictability in the cross-section 
of returns using several machine learning methods. We replicate their results on a 
highly liquid universe of stocks and use it as our benchmark. 

First, we construct long-short decile portfolios, keeping the rebalancing 
frequency equal to the forecasting horizon. There is decreasing profitability with 
longer horizons. However, after accounting for transaction costs, the risk-adjusted 
returns are higher for longer-horizon portfolios in the U.S. We also investigate the 
performance of portfolios over time. There is a decrease in profitability for all 
horizons, but shorter horizons are more affected. After 2005, using longer horizon 
forecasts provides better Sharpe ratios compared to the benchmark both in the U.S. 
and internationally. 

Second, we combine predictions for two different horizons via double sorting. 
We independently sort stocks based on predicted cumulative returns from two 
different horizons. Each month, we buy stocks in the top 15% for both horizons and 
sell stocks in the bottom 15% for both horizons. In the U.S., this leads to large 
performance gains over our benchmark. Internationally, this also leads to higher risk-
adjusted returns; however, the difference is not that stark. 

Further, we employ a buy/hold spread strategy, proposed by Novy-Marx and 
Velikov (2019). It is a turnover-reducing strategy where the hurdle is higher to buy 
into a position than to hold a position once it is in a portfolio. We adjust it to allow us 
to combine two forecasting horizons. Each month, we buy (sell) firms in the top 
(bottom) 10% of longer-horizon forecast. However, firms in the portfolio from the 
previous months will be sold (bought) only if they are not in the top (bottom) 20% 
for the one-month forecast. Buy/hold spread portfolios in the U.S. have better risk-
adjusted profitability. This holds for the international sample as well; however, the 
difference is mild. 

The rest of this paper is organized as follows: Section 2 describes the data and 
methodology used in our analysis. Section 3 contains multi-horizon prediction results 
and decile, double sorted, and buy/hold spread long-short portfolios performances, 
with evidence from the U.S. and international datasets. Section 4 summarizes and 
concludes our work. 
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2. Data and Methodology 

2.1 Data 
Our analysis is done firstly on the U.S. and then on the international dataset. 

The international dataset contains stocks from the U.S. and 22 other developed 
countries. For the United States equity data, we use the CRSP/Compustat Merged 
Database from the Center for Research in Security Prices. For international equity 
data, we use Datastream from Refinitiv. Additionally, I/B/E/S Estimates are used to 
calculate several anomalies. We use the U.S. consumer price index to estimate 
transaction costs and the monthly U.S. T-bill rate, which will be used for anomaly 
calculation, both from Datastream. We also use the Market minus risk-free rate for 
the U.S. and developed markets from the data library provided by French (2020). 

Table 1 Descriptive Statistics 
 U.S.  International (excl. U.S.) 
 r MC Number of firms  r MC Number of firms 

Mean 0.94 6107.76 1100.11  0.42 6414.29 1871.55 
Std 11.38 22937.00 249.45  11.58 16081.87 281.34 
25% -4.81 348.35 947.00  -5.51 828.54 1661.00 
50% 0.75 1156.27 1042.50  0.16 1936.31 1911.50 
75% 6.47 3763.79 1250.50  5.96 5205.55 2061.75 
Notes: Column r corresponds to monthly returns and is in percentages, MC stands for market capitalization (in 
millions of dollars), and the number of firms in the cross-section each month are reported for the U.S. and 
international sample (with the U.S. excluded). The period from 1963 to 2018 for the U.S. and 1980 to 2018 
internationally is covered. 

The dataset is filtered and preprocessed, including a strict liquidity filter to 
exclude thinly traded stocks. Details on this process are provided in Appendix C. 
Table 1 presents descriptive statistics for preprocessed and filtered universe. 
Summary statistics for monthly returns, market capitalization, and the number of 
firms at the end of the month are presented separately for U.S. and international 
(excluding U.S.) datasets. The average monthly return in the U.S. is two times higher 
than in the international sample. At the end of the month, the U.S. dataset has 1100 
firms on average, and the international dataset (with the U.S. excluded) has 1870 
firms on average. 

We calculate 153 anomalies that were published in the academic literature. 
We follow the list of anomalies and their construction from Tobek and Hronec 
(2021). These anomalies fall into three main categories: 93 fundamental anomalies, 
which can be further classified into accruals, intangibles, profitability, and value 
factors3. Additionally, there are 49 market friction anomalies4 and 11 I/B/E/S 

                                                             
3 Fundamental anomalies include accruals (Sloan, 1996), asset liquidity (Ortiz-Molina and Phillips, 
2014), investment (Titman et al., 2004), leverage (Bhandari, 1988) and assets-to-market (Fama and 
French, 1992b). 
4 Market friction anomalies include, for example, seasonality (Heston and Sadka, 2008), short-term 
reversal (Jegadeesh, 1990), industry momentum (Moskowitz and Grinblatt, 1999) and momentum 
(Jegadeesh and Titman, 1993). 
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anomalies5. All anomalies are calculated at the firm-specific level on a monthly basis. 
Fundamental data are available at a yearly frequency, but the anomalies are updated 
at a monthly frequency using financial statement data from financial years ending at 
least 6 months prior. This approach accommodates varying fiscal year-end dates and 
prevents the use of outdated information. Missing observations in anomalies are 
imputed with a cross-sectional median for the firm’s region. Further, to address 
outliers and stabilize training, all anomalies are normalized based on cross-sectional 
quantiles within the firm’s region, following standard procedures used e.g. in Gu et 
al. (2020) or Kozak et al. (2020). 

Transaction costs are estimated at a monthly frequency using closing quoted 
spread proxy (Chung and Zhang, 2014) and volatility over volume proxy (Fong et al., 
2018). More details on the estimation of transaction costs can be found in subsection 
B.3. 

2.2 Expected Stock Returns 
Following the approach of Lewellen (2015) or Gu et al. (2020), we use 

predictive regressions for excess stock returns, which are concerned with the 
conditional mean estimation: 

𝑅𝑅𝑖𝑖,𝑡𝑡+1 = E𝑡𝑡�𝑅𝑅𝑖𝑖,𝑡𝑡+1� +  𝜖𝜖𝑖𝑖,𝑡𝑡+1  
E𝑡𝑡�𝑅𝑅𝑖𝑖,𝑡𝑡+1� = 𝑔𝑔�𝑍𝑍𝑖𝑖,𝑡𝑡� 

where stocks are indexed as 𝑖𝑖 =  1, . . . ,𝑁𝑁, months by 𝑡𝑡 =  1, . . . ,𝑇𝑇, 𝑍𝑍𝑖𝑖,𝑡𝑡  are 
stock characteristics or predictive signals and 𝑔𝑔 is a general function of these 
predictive signals estimated to optimize the out-of-sample predictability of 
E𝑡𝑡�𝑅𝑅𝑖𝑖,𝑡𝑡+1�. 

This setting encompasses the setup of Lewellen (2015), who uses Fama-
MacBeth regressions, and therefore, the functional form of 𝑔𝑔 is a simple linear 
combination of ordinary least squares. Directly addressing shortcomings of the 
ordinary least squares approach, Gu et al. (2020) use a variety of machine learning 
methods, such as Elastic net, Random Forests, Gradient Boosted Trees and Neural 
Networks, to represent the function 𝑔𝑔. Machine learning methods aim to explicitly 
allow non-linearity, the interaction of predictive variables, and regularization. The 
goal is to aggregate all of the available input and anomalies and condense them into 
one real-valued output. 

We extend the forecasting horizon from one month to multiple horizons. We 
also explicitly allow heterogeneity in predictability across horizons: 

E𝑡𝑡�𝑅𝑅𝑖𝑖,𝑡𝑡+ℎ� = 𝑔𝑔ℎ�𝑅𝑅𝑖𝑖,𝑡𝑡+ℎ� + 𝜖𝜖𝑖𝑖,𝑡𝑡+ℎ 
 

where ℎ  is the forecasting horizon. We consider horizons from monthly, ℎ =  1, to 
two years, ℎ =  24. 

                                                             
5 I/B/E/S anomalies studied include analyst value (Frankel and Lee, 1998), changes in analyst earnings 
forecasts (Hawkins et al., 1984), and long-term growth forecasts (La Porta, 1996). 
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2.3 Model Estimation 
For the model estimation, we split the dataset into training, validation and 

testing sets that keep the time ordering, following Gu et al. (2020) and Tobek and 
Hronec (2021). In our modelling process, hyperparameter search involves 
systematically exploring different combinations of model parameters to optimize out-
of-sample performance. This search is conducted using the training and validation 
samples from our dataset. The training sample is used to train the model with various 
hyperparameter configurations, while the validation sample is employed to evaluate 
and compare the performance of these configurations. By iterating through different 
parameter settings and assessing their impact on model outcomes using the validation 
set, we aim to identify the optimal set of hyperparameters that maximize the 
predictive accuracy and generalizability of the model. This iterative search process 
ensures that our model is finely tuned and robust for making accurate predictions on 
unseen data. The best set of hyperparameters is selected using mean square error 
calculated on the validation sample. We utilize the model selected through 
hyperparameter search to generate out-of-sample predictions by evaluating its 
performance on the test dataset. This step ensures that our model’s predictions are 
validated against unseen data, offering a robust assessment of its real-world 
predictive capability. 

For our analysis, we adopt an expanding window approach, where we 
sequentially train and evaluate our predictive models across multiple time periods. To 
illustrate, our first model uses all available data up to 1994, splitting it into a 70% 
training set and a 30% validation set. Subsequently, we assess the model’s 
performance on our testing sample, data from 1995. This procedure is repeated 
annually from 1995 to 2018, with each iteration involving a hyperparameter search 
with the selected model used to generate out-of-sample predictions. 

As our model, we use a feedforward neural network. As a form of robustness, 
we also include results using gradient-boosted trees. These methods, optimization 
and regularization techniques are described in subsection B.1. 

In our model estimation process, we use cumulative returns at horizon h that 
have been cross-sectionally demeaned as our target labels. Each horizon is 
independently estimated, and normalized anomalies serve as the input features for 
our model. In case the firm is delisted during the period for which we calculate 
cumulative returns, we use returns that are available and disregard months when 
stock is delisted. 

To optimize model performance, we conduct an extensive hyperparameter 
search. The hyperparameter search follows Tobek and Hronec (2021) and extends to 
cover more degrees of model complexity as it could vary across horizons. This search 
spans various aspects of model complexity, such as network architecture and training 
parameters. We explore six distinct network architectures, ranging from single-layer 
to three-layer configurations, with options for wide networks featuring 150 nodes per 
layer or narrower networks with fewer nodes in each hidden layer (e.g., 32 nodes in 
the first layer, 16 in the second, and 8 in the third, if present). Within our 
hyperparameter search, we investigate different batch sizes (256 or 1024), dropout 
rates (0.1, 0.01, and 0.001), and learning rates (0.1, 0.01, and 0.001) to optimize 
model performance. Our training process involves fixed epochs (25), Adam 
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optimization with specific betas (0.9 and 0.999), and early stopping with a patience 
of 5 epochs. To enhance model robustness, we initialize and train five models with 
different random seeds and use an ensemble of them. Reducing the learning rate on 
plateau patience is applied after each epoch, with the learning rate halved if there is 
no improvement. 

2.4 Portfolio Formation 
To assess the economic significance of our forecasts, we construct multiple 

portfolios. As we are interested in various forecasting horizons and the effects of 
transaction costs we consider three different portfolio construction methods. They 
offer different portfolio turnover levels and allow us to combine multiple forecasts 
together. All portfolios are based on portfolio sorting, a frequently used method in 
asset pricing6. We also use equal-weighting, as we only focus on the universe of most 
liquid stocks7. 

Decile Sorting 
If we have forecasts for one-month returns, we commonly see long-short 

decile portfolios that are rebalanced monthly. For longer forecasting horizons, a quite 
straightforward extension of this is prolonging the holding period b to match the 
forecasting horizon h. 

Because we have predictions at a monthly frequency, we have to decide how 
to use this information for a holding period longer than one month. One approach 
would be to simply invest using the most recent predictions, wait for the holding 
period, and then rebalance. This approach discards predictions from the months when 
the portfolio is not rebalanced. But more importantly, we would be exposed to 
rebalance timing risk affecting our portfolio (Hoffstein et al., 2020). 

To counter rebalance timing risk, we use multiple sub-portfolios to create 
overlapping portfolios with staggered rebalancing schedule (Jegadeesh and Titman, 
1993). To create sub-portfolios, we divide available capital at the start of investing 
into b equal parts, where b equals the holding period. Each sub-portfolio will then 
function as a separate portfolio. The sub-portfolios will be rebalanced in a staggered 
manner - each month, one of the subportfolios, the one that was rebalanced b months 
ago, is rebalanced to reflect the current information. This way, we are able to use all 
the information from the forecasts. 

To create a long-short decile portfolio, each month, we cross-sectionally sort 
stocks based on the returns predictions. We buy firms that are in the highest predicted 
return decile and short firms from the lowest decile for each month. This trade is 
executed in the corresponding sub-portfolio, and the positions are held for the 
holding period b of months. The final portfolio value is obtained as a sum of the 
values of individual sub-portfolios. Portfolio returns are obtained by weighting 
returns from sub-portfolios. 

                                                             
6 See, a survey of Green et al. (2013). 
7 See Section C.3. 
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Double Sorting 
A way to use two forecasts together, e.g. using different forecasting horizons 

or combining different models, is double sorting. In our empirical analysis, we 
explore the effectiveness of double sorting by combining forecasts with different 
horizons. Specifically, we create portfolios by pairing a one-month horizon forecast 
with a longer-term one. This will hopefully allow us to capture immediate market 
dynamics as well as broader trends. We construct long-short portfolios by buying 
firms that rank in the top 15% according to both short-term and long-term forecasts. 
Conversely, we short-sell firms ranking in the bottom 15% for both horizons. By 
doing so, we aim to capitalize on stocks exhibiting consistent performance across 
different timeframes while mitigating risks associated with those demonstrating poor 
performance. Portfolios are rebalanced each month, avoiding the use of stale signals. 

Buy/Hold Spread Strategy 
Buy/hold spread, also referred to as banding, is a transaction cost mitigation 

technique applied during portfolio selection. The strategy’s aim is to reduce turnover. 
It works by having a stricter rule to trade into position than to trade out of it. For 
example, the 10%/20% strategy means that we buy stocks that belong to the top 10% 
of the stocks and hold them as long as they are in the top 20%. At the same time, we 
sell the lowest 10% of the stocks and hold them until they are no longer in the bottom 
20%. 

While Novy-Marx and Velikov (2019) use this technique on only a single 
forecast or characteristic, we extend this to combine two different forecasts. We use 
forecasts from two models with different predicting horizons and use the one with the 
longer horizon as a buy signal and the shorter, one-month forecast, as a hold signal. 
The reasoning behind this is that we will buy (sell) a longer-term position, and then 
each month, we check whether the new, additional information from the shorter 
horizon supports holding the position or not. With our approach, we do not have 
consistency between buy and hold signals. For a single forecast buy/hold spread 
portfolio, it always holds that if a firm is in the buy category, then it is also in the 
hold category at time 𝑡𝑡. However, with two different forecasts, conflicting 
recommendations can occur. For instance, the longer-horizon buy signal might 
suggest buying, while the shorter-horizon hold signal recommends continuing to 
short the firm. To address these conflicts, we introduce a rule to remove firms from 
the portfolio when the buy and hold signals suggest opposing actions (the buy signal 
would buy while the hold signal would sell and vice versa). 

In practice, for a firm to be included in our portfolio, it must meet specific 
criteria based on both the longer forecast horizon and the one-month horizon 
predictions. We enter a long (short) position in a firm if it ranks within the top 
(bottom) 10% according to the longer forecast horizon and is above the 20th (below 
80th) percentile for the one-month horizon predictions. 

Once a firm is in our portfolio, we check each month whether to keep the long 
(short) position or remove the firm from our portfolio. The long (short) position is 
kept if it is again recommended by the longer-horizon forecast (buy condition above) 
or if the firm is in the top (bottom) 20% for the one-month forecast and above the 
10th (below 90th) percentile for the longer-horizon forecast. 
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In summary, the buy/hold spread technique, when extended to incorporate 
multiple horizon forecasts, offers a systematic approach to portfolio management, 
balancing long-term positioning with short-term adjustments based on forecasted 
signals. It also contributes to reducing turnover and, consequently, transaction costs. 

Returns Calculation 
Independent of the type of portfolio we are constructing, we need to calculate 

returns from our portfolio (or each sub-portfolio in case of a longer holding period) 
while accurately accounting for transaction costs. This is calculated iteratively, as 
trading needs to reflect the current weights of the portfolio. At a given month, we 
have target actions for each firm - buy, sell, hold, nothing/remove from the portfolio. 
Based on these actions, we assign target weights 𝑤𝑤𝑖𝑖𝑖𝑖∗

 to each firm each month. When 
we rebalance the portfolio, we divide available capital using equal weighting 
between the firms we intend to buy (sell). For decile sorting and double sorting, we 
fully reflect the current target actions. In a buy/hold spread portfolio, some firms are 
kept in a portfolio, and the rest of the capital is divided between firms we aim to buy 
or sell. For capital of one unit, we aim to have long positions sum to one and short 
sum to minus one. 

When transaction costs are present, we need to account for that so that we do 
not overbuy and maintain our total weights within limits. The actual weight that is 
bought is: 

𝑤𝑤𝑖𝑖𝑖𝑖  =  𝑤𝑤𝑖𝑖𝑖𝑖∗  −  𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 ·  𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 
𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖  =  𝑤𝑤𝑖𝑖𝑖𝑖  −  𝑤𝑤𝑖𝑖(𝑡𝑡−1)

𝑒𝑒𝑒𝑒𝑒𝑒,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 

where 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖  is trade size, 𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 are transaction costs, and 𝑤𝑤𝑖𝑖(𝑡𝑡−1)
𝑒𝑒𝑒𝑒𝑒𝑒,𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 is the normalized 

weight at the end of the previous month for firm 𝑖𝑖. 
Weight of a firm at the end of a month is 𝑤𝑤𝑖𝑖𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒  =  𝑤𝑤𝑖𝑖𝑖𝑖 ·  (1 + 𝑅𝑅𝑖𝑖𝑖𝑖), in case 

we hold a position, and zero otherwise. The normalized weight is calculated as 

𝑤𝑤𝑖𝑖𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛  =  
2𝑤𝑤𝑖𝑖𝑖𝑖
∑ |𝑤𝑤𝑖𝑖𝑖𝑖|𝑖𝑖

 

In case we remove a given stock from our portfolio during month 𝑡𝑡, we will 
reflect the trading costs incurred in the returns of that month. The return from holding 
a firm 𝑖𝑖 during the month 𝑡𝑡 is calculated as 𝑤𝑤𝑖𝑖𝑖𝑖𝑅𝑅𝑖𝑖𝑖𝑖. 

For performance evaluation of portfolios, we use several metrics, with their 
definitions in subsection B.2. Monthly mean and standard deviation, annualized 
Sharpe ratio and maximum drawdown are presented in the main text. Additionally, 
the Sortino ratio, conditional value at risk at 99%, Alpha and Beta for our portfolios 
are reported in Appendix A. The selection of these metrics was based on related 
literature for easier comparison. 

3. Empirical Results 
We obtain predictions of cumulative returns at multiple horizons using 

feedforward neural networks, separately for the U.S. and the international dataset 
(with the U.S. included). The out-of-sample forecasts are from 1995 to 2018, 277 
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months in total. We investigate the predictive ability of those forecasts at different 
horizons. We then provide results of portfolios constructed from multi-horizon 
returns forecasts in the U.S. and internationally. As a robustness check, gradient-
boosted regression trees were also used to obtain the forecasts, with results presented 
in subsection D.2. 

The U.S. has approximately 316,000 firm-month out-of-sample forecasts, 
averaging 1172 firms each month. Internationally, we have 817,000 observations 
with an average of 3,000 firms monthly. The models trained on international data 
also have more training data, which could help with learning. We follow the approach 
of Lewellen (2015), who assess the predictive ability of forecasts using regression of 
realized returns on these out-of-sample predictions. Table 2 shows the predictive 
ability of the forecasts at different horizons. The t-statistics are calculated using 
Newey-West correction with h + 4 lags as a way to account for the overlap in 
regressions. The predictive slope is from regressing demeaned cumulative returns on 
predictions that were made for the corresponding horizon. The slopes are positive, 
significant for most horizons, and decrease with longer horizons. This implies that 
the predictions contain too much variation, and we would need to shrink the 
predictions to obtain a more precise estimate of the expected return. 𝑅𝑅2  decreases 
with longer horizons for both the U.S. and the international sample, suggesting that 
the predictability decreases with longer horizons. 𝑅𝑅2  is higher internationally, which 
could be due to a larger training sample. 

Table 2 Predictive Ability of Return Forecasts 
 U.S.  International 

 Slope t-stat R2  Slope t-stat R2 

1 0.460 24.414 0.292  0.507 37.253 0.351 

2 0.258 7.138 0.239  0.334 20.803 0.329 

3 0.117 2.021 0.121  0.157 3.085 0.177 

4 0.026 1.649 0.038  0.064 3.254 0.071 

5 0.047 2.707 0.052  0.016 2.107 0.024 

6 0.005 1.221 0.004  0.017 3.015 0.025 

9 0.007 2.009 0.009  0.022 1.903 0.037 

12 0.003 1.005 0.003  0.001 1.079 0.003 

24 0.003 1.873 0.004  0.003 4.300 0.007 

Notes: The table reports the predictive ability of return forecasts at various horizons. The slope, t-statistics and 
R2 for horizon h are from a regression of the demeaned cumulative return on return prediction at the 
corresponding horizon. Results are for the period between 1995 and 2018 and are either for U.S. or 
international sample. Newey-West correction with h + 4 lags is applied. R2 is reported in percentages. 

 
The decreasing predictability with longer horizons matches the conclusion of 

Baba Yara (2020). Gu et al. (2020), have the opposite conclusion, they report higher 
𝑅𝑅2for yearly predictions than for monthly ones. This could be because of different 
anomalies being used or differing datasets. We have a more liquid universe of stocks 
and do not include macroeconomic predictors. 
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3.1 Evidence from the United States 

Decile Portfolios 
We construct long-short decile portfolios. For simplicity, when presenting the 

results, we keep the holding period b equal to the forecasting horizon h. We use the 
staggered rebalancing schedule with h sub-portfolios to fully utilize the monthly-
frequency predictions. This way, the turnover and transaction costs are lowered 
significantly for longer horizons. There are, on average, 235 firms in a sub-portfolio. 

Table 3 presents the mean, standard deviation, annualized Sharpe ratio and 
maximum drawdown both for portfolios without and with transaction costs included. 
For comparison, if we invested in buy-and-hold of S&P500 for the same period, we 
would have mean monthly returns of 0.64% with a Sharpe ratio of 0.53. In our 
analysis, a one-month long-short decile portfolio will serve as our benchmark. The 
results for our one-month decile portfolio without transaction costs are consistent 
with those of Gu et al. (2020) who report similar means and standard deviations. 
Their models include macroeconomic variables and interactions between firm 
characteristics and factors as opposed to our model, where we only include firm-
specific characteristics. Tobek and Hronec (2021) also report comparable results on 
the U.S. sample, albeit with slightly lower means and Sharpe ratios. This could be 
due to the fact that they include anomalies only after the publication date. Looking at 
longer horizons, our results are consistent with Cakici et al. (2023), who also find 
decreasing returns at longer horizons. However, as they use quintile sorts with only a 
single sub-portfolio, their results at longer horizons are more risky and not directly 
comparable. 

Portfolios that were formed using longer horizon predictions have lower mean 
returns. This is more pronounced in a case without transaction costs, as when 
transaction costs are included, longer horizons are less costly to trade. However, after 
accounting for transaction costs, the Sharpe ratios are increasing with longer 
horizons, thus offering better risk-adjusted returns than the one-month portfolio. 

Long-only component of strategies has a higher mean return but also a higher 
variance and deeper maximum drawdowns compared to the long-short strategy. In 
case we had short-selling restrictions, long-only portfolios at longer horizons offer 
similar risk-adjusted returns to our benchmark. The short component of portfolios is 
not profitable on its own, with negative mean returns at all horizons after accounting 
for transaction costs; however, it serves as a hedge during more turbulent periods. 

The turnover of the one-month strategy is 120%. This means that we sell 
(buy) roughly 60% of firms from both the long and the short side of our portfolio and 
buy (sell) different firms when rebalancing. Longer horizons have lower turnover by 
construction, and it is approximately h times smaller than the turnover of the one-
month portfolio. 

Additional performance measures, Sortino ratio, conditional value at risk at 
99%, Alpha and Beta can be seen in Table A.1. Alpha and Beta are calculated with 
respect to U.S. market returns. In Figure A.1 can be seen cumulative returns for 
decile portfolios. There is a drop in profitability after approximately 2005. We 
discuss this decrease in profitability and how it affects different horizon portfolios in 
subsection D.1. 
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Table 3 Performance of Long-Short Decile Portfolios in the U.S. 
 Without transaction costs  With transaction costs  

 Mean Std      Sharpe MDD  Mean Std Sharpe MDD Turnover  
Panel A: Long-short portfolio 

1 1.76 5.23 1.16 -30.27  1.13 5.14 0.76 -37.31 120.20 
2 1.33 4.23 1.09 -32.89  1.03 4.19 0.85 -36.76 58.43 
3 1.11 3.74 1.03 -25.69  0.91 3.73 0.84 -27.31 40.36 
4 1.06 3.37 1.09 -17.71  0.90 3.37 0.93 -20.15 32.03 
5 0.88 3.09 0.99 -39.00  0.75 3.10 0.84 -41.96 26.68 
6 0.89 2.87 1.07 -26.09  0.77 2.87 0.94 -29.24 23.02 
9 0.76 2.44 1.08 -27.16  0.69 2.44 0.98 -29.15 16.15 
12 0.73 2.18 1.15 -24.75  0.67 2.19 1.06 -26.16 12.78 
24 0.82 2.46 1.15 -24.87  0.79 2.46 1.11 -25.67 6.73 

Panel B: Long only component of the strategy 
1 1.74 7.16 0.84 -53.23  1.42 7.10 0.69 -58.81 126.81 
2 1.44 7.22 0.69 -65.59  1.29 7.21 0.62 -67.86 59.86 
3 1.28 7.07 0.63 -67.06  1.18 7.07 0.58 -68.67 40.60 
4 1.32 7.04 0.65 -63.21  1.24 7.04 0.61 -64.75 31.99 
5 1.20 7.07 0.59 -64.57  1.14 7.07 0.56 -65.45 26.86 
6 1.25 7.00 0.62 -63.72  1.19 7.00 0.59 -64.50 23.05 
9 1.22 6.99 0.60 -65.81  1.18 6.99 0.58 -66.60 16.01 
12 1.24 6.85 0.63 -64.52  1.21 6.85 0.61 -65.07 12.61 
24 1.32 6.05 0.76 -54.24  1.31 6.05 0.75 -54.30 6.61 

Panel C: Short only component of the strategy 

1 0.01 8.02 0.01 -84.12  -0.30 7.98 -0.13 -86.39 113.49 
2 -0.10 7.82 -0.04 -82.20  -0.26 7.81 -0.12 -83.65 56.93 
3 -0.16 8.04 -0.07 -82.33  -0.27 8.03 -0.12 -83.36 40.08 
4 -0.26 7.96 -0.11 -81.69  -0.35 7.96 -0.15 -84.30 32.02 
5 -0.31 8.04 -0.13 -83.22  -0.38 8.03 -0.17 -86.26 26.47 
6 -0.36 8.20 -0.15 -85.79  -0.42 8.20 -0.18 -88.02 22.96 
9 -0.48 8.13 -0.21 -89.74  -0.52 8.13 -0.22 -90.86 16.27 
12 -0.54 7.83 -0.24 -90.70  -0.57 7.84 -0.25 -91.50 12.94 
24 -0.60 7.36 -0.28 -91.24  -0.61 7.37 -0.29 -91.65 6.86 

Notes: The table shows the performance of long-short decile portfolios in the U.S. for the period between 1995 
and 2018. Monthly mean returns, standard deviation, annualized Sharpe ratio and maximum drawdown for 
strategies labelled 1 to 24 are reported. The label corresponds to the horizon h for which we obtain the 
predictions and, at the same time, the holding period for a given portfolio. In Panel A are the results of the long-
short portfolio. The results are decomposed into long and short components in Panel B and Panel C. The 
displayed values are in percentages except for the Sharpe ratio. 

One may ask whether we cannot simply use one-month predictions and 
increase the rebalancing frequency to decrease transaction costs. The answer is that it 
is better to use predictions at the horizon of the desired holding period, with the 
exception of a holding period of two months where the difference is minimal. The 
Sharpe ratio and the mean are higher (mean by approximately 0.2% per month), and 
the standard deviation is lower for those portfolios. This holds both for the case with 
and without transaction costs. 
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Figure 1 Average Gross Returns Up to Two Years after Rebalancing 

 
Notes: The average monthly return x months after rebalancing. Returns of long-short decile portfolios for the 
U.S. sample for the period between 1995 and 2018 are used. Portfolio returns are without transaction costs. 
Confidence intervals around the means are presented. 

This is related to results presented in Figure 1. For multiple forecasting 
horizons, we show how returns vary each month for up to two years after rebalancing 
the portfolio. We report returns without transaction costs. It shows us that the one-
month forecasting horizon is most profitable the first month after rebalancing, and 
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then profitability lowers sharply. We can see that for a forecasting horizon of one 
month, the optimal rebalancing frequency is one or two months. For longer horizons, 
about the first five months are significant, with decreasing returns for longer holding-  
period months. For horizons 12 and 24, we have a significantly positive return each 
month. It shows us that the underlying models are indeed learning for their intended 
horizon. This is consistent with Leung et al. (2021) who also observe slower signal 
decay for 6-month return predictions compared to one month. 

The importance of using multiple sub-portfolios with staggered rebalancing 
schedule is most pronounced for portfolios with longer holding periods. For example, 
we look at the performance of a 12-month decile single sub-portfolio with transaction 
costs. Changing only the month when we rebalance, the mean monthly returns vary 
between 0.47% and 0.86%, with the Sharpe ratio being between 0.67 to 0.85. In the 
24-month portfolio case, single sub-portfolio mean returns range from 0.42% to 
0.95%, Sharpe ratio is between 0.5 and 1.21. Utilizing multiple sub-portfolios 
enables us to eliminate the rebalancing timing risk, leading to less risky portfolios. 

Double Sorting Portfolios 
Double sorting portfolios were constructed by combining two predictions 

made at different horizons and rebalanced each month (holding period b = 1). We 
combine a one-month forecasting horizon with longer horizons (2, 3, 6, 9, 12, and 24 
months). Equal weights are used. Cutoff points 0.15 for shorts, and 0.85 for the long 
side are used. The cutoffs were selected so that we have a similar number of firms in 
our portfolio as in the long-short decile case, allowing us to better compare with our 
benchmark. The average number of firms in a portfolio is between 180 and 340. The 
number of firms is lower when sorting on two more distant horizons as the number of 
common firms decreases. 

Table 4 Double-Sorted Portfolios Performance in the U.S. 
 Without transaction costs  With transaction costs 

 

 
 Mean Std Sharpe MDD  Mean Std Sharpe MDD Turnover 

1 - 2 1.80 5.07 1.23 -28.31  1.20 4.97 0.84 -32.16 115.63 
1 - 3 2.02 5.15 1.36 -27.43  1.43 5.05 0.98 -28.11 112.26 
1 - 6 1.95 4.90 1.38 -22.36  1.36 4.82 0.98 -23.19 110.43 
1 - 9 2.02 4.77 1.47 -23.25  1.45 4.70 1.07 -23.65 110.08 
1 - 12 2.00 4.78 1.45 -25.09  1.43 4.73 1.05 -25.30 109.39 
1 - 24 2.09 4.55 1.59 -21.89  1.50 4.50 1.15 -23.99 113.03 
Notes: The table shows the profitability of a double-sorted long-short portfolio in the U.S. between 1995 and 
2018. Portfolio labels (1-2 to 1-24) show which two horizon predictions were used in double sorting. Results 
are shown with and without transaction costs. Monthly mean returns, standard deviation, annualized Sharpe 
ratio, and maximum drawdown are reported. Reported values are in percentages, with the exception of the 
Sharpe ratio. 

In Table 4 are the results of double-sorted portfolios. The best-performing portfolio is 
a 1-24 horizon combination. After transaction costs, it has a mean return of 1.50%, an 
increase of 0.4% per month compared to the benchmark. At the same time, we have a 
lower standard deviation and maximum drawdown -24% while the benchmark has a 
figure almost twice as large. The other double-sorted portfolios are either slightly 
better or better than the benchmark. The turnover of double-sorted strategies is 
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slightly lower than that of the benchmark. This suggests that we incur approximately 
the same transaction costs as our benchmark, indicating that the advantages do not 
stem from transaction cost differences but rather from improved firm selection.  

Additional performance metrics for double-sorted portfolios are reported in 
Table A.2. Cumulative returns of double-sorted strategies in comparison with the 
benchmark can be seen in Figure A.2. The benchmark strategy is underperforming 
compared to the double-sorted portfolios. 

Overall, double sorting portfolios can be considered better than the one-month 
long-short decile sorting benchmark for the U.S. Combining short-horizon 
predictions with longer ones brings better returns and decreased risk. 

Buy/hold Spread Portfolios 
Portfolios using the buy/hold spread strategy are constructed with 10%/20% 

cutoffs. We combine predictions from two different forecasts, using a longer horizon 
as a buy signal and one-month predictions as a hold signal. We expect lower turnover 
as it is harder to trade into a position than to trade out of it. 

Portfolios performance is reported in Table 5. We refer to strategies by the buy 
and hold horizons that are used. Buy/hold portfolios have, on average, between 240 
(for a two-year portfolio) and 290 (for a one-month portfolio) firms. Thus, it is 
comparable to the number of firms in the decile and double-sorted portfolios. 

Table 5 Buy/Hold Spread Portfolio Performance in the U.S. 
  Without transaction costs 

 

 With transaction costs 

 

 
buy hold Mean Std Sharpe MDD  Mean Std Sharpe MDD Turnover 

1 1 1.61 4.93 1.13 -36.74  1.15 4.85 0.82 -41.59 81.74 
2 1 1.60 4.82 1.15 -32.18  1.20 4.77 0.87 -36.37 71.01 
3 1 1.65 4.57 1.25 -23.36  1.29 4.51 0.99 -24.23 62.16 
4 1 1.53 4.53 1.17 -21.90  1.18 4.48 0.91 -22.77 58.56 
5 1 1.41 4.17 1.17 -21.60  1.07 4.13 0.90 -24.43 56.79 
6 1 1.58 4.05 1.35 -19.91  1.25 4.00 1.08 -20.31 54.87 
9 1 1.39 3.53 1.36 -20.87  1.08 3.50 1.07 -24.25 51.99 
12 1 1.28 3.23 1.37 -19.07  0.97 3.20 1.05 -22.69 50.37 
24 1 1.28 2.87 1.54 -25.02  0.97 2.84 1.18 -28.85 49.59 
Notes: The profitability of long-short buy/hold spread portfolios in the U.S. for the 1995 to 2018 period. We use 
a buy/hold spread 10%/20% and report the results both without transaction costs and with transaction costs. 
Buy and hold column shows which horizons were used in the portfolio creation. Monthly mean returns, 
standard deviation, annualized Sharpe ratio, and maximum drawdown are reported. All values are reported in 
percentages except for the Sharpe ratio. 

The turnover of the portfolios is approximately 50% lower than that of the 
benchmark. Longer horizon portfolios have lower turnovers, as fewer firms are the 
same as the one-month forecast. Strategies have a lower mean and risk than our 
benchmark before costs. Mean returns decrease with longer horizons. Sharpe ratio 
increases with longer horizon portfolios. After costs, buy/hold spread portfolios have 
better risk-adjusted profitability than the benchmark. Portfolio 24-1 has the highest 
Sharpe ratio, with slightly lower returns than the benchmark. 

Comparing double sorting and buy/hold spread portfolios, they have similar 
Sharpe ratios, which increase with longer horizons. Double sorting is able to achieve 
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significantly higher returns than the benchmark without increasing the variance. 
Buy/hold spread portfolios at lower horizons provide slightly higher returns and 
slightly lowered standard deviation, while on longer horizons, they offer a less risky 
alternative to double-sorted portfolios. 

In Table A.3 are additional performance metrics. Cumulative returns of long-
short buy/hold spread portfolios, compared with our benchmark model, can be seen 
in Figure A.3. 

Blitz et al. (2023) also use buy/hold spread portfolios, but they do not 
combine multiple forecasts. They find decreasing returns and Sharpe ratios for 
longer-horizon portfolios without transaction costs.  
We replicate this and find decreasing returns with longer horizons but before-costs 
Sharpe ratios are mostly similar for all horizons. We use a more liquid universe of 
firms, which could explain this difference. After-cost strategies have a Sharpe ratio 
between 0.7 and 0.95, outperforming a one-month benchmark. However, they have 
lower returns and lower Sharpe ratios compared to our combined forecast buy/hold 
spread portfolios. This adds support to our decision to combine two forecasts 
together. 

We show that extending the rebalancing frequency while keeping the 
forecasting horizon equal increases risk-adjusted profitability for the U.S. sample. 
Combining two predictions using double sorting has performance gains compared to 
the benchmark. Buy/hold portfolios offer a lower-risk alternative to double-sorting 
portfolios. 

3.2 International Evidence 
Using an international dataset increases the sample size and should prevent 

data-snooping or overfitting concerns. However, there are possible problems with 
including international data. The countries may have different institutional settings, 
laws or accounting standards. The data preprocessing procedure we follow should 
lower these concerns. We train a feedforward neural network model on the 
international dataset (U.S. and 22 other developed countries) to obtain predictions of 
cumulative returns at different horizons. We form portfolios in the same way as U.S. 
portfolios and evaluate their performance. 

Decile Portfolios 
Long-short decile portfolios are created using the international sample 

forecasts. We keep the forecasting horizons equal to the rebalancing frequency. The 
average number of firms in a sub-portfolio is 600, 2.5 times more than in the U.S. 
setting. 

In Table 6 are reported results of long-short decile portfolios with and without 
transaction costs. If we invested in a simple buy-and-hold of the MSCI world index, 
we would get 0.45% mean monthly returns and a Sharpe ratio of 0.37. One month 
portfolio has a mean return of 1.82% with a Sharpe ratio of 1.92 without transaction 
costs. The mean return is similar to our U.S. benchmark model; however, the 
standard deviation is almost halved for the international portfolio. Similarly, the 
mean return of 1.07% of the international portfolio, after transaction costs, is almost 
equal to that of the U.S. but with variance greatly reduced. Lower variance might be 
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Table 6 Performance of Long-Short Decile Portfolios - International Sample 
 Without transaction costs  With transaction costs  

 Mean Std Sharpe MDD  Mean Std Sharpe MDD Turnover 
 Panel A: Long-short portfolio 

1 1.82 3.29 1.92 -23.31  1.07 3.18 1.17 -27.11 123.41 
2 1.34 3.40 1.36 -26.96  0.97 3.37 1.00 -30.15 60.33 
3 1.07 3.15 1.18 -21.91  0.82 3.13 0.91 -24.67 41.18 
4 0.95 2.93 1.13 -25.31  0.75 2.92 0.89 -30.43 32.71 
5 0.97 2.59 1.29 -23.50  0.80 2.58 1.07 -26.63 27.26 
6 0.89 2.43 1.26 -26.95  0.74 2.42 1.06 -29.73 23.46 
9 0.93 2.36 1.36 -23.98  0.83 2.35 1.22 -25.60 16.52 
12 0.90 2.38 1.30 -27.40  0.81 2.38 1.19 -28.48 12.94 
24 0.79 2.51 1.09 -34.37  0.75 2.51 1.03 -35.06 6.85 
 Panel B: Long only component of the strategy 

1 1.35 5.56 0.84 -49.33  0.95 5.53 0.60 -53.09 130.05 
2 1.14 5.88 0.67 -61.63  0.95 5.87 0.56 -64.54 62.48 
3 1.00 5.85 0.59 -61.20  0.87 5.85 0.52 -63.35 42.17 
4 1.00 5.82 0.60 -59.17  0.90 5.82 0.54 -59.69 33.16 
5 1.02 5.75 0.61 -60.85  0.94 5.75 0.56 -61.29 27.56 
6 0.97 5.71 0.59 -61.24  0.90 5.71 0.55 -61.62 23.70 
9 1.03 5.61 0.64 -59.14  0.98 5.61 0.60 -59.42 16.52 
12 1.06 5.51 0.66 -59.40  1.02 5.51 0.64 -59.60 12.86 
24 1.11 5.29 0.73 -57.19  1.09 5.29 0.71 -57.28 6.79 
 Panel C: Short only component of the strategy 

1 0.48 6.10 0.27 -64.06  0.10 6.05 0.06 -71.58 116.96 
2 0.24 6.28 0.13 -67.58  0.05 6.26 0.03 -72.43 58.24 
3 0.13 6.28 0.07 -66.69  -0.00 6.27 -0.00 -70.10 40.20 
4 0.02 6.20 0.01 -70.64  -0.08 6.19 -0.05 -73.91 32.25 
5 0.01 6.20 0.00 -71.61  -0.08 6.18 -0.05 -74.28 26.93 
6 -0.01 6.16 -0.01 -70.96  -0.09 6.15 -0.05 -73.50 23.19 
9 -0.03 6.05 -0.02 -70.88  -0.09 6.04 -0.05 -72.63 16.48 
12 -0.08 5.95 -0.04 -71.77  -0.12 5.94 -0.07 -73.13 13.01 
24 -0.30 5.75 -0.18 -78.13  -0.33 5.75 -0.20 -78.69 6.91 

Notes: The table shows the performance of long-short decile portfolios on the international sample from 1995 
to 2018. Monthly mean returns, standard deviation, annualized Sharpe ratio and maximum drawdown for 
strategies labelled 1 to 24 are reported. The label represents the horizon h for which we obtain the predictions 
and, at the same time, the holding period for a given portfolio. In Panel A are the results of a long-short 
portfolio. The results are decomposed into long and short components in Panel B and Panel C. The displayed 
values are in percentages except for the Sharpe ratio. 

because of the larger sample or diversification. The one-month strategy turnover is 
120%, comparable to the U.S. benchmark portfolio turnover. The results for the one-
month predicting horizon on the international dataset are consistent with the results 
of Tobek and Hronec (2021). 

Other portfolios on the longer horizon have similar or lower Sharpe ratios 
and lower returns than the one-month strategy when we account for transaction costs. 
For example, the nine-month portfolio has the same Sharpe ratio as a one-month 
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portfolio and returns lower by 0.24% after transaction costs, offering a lower-risk 
alternative. 
 Looking at the long and short-leg components of strategies separately, there 
is a difference in contribution to return between international and U.S. cases. 
Internationally, short legs are more successful. For shorter horizons, the international 
portfolios’ short legs have positive mean returns even after accounting for transaction 
costs. 

In Table A.4 are presented additional performance measures. Alpha and Beta 
are calculated with respect to international market returns. In Figure A.4 are 
cumulative returns of these portfolios with and without transaction costs compared to 
the one-month international benchmark portfolio. Similarly to the U.S. sample, there 
is a visible decrease in profitability over time. After 2005, the longer-horizon 
portfolios start to have better risk-adjusted returns compared to the one-month 
portfolio. This decrease in profitability over time is analyzed in subsection D.1. 

Double Sorting Portfolios 
Double-sorted portfolios are created using forecasts from two models with 

different forecasting horizons. Cutoff points are 0.15 for the short side and 0.85 for 
the long side. The average number of firms in a double-sorted portfolio is between 
490 (for 1-24 portfolio) and 920 (for 1-2 portfolio). 

Performance measured of double-sorted portfolios are in Table 7. Portfolios 
1-12 and 1-24 have the highest Sharpe ratios, close to that of our international 
benchmark. They also have a similar Sharpe ratio as double-sorted portfolios in the 
U.S. sample but offer a lower return. Turnover is comparable with the benchmark. 

Table 7 Double-Sorted Portfolios Performance - International Sample 
 
 

Without transaction costs  With transaction costs  
 Mean Std Sharpe MDD  Mean Std Sharpe MDD Turnover 

1 - 2 1.68 3.51 1.66 -29.46  0.96 3.42 0.98 -35.17 117.87 
1 - 3 1.69 3.58 1.64 -27.06  1.00 3.50 0.99 -32.87 114.12 
1 - 6 1.66 3.49 1.65 -29.06  0.98 3.40 1.00 -34.95 112.66 
1 - 9 1.77 3.41 1.79 -28.05  1.09 3.31 1.14 -33.87 111.64 
1 - 12 1.83 3.34 1.89 -23.41  1.14 3.24 1.22 -29.72 111.64 
1 - 24 1.86 3.38 1.91 -16.04  1.16 3.28 1.23 -20.67 113.88 
Notes: The table shows the profitability of a double-sorted long-short portfolio using the international sample 
for the period between 1995 and 2018. The portfolio label shows which two forecasting horizons were used in 
double sorting. Results are shown with and without transaction costs. The holding period of portfolios is one 
month. Monthly mean returns, standard deviation, annualized Sharpe ratio, and maximum drawdown are 
presented. Reported values are in percentages, with the exception of the Sharpe ratio. 

Table A.5 reports Sortino ratio, conditional value at risk, Alpha and Beta for 
double-sorted portfolios. Cumulative returns of double-sorted portfolios and of 
benchmark model are in Figure A.5. 

Buy/hold Spread Portfolios 
Long-short buy/hold spread (10%/20%) portfolios were constructed using 

predictions made on the international sample. The average number of firms in a 
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portfolio is between 570 and 650, with the number of firms being lower with longer 
forecasting horizons. 

Results are reported in Table 8. Portfolios 9-1 and 12-1 have the highest 
Sharpe ratio, which is similar to that of the one-month international benchmark. It 
offers slightly lower returns. Other portfolios have similar returns as 9-1 but higher 
variance. Compared to double sorting portfolios, it has lower returns but similar 
Sharpe ratios. Turnover of buy/hold spread strategies is lower than benchmark 
turnover and comparable with the buy/hold spread strategy in the U.S. 
Table 8 Buy/hold Spread Portfolio Performance - International Sample 

  Without transaction costs  With transaction costs  
buy hold Mean Std Sharpe MDD  Mean Std Sharpe MDD Turnover 

1 1 1.84 3.21 1.98 -17.95  1.05 3.15 1.15 -25.51 78.66 
2 1 1.67 3.46 1.67 -19.82  0.98 3.41 0.99 -26.46 67.08 
3 1 1.60 3.40 1.63 -19.00  0.98 3.36 1.01 -24.97 58.71 
4 1 1.52 3.28 1.61 -22.38  0.92 3.24 0.99 -27.31 55.15 
5 1 1.51 3.09 1.70 -21.87  0.93 3.05 1.06 -27.01 53.24 
6 1 1.43 3.05 1.62 -19.86  0.87 3.01 1.00 -26.79 51.32 
9 1 1.51 2.84 1.84 -22.24  0.99 2.81 1.22 -27.12 47.81 

12 1 1.44 2.77 1.80 -26.12  0.92 2.73 1.17 -31.37 46.85 
24 1 1.33 3.06 1.51 -33.52  0.82 3.03 0.94 -38.85 46.79 

Notes: The profitability of long-short buy/hold spread portfolios on the international universe for the period 
between 1995 and 2018. We use a buy/hold spread 10%/20% and report the results both without transaction 
costs and with transaction costs. Monthly mean returns, standard deviation, annualized Sharpe ratio, and 
maximum drawdown are presented. All values are reported in percentages except for the Sharpe ratio. 

Additional performance metrics for portfolios are reported in Table A.6. 
Beta coefficients are all close to zero. In Figure A.6 are cumulative returns of 
buy/hold spread strategies and of benchmark strategy. 

Overall, portfolios made using the international dataset offer lower-risk 
opportunities compared to the U.S. sample. A one-month long-short decile portfolio 
performs well, even after accounting for transaction costs, which are higher on the 
international sample than in the U.S. There are comparable portfolios available when 
considering longer horizons or combinations of horizons. 

4. Conclusion 
Our study investigates the predictability of global stock returns using machine 

learning techniques across various forecasting horizons. We find that predictability 
diminishes with longer horizons, both in the U.S. and internationally. We show that 
machine learning portfolios remain profitable even after accounting for transaction 
costs, especially with longer horizons. We use neural networks and gradient-boosted 
trees in predictive regressions for stock returns using 153 anomalies documented in 
the literature as variables. We document that the predictability of returns decreases 
with longer forecasting horizons both in the U.S. and internationally. We work with a 
highly liquid universe and estimated transaction costs to mitigate concerns that 
profitability is concentrated in small, difficult-to-arbitrage stocks and diminishes after 
factoring in transaction costs. We construct a number of portfolios using longer-
horizon forecasts, allowing us to reduce turnover or combine multiple horizons. After 
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accounting for the transaction costs, longer horizons long-short portfolios offer better 
risk-adjusted returns in the U.S. This holds even in more recent times. Post-2005, 
while overall profitability decreased, longer horizons consistently yielded higher 
Sharpe ratios compared to one-month portfolios in both the U.S. and international 
markets. Leveraging return predictions for multiple horizons via double-sorted 
portfolios leads to profitability improvement in the U.S. Finally, we employ a 
turnover-reducing strategy, buy/hold spread, and show higher risk-adjusted 
profitability in the U.S. 
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APPENDIX 

A. Additional tables and figures 

Figure A.1 Cumulative Returns of Long-Short Decile Portfolios in the U.S. 

 
Notes: The figure shows cumulative returns of long-short decile portfolios without and with transaction costs on 
the U.S. sample. The portfolio label is the forecasting horizon in months and holding period of the strategy. 

 

Table A.1 Performance Measures of Long-Short Decile Portfolios in the U.S. 
 Without transaction costs  With transaction costs 

 Sortino CVaR 99% Alpha Beta  Sortino CVaR 99% Alpha Beta 

1 2.27 -9.63 1.92 -0.22  1.33 -10.56 1.29 -0.22 
2 1.97 -8.50 1.43 -0.13  1.43 -8.94 1.12 -0.13 
3 1.88 -7.38 1.20 -0.12  1.46 -7.66 1.00 -0.12 
4 2.01 -6.52 1.13 -0.10  1.64 -6.82 0.97 -0.10 
5 1.57 -6.84 0.94 -0.08  1.29 -7.06 0.81 -0.08 
6 1.83 -5.90 0.97 -0.11  1.56 -6.08 0.86 -0.11 
9 1.74 -5.23 0.80 -0.06  1.53 -5.35 0.73 -0.06 

12 1.90 -4.65 0.74 -0.02  1.71 -4.73 0.68 -0.02 
24 2.07 -4.59 0.83 -0.02  1.97 -4.65 0.80 -0.02 

Notes: Sortino ratio, conditional value at risk at 99%, Alpha and Beta (in comparison with U.S. market returns) 
are reported for long-short decile portfolios for the period between 1995 and 2018. Portfolio label is the 
forecasting horizon and the holding period for the portfolio. 
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Figure A.2 Cumulative Returns of Long-Short Double Sorting Portfolios in the U.S. 

 
Notes: The figure shows cumulative returns on a logarithmic scale of the double-sorting strategy and of the 
long-short decile portfolio at horizon one in the U.S. The two numbers correspond to horizons on which we 
double-sorted. The holding period is one month. 

 

Table A.2 Double-Sorted Portfolios Performance Metrics - in the U.S. 

 Without transaction costs  With transaction costs 

 Sortino CVaR 99% Alpha Beta  Sortino CVaR 99% Alpha Beta 

1 - 2 2.57 -8.87 1.94 -0.19  1.56 -9.70 1.35 -0.20 
1 - 3 3.02 -8.50 2.19 -0.23  1.95 -9.27 1.60 -0.23 
1 - 6 3.21 -7.65 2.14 -0.26  1.99 -8.43 1.56 -0.27 
1 - 9 3.35 -7.58 2.24 -0.30  2.13 -8.35 1.67 -0.30 
1 - 12 3.11 -8.07 2.22 -0.30  1.99 -8.83 1.65 -0.31 
1 - 24 3.35 -7.83 2.21 -0.18  2.13 -8.78 1.63 -0.18 

Notes: Sortino ratio, conditional value at risk at 99%, Alpha and Beta (with regards to market returns in the 
U.S.) are presented for long-short double-sorting portfolios for the period between 1995 and 2018. Portfolio 
labels are the two forecasting horizons which were used in double sorting. 
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Figure A.3 Cumulative Returns of Buy/Hold Spread Portfolios in the U.S. 

 
Notes: Cumulative returns of long-short buy/hold spread portfolios compared with the benchmark model. We 
use buy/hold spread 10%/20%. The portfolio label signifies the horizon based on which we buy and hold 
stocks, respectively. 

 

Table A.3 Buy/Hold Spread Portfolio Performance Metrics - U.S. Sample 
  Without transaction costs  With transaction costs 

buy hold Sortino CVaR 99% Alpha Beta  Sortino CVaR 99% Alpha Beta 
1 1 2.10 -9.17 1.71 -0.14  1.42 -9.74 1.25 -0.14 
2 1 2.32 -8.87 1.71 -0.15  1.62 -9.49 1.31 -0.15 
3 1 2.68 -7.79 1.77 -0.17  1.96 -8.24 1.41 -0.17 
4 1 2.46 -7.59 1.65 -0.17  1.77 -8.12 1.30 -0.17 
5 1 2.26 -7.98 1.51 -0.14  1.60 -8.47 1.17 -0.14 
6 1 2.94 -6.67 1.74 -0.23  2.17 -7.06 1.41 -0.23 
9 1 2.91 -6.19 1.54 -0.21  2.08 -6.54 1.23 -0.21 
12 1 2.95 -5.44 1.42 -0.19  2.03 -5.85 1.11 -0.19 
24 1 3.10 -5.04 1.35 -0.11  2.14 -5.45 1.05 -0.11 

Notes: Sortino ratio, conditional value at risk at 99%, Alpha and Beta (in comparison with U.S. market returns) 
are reported for long-short buy and holds spread for the period between 1995 and 2018. We use 10%/20% 
buy/hold spread cutoffs. The portfolio label signifies the horizon based on which we buy and the horizon based 
on which we hold stocks, respectively. 

 

 

 

 



 

Finance a úvěr-Czech Journal of Economics and Finance, 74, 2024 no.2                                            165 

Figure A.4 Cumulative Returns of Long-Short Decile Portfolios on International 
Sample 

 
Notes: The figure shows cumulative returns of long-short decile portfolios without and with transaction costs. 
The portfolio label is the forecasting horizon in months and the holding period of the strategy. 

 

Table A.4 Performance Measures for Long-Short Decile Portfolios - International 
Sample 

 Without transaction costs  With transaction costs 

 Sortino CVaR 99% Alpha Beta  Sortino CVaR 99% Alpha Beta 

1 4.53 -4.95 1.89 -0.12  2.26 -5.71 1.13 -0.11 
2 2.53 -6.64 1.39 -0.08  1.70 -7.09 1.02 -0.08 
3 2.17 -6.29 1.11 -0.06  1.56 -6.63 0.86 -0.06 
4 2.09 -5.43 0.97 -0.03  1.55 -5.73 0.77 -0.03 
5 2.54 -4.52 0.98 -0.03  1.98 -4.79 0.82 -0.03 
6 2.42 -4.32 0.91 -0.03  1.93 -4.52 0.76 -0.03 
9 2.76 -4.10 0.93 0.01  2.36 -4.25 0.82 0.01 
12 2.61 -4.29 0.88 0.03  2.30 -4.40 0.80 0.03 
24 2.13 -4.35 0.76 0.06  1.98 -4.41 0.71 0.06 

Notes: Sortino ratio, conditional value at risk at 99%, Alpha and Beta (in comparison with international market 
returns) are reported for long-short decile portfolios for the period between 1995 and 2018. The portfolio label 
is the forecasting horizon and the holding period. 
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Figure A.5 Cumulative Returns of Long-Short Double Sorting Portfolios - 
International Universe 

 
Notes: The figure shows cumulative returns of the double sorting strategy in comparison with the long-short 
decile portfolio at horizon one, both for the international universe. Portfolios are plotted before and after 
accounting for transaction costs. The portfolio label signifies the two horizons that are used to double-sort. The 
holding period is one month. 

 

Table A.5 Double-Sorted Portfolios Performance Metrics - International Sample 
 Without transaction costs  With transaction costs 

 Sortino CVaR 99% Alpha Beta  Sortino CVaR 99% Alpha Beta 

1 - 2 3.70 -5.74 1.75 -0.12  1.83 -6.47 1.03 -0.12 
1 - 3 3.70 -5.88 1.77 -0.14  1.88 -6.61 1.07 -0.13 
1 - 6 3.59 -5.83 1.75 -0.16  1.82 -6.56 1.07 -0.15 
1 - 9 4.16 -5.37 1.86 -0.16  2.18 -6.10 1.17 -0.15 
1 - 12 4.72 -4.82 1.90 -0.13  2.46 -5.52 1.21 -0.12 
1 - 24 4.63 -5.15 1.91 -0.08  2.42 -5.91 1.20 -0.07 
Notes: Sortino ratio, conditional value at risk at 99%, Alpha and Beta (with regards to the international market 
returns) long-short double sorting portfolios for the period between 1995 and 2018. Portfolio labels are the two 
forecasting horizons which were used in double sorting. 
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Figure A.6 Cumulative Returns of Buy/Hold Spread Portfolios on International 
Sample 

 
Notes: Cumulative returns of long-short buy/hold spread portfolios in comparison with the base model, both on 
the international universe. We use a buy/hold spread of 10%/20%. The portfolio label signifies the horizon 
based on which we buy and hold stocks, respectively. 

 

Table A.6 Buy/Hold Spread Portfolio Performance Metrics - International Sample 
  Without transaction costs  With transaction costs 

buy hold Sortino CVaR 99% Alpha Beta  Sortino CVaR 99% Alpha Beta 
1 1 4.81 -4.92 1.87 -0.05  2.25 -5.77 1.08 -0.05 
2 1 3.76 -5.64 1.69 -0.03  1.87 -6.36 1.00 -0.03 
3 1 3.69 -5.62 1.63 -0.05  1.92 -6.32 1.00 -0.04 
4 1 3.53 -5.40 1.54 -0.03  1.84 -6.08 0.94 -0.03 
5 1 3.86 -4.94 1.53 -0.04  2.02 -5.58 0.95 -0.03 
6 1 3.65 -4.87 1.45 -0.04  1.89 -5.46 0.89 -0.04 
9 1 4.47 -4.22 1.53 -0.04  2.45 -4.80 1.00 -0.03 
12 1 4.02 -4.52 1.44 0.00  2.20 -5.05 0.92 0.01 
24 1 3.19 -5.13 1.30 0.05  1.71 -5.67 0.79 0.06 

Notes: Sortino ratio, conditional value at risk at 99%, Alpha and Beta (in comparison with the international 
market returns) for long-short buy/hold spread portfolio made on the international universe for the period 
between 1950 and 2018. We use a buy/hold spread of 10%/20%. The portfolio label signifies the horizon 
based on which we buy and hold stocks, respectively. 
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B. Methodology 

B.1 Machine learning 
This section gives an overview of the feedforward neural networks, gradient-boosted 
trees, and algorithms that will be used. For more details, see Goodfellow et al. (2016) 
or Hastie et al. (2009). 

Feedforward Neural Network 
Feedforward neural network consists of an input layer of raw predictors, one or 

multiple hidden layers and an output layer. Each layer is composed of nodes, also 
called neurons. The nodes can be fully connected to all nodes in the previous and 
next layer or only to some of them. 

Figure B.1 shows an example of a neural network that is fully connected, has 
three inputs, two hidden layers, each with four neurons and an output layer with two 
outputs. 

 
Figure B.1 Example of Multilayer Fully Connected Neural Network 

 
Neuron 𝑖𝑖 is defined as: 

𝑦𝑦𝑖𝑖 = φ(𝑠𝑠𝑖𝑖 + 𝑏𝑏𝑖𝑖),   𝑠𝑠𝑖𝑖 = �𝑤𝑤𝑖𝑖𝑖𝑖𝑥𝑥𝑗𝑗

𝑚𝑚

𝑗𝑗=1

 

with 𝑥𝑥1, . . . 𝑥𝑥𝑚𝑚  being neuron inputs, 𝑤𝑤𝑖𝑖1, . . .𝑤𝑤𝑖𝑖𝑖𝑖  are synaptic weights, 𝑏𝑏𝑖𝑖  is bias term 
for a given neuron, φ(⋅) is the activation function, and 𝑦𝑦𝑖𝑖  is the output of the neuron 
𝑖𝑖. 

A Commonly used activation function, and the one that we will be using, is 
called rectified linear unit (ReLU), and it is defined as:  

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥)  =  � 0    𝑖𝑖𝑖𝑖 𝑥𝑥 < 0
     𝑥𝑥    𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒

 

Other used types of activation functions are, for example, sigmoid, hyperbolic 
tangent, piece-wise linear or threshold activation functions. 
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Optimization 
Machine learning minimizes loss function8. For a function with one input, the 

derivative 𝑓𝑓′(𝑥𝑥)gives us the slope of 𝑓𝑓(𝑥𝑥)at 𝑥𝑥 telling us in which direction to move. 
We might encounter multiple problems that will make it impossible to reach the 
global minimum using this procedure. Those are local minimums or saddle points. In 
the case of working with multiple inputs, we need to work with gradients, and we 
move in the direction of the steepest descent - known as gradient descent. 

Stochastic gradient descent (SGD) is an extension of gradient descent. With 
larger datasets, the time to move even one step in the right direction using gradient 
descent takes too long as we need to use the entire dataset to compute the gradient. 
Instead, we approximately estimate the gradient using a small and random sample 
called a minibatch. The approximation greatly speeds up the optimization and allows 
us to work with large datasets. 

We will be using an extension of stochastic gradient descent, namely Adam 
optimization algorithm (short for adaptive moments) proposed by Kingma and Ba 
(2014). It is based on computing adaptive estimates of the first and second moments 
of gradients. 

When we move in the direction of the steepest descent, the size of the step, ϵ, is 
called a learning rate. It is a positive scalar, and there are different methods of 
choosing the learning rate. The simplest one is to set it to a small constant. To speed 
up the convergence, it is common to decrease the learning rate during the learning 
process. We will use decaying learning rate, more specifically reducing learning rate 
on a plateau by a fixed factor when after a certain number of epochs, there was no 
improvement to validation error. The epoch term means that the network has seen the 
entire dataset once. Other learning rate decay schemes include linear decay until 
reaching a fixed minimum or exponential decay. 

When using a training feedforward neural network or obtaining predictions, 
forward propagation is employed. Forward propagation is the calculation of the 
final output of the model, given the inputs. This includes calculating the output value 
of each node in the network so that we can obtain the final output. With predictions 
and real values available, we compute the loss ℒ(θ). 

As a loss function, we are using mean squared error: 

ℒ(θ) =
1
𝑁𝑁
��𝜃𝜃𝑛𝑛 − 𝜃𝜃�𝑛𝑛�

2
𝑁𝑁

𝑛𝑛=1

 

where 𝑁𝑁 is the batch size, 𝜃𝜃𝑛𝑛  is the target value, and 𝜃𝜃�𝑛𝑛   is the estimated value of nth 
observation. 

The backpropagation algorithm efficiently calculates the gradient of the loss 
function with respect to the parameters of the network. The efficiency comes from 
using the chain rule and from iterative calculation backwards through the network, 
which avoids unnecessary calculations. The calculated gradient lets us see which 
node is responsible for most of the error and lets us change the parameters 
                                                             
8 Also called the objective function, criterion, or error function. 
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accordingly. We adjust the weights by a learning rate multiplied by the gradient of the 
loss function with respect to a given weight. 

Regularization Techniques 
Regularization of neural networks controls the kind of functions we allow our 

model to take or specify which functions are preferred. Regularization is a 
modification to the neural network with the aim of reducing generalization error to 
prevent overfitting. We use regularisation techniques: early stopping, batch 
normalization, ensemble and dropout. 

Early stopping is a form of regularization. When we train the model, the 
training error reduces over time; however, the validation error is rising after a certain 
time, signalling overfit. Early stopping is a rule to stop the learning when, after a 
certain number of epochs, given by the patience parameter, the improvement to the 
validation error is lower than the specified threshold. We set this threshold to zero so 
that we stop learning when there is no improvement. 

Batch normalization by Ioffe and Szegedy (2015) is used to prevent an internal 
covariate shift. Internal covariate shift means that the distribution of inputs to the 
layer changes during the learning as the parameters of preceding layers change. It 
poses a problem as the layers need to continuously adapt to the changing distribution, 
and small changes to the parameters could be greatly amplified further in the 
network. Batch normalization addresses this by normalizing the input of each layer 
for each minibatch during the training. It allows us to use higher learning rates and 
works as a regularization. 

Ensembles are used to lower the generalization error by averaging several 
models. We train the model multiple times with different starting seeds and average 
the predictions from them to get the final prediction. The ensemble will work at least 
as well as any individual models, and if models make independent errors, the 
ensemble will be better. The different initialization works to get at least partially 
independent errors. The disadvantage of using ensembles in machine learning is their 
computational cost. 

Dropout is a technique developed by Srivastava et al. (2014) to prevent 
overfitting similarly to an ensemble but using only one model. It provides an efficient 
way to combine many network architectures by randomly dropping nodes and their 
connections from the network as we train it. It prevents the nodes from co-adapting 
too much. At each step, the node is activated with probability p and connected to the 
next layer with weight w. When we predict, we use a single unthinned network that 
has smaller weights to account for the time the node was not activated during the 
training. 

Gradient Boosted Regression Trees 
Gradient-boosted regression trees employ decision trees and a technique called 

gradient boosting. Decision trees can be divided into classification trees, where the 
leaf contains the class to which the data supplied belongs and regression trees, where 
the leaves are real numbers. Classification and Regression Tree (CART) is a term 
which covers both categories. CART creates binary trees - each non-terminal node is 
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split into two nodes. The benefits of trees include intuitive interpretation and the fact 
that they allow for both numerical values and categorical values in one model. 

As only one tree is usually not sufficiently strong to be used alone, techniques 
were developed to combine multiple trees, called ensemble models. Examples are 
boosted trees, random forests or rotation forests. 

Boosted regression trees were first proposed by Friedman (2001). Gradient 
boosting is a machine learning technique that uses an ensemble of models that are 
iteratively learned. In this iterative learning, each added model is working to correct 
the mistakes of the current ensemble model. These ensemble models are often, but 
not necessarily, trees. 

We use the implementation of boosted trees called XGBoost (Extreme Gradient 
Boost) by Chen and Guestrin (2016). It employs computing of second-order 
gradients to improve the performance, allowing regularization to improve 
generalization. 

The tree is defined as: 

𝑓𝑓𝑡𝑡(𝑥𝑥) = 𝑤𝑤𝑞𝑞(𝑥𝑥),𝑤𝑤 ∈ 𝑅𝑅𝑇𝑇 , 𝑞𝑞:𝑅𝑅𝑑𝑑 → {1,2,⋯ ,𝑇𝑇} 

where w is a vector of scores on leaves, and q is a function which assigns each 
observation to the corresponding leaf. T is the number of leaves. 

A tree ensemble with K additive functions then forms the final model and final 
predictions. 

𝑦𝑦�𝑖𝑖 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. +�ν𝑓𝑓𝑘𝑘(𝑥𝑥𝑖𝑖)
𝐾𝐾

𝑘𝑘=1

, 𝑓𝑓𝑘𝑘 ∈ ℱ 

Where ℱ is the space of all CART. 𝑓𝑓𝑘𝑘  is an independent tree. Each added tree is 
multiplied by the shrinkage parameter ν. const. is our starting point before fitting the 
first tree. 
Our loss function is the following: 

ℒ(𝜙𝜙) = �𝑙𝑙(𝑦𝑦�𝑖𝑖 ,𝑦𝑦𝑖𝑖)
𝑖𝑖

+ �Ω(𝑓𝑓𝑘𝑘)
𝑘𝑘

 

where Ω(𝑓𝑓) = γ𝑇𝑇 + 1
2
λ||𝑤𝑤||2is the regularization term which penalizes the 

complexity and avoids overfitting. 𝑙𝑙 is the differentiable convex training loss 
function; in our case, we will use mean square error. 

The model is trained using additive strategy. At iteration 𝑡𝑡 (out of a total of K) 
the prediction is: 

𝑦𝑦�𝑖𝑖
(𝑡𝑡) = 𝜙𝜙(𝑥𝑥𝑖𝑖) = 𝑦𝑦�𝑖𝑖

(𝑡𝑡−1) + ν𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) 

where ν  is the shrinkage parameter that shrinks the influence of the tree that is being 
added to avoid overfitting. It also allows subsequent trees room for improvement of 
the model. 
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When learning, at t-th iteration, we fit tree 𝑓𝑓𝑡𝑡 which minimizes 

ℒ (𝑡𝑡) = �𝑙𝑙 �𝑦𝑦𝑖𝑖 ,𝑦𝑦�𝑖𝑖
(𝑡𝑡−1) + 𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖)�

𝑛𝑛

𝑖𝑖=1

+ Ω(𝑓𝑓𝑡𝑡) 

Note that the goal of 𝑓𝑓𝑡𝑡  is to minimize loss with respect to residuals from the previous 
predictions 𝑦𝑦�𝑖𝑖

(𝑡𝑡−1) while taking into account the regularization term. 

𝑓𝑓𝑡𝑡 from this equation can be approximated by the second-order Taylor 
approximation 

ℒ (𝑡𝑡) ≃��𝑙𝑙�𝑦𝑦𝑖𝑖 ,𝑦𝑦�(𝑡𝑡−1)� + 𝑔𝑔𝑖𝑖𝑓𝑓𝑡𝑡(𝑥𝑥𝑖𝑖) +
1
2
ℎ𝑖𝑖𝑓𝑓𝑡𝑡2(𝑥𝑥𝑖𝑖)�

𝑛𝑛

𝑖𝑖=1

+ Ω(𝑓𝑓𝑡𝑡) 

where 𝑔𝑔𝑖𝑖 , ℎ𝑖𝑖 are first and second-order derivations of the loss function. 

𝐼𝐼𝑅𝑅  and 𝐼𝐼𝐿𝐿  are instances of sets of right and left nodes, 𝐼𝐼 is their union. To evaluate 
whether to split the node or not, we compare 𝐼𝐼𝑅𝑅  and 𝐼𝐼𝐿𝐿  with the 𝐼𝐼 to see whether there 
is a loss reduction after splitting. More formally 

ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 =
1
2
�
�∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝐼𝐼𝐿𝐿 �2

∑ ℎ𝑖𝑖𝑖𝑖∈𝐼𝐼𝐿𝐿 + λ
+
�∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝐼𝐼𝑅𝑅 �2

∑ ℎ𝑖𝑖𝑖𝑖∈𝐼𝐼𝑅𝑅 + λ
−

(∑ 𝑔𝑔𝑖𝑖𝑖𝑖∈𝐼𝐼 )2

∑ ℎ𝑖𝑖𝑖𝑖∈𝐼𝐼 + λ
� −  γ 

where γ  is the regularization term on the additional leaf. We select the best split 
based on ℒ𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 , and if it is positive, we add the branch to the tree. 

When fitting the tree, it is not feasible to search through all of the possible splits. 
We instead have a certain number of quantiles on a characteristic, and we test only 
these splits in our search. 

The XGBoost also employs feature subsampling, which prevents overfitting and 
also speeds up the optimization. Excluding a random portion of characteristics in 
each tree allows us to get more diverse models by ensuring that not all of the trees are 
split on the dominant characteristic (i.e. firm size). 

B.2 Performance Evaluation 
The most apparent metrics are the mean and standard deviation of returns. The 
downside of using standard deviation to be mindful is that positive returns are treated 
the same way as negative ones. 

Sharpe ratio is defined as the difference between average return and risk-free rate 
for a given period divided by the standard deviation of the rate of return. Formally: 

𝑆𝑆𝑅𝑅𝑘𝑘 =
𝐸𝐸�𝑅𝑅𝑘𝑘 − 𝑅𝑅𝑓𝑓�

�𝑣𝑣𝑣𝑣𝑣𝑣(𝑅𝑅𝑘𝑘)
 

Proposed by Sharpe (1966) under the name reward-to-variability ratio, it became a 
commonly used measure of performance. Sharpe (1994) proposes an extension to the 
Sharpe ratio so we can also compare to the benchmark changing over time. 
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𝑆𝑆𝑅𝑅𝑘𝑘 =
𝐸𝐸�𝑅𝑅𝑘𝑘 − 𝑅𝑅𝑓𝑓�

�𝑣𝑣𝑣𝑣𝑣𝑣(𝑅𝑅𝑘𝑘 − 𝑅𝑅𝑏𝑏)
 

Sharpe ratio’s weak point is that it takes standard deviation as risk, disregarding 
whether it is upside or downside volatility and treating both the same. 

Sharpe ratio is usually presented in the annualized form. It can be calculated by 
multiplying the Sharpe ratio with the square root of 12 in case we are using monthly 
data. Sharpe ratio may be negative in some cases, and it has been shown to be 
unreliable in judging the performance of a strategy in these cases (Scholz, 2007). In 
spite of this, we will be using the annualized Sharpe ratio because of its simplicity 
and widespread use in related literature. 

A crucial and often overlooked fact is that the Sharpe ratio is also simply a 
rescaled t-statistic for the statistical significance of the mean being different from 
zero. A t-statistic can be obtained from the Sharpe ratio by multiplying by the square 
root of the number of observations and dividing by the square root of 12 in case the 
ratio was annualized. When comparing different strategies with the same number of 
observations, the ratios are proportional to the t-statistic. 

To counter some of the problems of the Sharpe ratio, we include Sortino Ratio. It 
is a modification of the Sharpe ratio by Sortino and Price (1994) that penalizes only 
returns that are below the minimum acceptable return (MAR). This way, only the 
variation below MAR is counted in the denominator. The Sortino ratio is calculated 
as: 

Sortino𝑘𝑘 =
𝐸𝐸[𝑅𝑅𝑘𝑘 − 𝑀𝑀𝑀𝑀𝑅𝑅]

�1
𝑇𝑇 ∑ 𝑚𝑚𝑚𝑚𝑚𝑚�0;𝑅𝑅𝑡𝑡,𝑘𝑘 − 𝑀𝑀𝑀𝑀𝑀𝑀�2𝑇𝑇

𝑡𝑡=1

 

The denominator measures downside deviation. A minimum acceptable return of 0% 
will be used when using the Sortino ratio. 

So far mentioned metrics do not consider the tail risk of a portfolio. The Value 
at Risk (VaR) is a measure of the risk of loss that tells us how much we can lose with 
a specified confidence level α ∈ (0,1) in a set time period. From Föllmer and Schied 
(2011): 

VaRα(𝑋𝑋) = inf{ 𝑥𝑥 ∈ ℝ:𝑃𝑃(𝑋𝑋 + 𝑥𝑥 < 0) ≤ 1 − α} 

VaR is not a coherent measure as it fails to hold the subadditivity axiom of 
coherence. Meaning that the VaR of holding a portfolio is not necessarily equal to or 
lower than the sum of the VaRs of individual components. 

Conditional Value at Risk (Rockafellar, Uryasev, et al., 2000), for which the 
subadditivity holds, is defined as: 

CVaRα =
1
α
� 𝑉𝑉𝑉𝑉𝑅𝑅α(𝑋𝑋)𝑑𝑑𝑑𝑑 
α

0
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It gives the average value at risk at level α ∈ (0,1) of a position 𝑋𝑋. For example, 
CVaR 99% is the expected return on the portfolio in 1% of the worst cases. 

Portfolio drawdown (underwater) is defined as a drop in portfolio value 
compared to the achieved maximum in the past. With 𝑅𝑅𝑝𝑝(𝑤𝑤1, … ,𝑤𝑤𝑛𝑛 , 𝑡𝑡)being the 
cumulative portfolio return over portfolio holding time drawdown is defined as 

𝐷𝐷(𝑤𝑤, 𝑡𝑡) = max
0≤τ≤𝑡𝑡

�𝑅𝑅𝑝𝑝(𝑤𝑤, τ)� − 𝑅𝑅𝑝𝑝(𝑤𝑤, 𝑡𝑡) 

Maximum Drawdown up to time T is: 

𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇) = max
0≤τ≤𝑇𝑇

{𝐷𝐷(𝑤𝑤, τ)} 

The maximum drawdown represents the largest peak-to-trough decline observed. 
Although average drawdown can also be utilized, it is less prevalent than maximum 
drawdown9. 

To compare our results with a benchmark, we use a single-index model 
developed by Sharpe (1963), which is an asset pricing model measuring the risk and 
return of a portfolio relative to another portfolio. It is defined as 

𝑅𝑅𝑠𝑠,𝑡𝑡 − 𝑅𝑅𝑓𝑓 = α𝑖𝑖 + β𝑖𝑖�𝑅𝑅𝑀𝑀,𝑡𝑡 − 𝑅𝑅𝑓𝑓� + ϵ𝑖𝑖,𝑡𝑡 

Where 𝑅𝑅𝑠𝑠 is the return of our portfolio, 𝑅𝑅𝑀𝑀 is the market return, and 𝑅𝑅𝑓𝑓 is the 
risk-free rate. The two coefficients, Alpha and Beta, are of interest as they tell us the 
abnormal return and exposure to market movements. 

B.3 Transaction cost proxies 

Turnover 
The turnover, the percentage of monthly change of holdings, is defined as: 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑟𝑟𝑡𝑡 =
1
𝑔𝑔𝑔𝑔

�|𝑡𝑡𝑠𝑠𝑖𝑖𝑖𝑖|
𝑛𝑛

𝑖𝑖=1

 

where ge is gross exposure, the sum of long and short positions divided by the 
capital, and 𝑡𝑡𝑠𝑠𝑖𝑖𝑖𝑖  is the trade size for firm 𝑖𝑖 at a given month. A turnover of 200% 
means that the entire portfolio was liquidated, and new stocks were bought for both 
the long side and the short side of the portfolio. Turnover of a portfolio is indicative 
of transaction costs paid. However, some portfolios may select especially costly 
firms to trade while keeping the turnover low. 

We are using our preprocessed daily dataset to estimate transaction costs for each 
firm in a given month. Closing quoted spread (Chung and Zhang, 2014) and volatility 
over volume (Fong et al., 2018) proxies are used. 

                                                             
9 for example in Avramov et al. (2020), Gu et al. (2020), and Tobek and Hronec (2021) 
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Closing Quoted Spread 
Closing quoted spread proxy by Chung and Zhang (2014) is defined as: 

𝑄𝑄𝑄𝑄 =
1
𝑇𝑇
�

2(𝑎𝑎𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏𝑏𝑏)
𝑎𝑎𝑎𝑎𝑎𝑎 +  𝑏𝑏𝑏𝑏𝑏𝑏

𝑇𝑇

𝑡𝑡=1

 

with 𝑏𝑏𝑏𝑏𝑏𝑏 being the closing bid, 𝑎𝑎𝑎𝑎𝑎𝑎 being the closing ask, and 𝑇𝑇 being the number of 
days for a given month. If the daily value of 𝑄𝑄𝑄𝑄 is missing or negative, it is not 
included in the calculation of the average. The downside of the quoted spread is that 
it is not available for the whole sample period in all of the regions as it requires 
closing bid and ask, which is frequently not available in the earlier periods. 

Volatility over volume (% spread) 
Volatility over volume (VoV) (% spread) proxy was introduced by Fong et al. 

(2018), and it is defined as: 

𝑉𝑉𝑉𝑉𝑉𝑉(% 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠) = 8
σ2/3

𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑙𝑙1/3 

with σ being the standard deviation of daily returns, 𝑎𝑎𝑎𝑎𝑎𝑎 𝑣𝑣𝑣𝑣𝑣𝑣 being the average daily 
trading volume for a given month. The trading volume is in U.S. dollars and is 
deflated to 2000 prices. It roughly measures the fixed component of transaction costs. 

Fong et al. (2018) benchmarked it to other transaction cost proxies, showing that 
only the closing quoted spread outperformed this proxy. VoV proxy has fewer 
missing observations than the quoted spread as it uses returns and volume only and 
not closing bid and ask. 

To estimate transaction costs, we use closing quoted spread (Chung and Zhang, 
2014). Missing observations are filled in with volatility over volume (Fong et al., 
2018). For the remaining observations with missing values, we assume transaction 
costs of 5%. Average estimated transaction costs over time are displayed in Figure 
B.3. 

Figure B.3 Average Estimated Transaction Costs 

 
Notes: Estimated transaction costs cross-sectional average for the U.S. and international sample (with the U.S. 
excluded). 



 

176                                            Finance a úvěr-Czech Journal of Economics and Finance, 74, 2024 no.2 

C. Data Preprocessing and Filtering 

C.1 U.S. Data Processing 
CRSP/Compustat Merged Database from the Center for Research in Security 

Prices is used. It is a comprehensive, survivorship bias-free and accurate database. 
CRSP at daily and monthly frequency is used, daily is used for estimating transaction 
costs and monthly for returns and characteristics calculation. COMPUSTAT 
fundamental data are used at a yearly frequency. Quarterly fundamentals are 
available; however, the international coverage of quarterly data is problematic, so we 
do not use them to keep the U.S. and international datasets comparable. The dataset 
includes stocks that are (or were) listed on the New York Stock Exchange (NYSE), 
the Nasdaq Stock Exchange (NASDAQ) or the American Stock Exchange (AMEX), 
among others. The sample used is from the period between 1963 and 2018. 

Handling of CRSP and COMPUSTAT data mostly follows Bali et al. (2016). For 
the monthly dataset, we need to ensure that we only include securities that were 
available to trade on the last day of the month t. We thus include only firms with a 
starting date at the latest on the last day of the month t, and the ending date has to be 
on the last day of the month or later. The preprocessing of daily and monthly datasets 
is otherwise the same. 

To get U.S. shares only, we filter based on the SHRCD share code being 10 or 
11. To include only common equity firms in our dataset, we select firms with 
exchange code (EXCHCD) 1, 2 or 3. 

Market capitalization is calculated as the absolute value of the number of shares 
outstanding (SHROUT) times the price of the stock at the end of the month 
(ALTPRC). ALTPRC is used as the PRC variable is missing or zero if the stock was 
not traded. Absolute value is taken as CRSP reports a negative price, equal to the 
average of bid and ask if the stock was not traded that day. If SHROUT or ALTPRC 
is missing, we mark market capitalization as missing. 

As for returns, most of the time return (RET) variable can be used with the 
exception of the last month when the firm is active. When the firm delists, the RET 
does not correspond to the real return that an investor would get. If the stock is 
delisted, but the investor does not liquidate the position (this behaviour is expected as 
it is a sudden change without much warning in many cases), he ends up with 
untradeable stock. The CRSP includes delisting returns DLRET, the reason for the 
delisting and the date of delisting. 

C.2 International Data Processing 
As a source of international cross-sectional equity data, we use Datastream. We 

use a sample from January 1980 to 2018. The starting year is limited by the coverage 
of fundamental data in the Worldscope database. Datastream comprises several 
databases which we will use. Daily pricing data (unadjusted price, total return index, 
market value, number of shares outstanding, unadjusted volume, dividends and 
others), yearly fundamental data from Worldscope database (i.e. accruals, inventory 
or earnings) and I/B/E/S Estimates (Institutional Brokers Estimate System) are used. 
Where currency is needed, we use U.S. dollars. 
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One of the reasons why the research is focused on the United States equity 
market is the high reliability of the data available. For the U.S., we have available 
CRSP and COMPUSTAT datasets, which are well-checked and reliable. Having a 
reliable international dataset is valuable as we can provide evidence that anomalies 
found in U.S. data are not data snooping. 

In order to get the dscodes (identification of firm listings), we use constituent 
lists provided by Datastream and Worldscope. These lists include Datastream 
research lists, Datastream dead lists and Worldscope coverage lists for each country. 
These lists contain around 230 thousand dscodes. This number is, however, greatly 
reduced when we filter our dataset. 

We perform static screening (using only static variables) with the goal of 
removing duplicates and ensuring we include only common equity firms. We keep 
only firms marked as major listings. This excludes listings of secondary share classes 
of a firm. We also keep only listings that are traded on the domestic market. By doing 
this, we get only one listing per firm. Stocks with the type of instrument other than 
equity are then filtered out. This filters some of the non-equity listings (bonds, 
options, etc.); however, this indicator variable is not entirely reliable. 

We sort industries, using variable INDN, which provides the name of the 
industry, into common and uncommon equity and exclude listings which belong to 
uncommon equity. Examples of filtered-out industries are investment trusts, real 
estate investment trusts, mutual funds or exchange-traded notes. We search the name 
of the firm for suspicious word parts to filter out non-common equity further. If the 
name of the firm contains suspicious words, it is checked manually. For the list of 
word parts, see Griffin et al. (2010). Some of the words are checked on all firms, and 
some are country-specific as some of the countries have different ways to mark 
preferred shares, non-voting shares and others. We exclude a firm if it does not have 
pricing or fundamentals coverage. 

We continue with dynamic screening, which is to eliminate errors in daily and 
then monthly pricing data. Daily pricing data are padded, meaning that if stock is not 
traded on a given day, the last available price is reported. We delete observations 
after the firm is delisted. This is done by trimming observations when the return 
index in the original currency does not change at the end of the series for each firm. 
The last observation of the firm is treated as a delisting return because Datastream 
does not report separate delisting return as CRSP. The order of magnitude of our 
variables is adjusted so that they are the same as in the CRSP dataset. 

We need to preprocess data first on a daily frequency so that they can be used for 
transaction cost calculations and then create a monthly dataset that will be used in the 
models. We drop observations with a missing return index. We calculate the daily 
return from the return index. Return is set to missing in cases when daily returns are 
higher than 500% or when the price is more than 100,000 dollars. Datastream was 
rounding prices to the nearest penny before decimalization. This causes nontrivial 
differences in calculated returns when prices are small. Because of this, we set the 
return to missing for a price that is less than 0.1 USD. Alternative price screens of 1 
USD or 0.5 USD work as well (Ince and Porter, 2006). In cases when the return 
index is smaller than 0.01, we set the corresponding return to missing, as these cases 
are heavily affected by rounding. We fix cases when the return is abnormal, but there 
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is a reversal the next day. This is when the daily return is over 200%, but the two-day 
return is less than 110%. 

We divide dividends by a fixed value if the dividend is greater than half the 
adjusted price. Schmidt et al. (2015) documents that dividend data for some 
European countries are erroneous. They observe dividends, which are unusually 
large, about ten times the actual price of the stock. If we used these dividends to 
calculate returns, we would get unreasonably high returns on the day of the dividend 
payment. As these dividends are usually a fraction of usual dividends, it is concluded 
that a decimal error occurred. 

Monthly returns are calculated using the return index. For transforming other 
variables to monthly frequency, either the last available value for a given month is 
used or the sum over the month in case of volume traded. We compare the return 
index provided by Datastream with returns that we calculate using price and 
dividend. If the difference between Datastream returns and returns we constructed is 
larger than 0.5 in absolute terms, we set returns to missing. We compare the market 
value reported by Datastream with a self-created market value that we calculate by 
multiplying the unadjusted price with the number of shares outstanding. If the 
difference between those two numbers is greater than 0.5 in absolute terms, we set 
the market value to missing. Monthly returns higher than 2000% are discarded. If 𝑅𝑅𝑡𝑡  
or 𝑅𝑅𝑡𝑡−1 is higher than 300% and (1 + 𝑅𝑅𝑡𝑡)(1 + 𝑅𝑅𝑡𝑡−1)  −  1 is less than 50%, then 
both returns are set to missing. Monthly returns before the year 2000 are winsorized 
in each region as a way to limit outliers. Data below the first percentile are set to the 
first percentile value, and data above 99th percentile are set to 99th percentile value. 

C.3 Investment Universe - Liquidity Filter 
As our investment universe, we have a sample of 23 developed countries: 

Australia, Austria, Belgium, Denmark, Finland, France, Germany, Greece, Hong 
Kong, Ireland, Italy, Japan, Luxembourg, the Netherlands, New Zealand, Norway, 
Portugal, Singapore, Spain, Sweden, Switzerland, the United Kingdom, and the 
United States. These countries are sorted into four regions: U.S., Europe, Japan, and 
Asia Pacific. 

We apply a liquidity filter allowing us to avoid micro-caps stocks, which are 
highly illiquid, and trading would be costly or even impossible (i.e. shorting some 
firms). We sort firms based on market capitalization and then exclude a portion of 
low-market capitalization firms each month. In each region, we exclude the least 
capitalized firms so that the sum of the market capitalization of those firms is 5% of 
the total market capitalization for that region. 

We also employ a similar filter that is based on trading volume over the last 12 
months. We exclude low-traded firms so that the sum of their trading volume makes 
5% of the total traded volume of the given region. In case trading volume is missing 
for a firm, we exclude this firm if it belongs to the lowest 10% based on market 
capitalization. 

For stocks that are not in the U.S., we also require that they have a market 
capitalization larger than the lowest decile NYSE market cap for a given month. This 
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filtering is to ensure that non-U.S. firms have capitalization comparable to U.S. 
stocks. 

Additionally, the firms need to have a price larger than one dollar, in the case of 
Asia Pacific region $0.1, at the end of the previous month. 

D. Robustness Checks 

D.1 Portfolio Performance over Time 
A common concern is the decreasing profitability of portfolios over time. 

Therefore, we present a subsample analysis for the long-short decile portfolios. A 
possible split point could be the decimalization of the U.S. stock market in 2001 
(Avramov et al., 2023; Cakici et al., 2023) or the financial crisis (Leung et al., 2021). 
Portfolios created using machine learning methods often have a decline in 
profitability after around 2003-2004 (Tobek and Hronec, 2021; Gu et al., 2020; Blitz 
et al., 2023). Given this evidence and our own results (see Figure A.1 and A.4), we 
use the end of 2004 as our split-point. 

Table D.1 compares the performance of long-short decile portfolios in two 
subperiods, 1995-2004 and 2005-2018. Table D.2 provides additional performance 
metrics. Consistent with the literature, the profitability of decile portfolios is 
diminished after 2005. The first subperiod has considerably higher transaction costs, 
which makes this drop in profitability less severe for portfolios with transaction costs 
included. This decrease is more pronounced for shorter forecasting horizons. 

In the U.S., risk-adjusted profitability is decreased only in the case of shorter 
forecasting horizons. For example, for the 12-month portfolio with transaction costs 
on the U.S. sample, the Sharpe ratio went from 0.93 to 1.35. International portfolios 
have lower Sharpe ratios for all horizons in the second period. International 
portfolios have been outperforming the U.S. portfolios in the first period but have 
more similar performance after 2005. We also see higher risk-adjusted returns for 
longer-horizon portfolios after 2005. This pattern wasn’t visible when looking at the 
whole sample. 

However, risk-adjusted profitability is decreased only in the case of shorter 
forecasting horizons. For longer forecasting horizons (5-24 months in the U.S., 3-24 
months internationally), there is no change or, in some cases, even improvement of 
risk-adjusted return in the second period. For example, for the 12-month portfolio 
with transaction costs on the U.S. sample, the Sharpe ratio went from 0.93 to 1.35. 
Overall, we can conclude that longer horizon portfolios can be interesting from the 
investors’ perspective, as they are profitable even in more recent years. 
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Table D.1 Profitability of Long-Short Decile Portfolios over Time 
 Without transaction costs  With transaction costs 
 Mean Std Sharpe MDD  Mean Std Sharpe MDD 

 Panel A: U.S. 1995-2004 

1 3.08 6.94 1.54 -29.39  1.87 6.93 0.93 -36.46 
2 2.16 5.46 1.37 -32.93  1.59 5.47 1.01 -36.38 
3 1.73 4.64 1.29 -24.58  1.34 4.65 1.00 -27.02 
4 1.52 4.24 1.24 -15.49  1.22 4.25 0.99 -19.64 
5 1.11 3.92 0.98 -39.01  0.86 3.93 0.76 -41.73 
6 1.22 3.54 1.20 -26.08  1.02 3.55 0.99 -29.00 
9 0.90 3.01 1.04 -27.16  0.76 3.02 0.87 -28.99 

12 0.87 2.81 1.07 -24.75  0.76 2.81 0.93 -26.06 
24 1.13 3.36 1.16 -24.86  1.07 3.37 1.10 -25.61 

 Panel B: U.S. 2005-2018 

1 0.75 3.04 0.85 -30.27  0.65 3.04 0.74 -30.96 
2 0.70 2.82 0.86 -21.69  0.65 2.82 0.80 -21.99 
3 0.65 2.79 0.80 -25.71  0.61 2.79 0.76 -25.90 
4 0.71 2.49 1.00 -17.72  0.69 2.49 0.96 -17.88 
5 0.71 2.27 1.09 -13.75  0.69 2.27 1.06 -13.85 
6 0.63 2.21 0.99 -16.24  0.61 2.21 0.96 -16.70 
9 0.66 1.89 1.21 -14.15  0.64 1.89 1.18 -14.43 

12 0.62 1.55 1.38 -8.59  0.61 1.55 1.35 -8.75 
24 0.58 1.38 1.45 -14.54  0.57 1.38 1.44 -14.68 

 Panel C: International 1995-2004 

1 2.86 3.94 2.52 -9.42  1.69 3.88 1.51 -12.24 
2 2.00 4.30 1.61 -23.56  1.43 4.28 1.16 -25.22 
3 1.52 4.02 1.31 -18.23  1.13 4.02 0.98 -23.69 
4 1.37 3.74 1.27 -25.31  1.07 3.74 0.99 -30.43 
5 1.39 3.25 1.49 -23.50  1.14 3.24 1.22 -26.63 
6 1.28 3.04 1.45 -26.95  1.06 3.03 1.21 -29.73 
9 1.35 2.94 1.59 -23.98  1.20 2.94 1.41 -25.60 

12 1.32 3.08 1.48 -27.40  1.19 3.08 1.34 -28.48 
24 1.14 3.33 1.19 -34.37  1.07 3.33 1.11 -35.06 

 Panel D: International 2005-2018 

1 1.03 2.42 1.47 -23.31  0.59 2.42 0.85 -27.11 
2 0.84 2.41 1.20 -26.96  0.62 2.41 0.89 -30.15 
3 0.74 2.22 1.15 -21.91  0.59 2.22 0.92 -24.67 
4 0.63 2.06 1.06 -23.44  0.51 2.07 0.86 -26.08 
5 0.64 1.90 1.17 -17.17  0.54 1.90 0.98 -19.08 
6 0.59 1.79 1.14 -16.32  0.50 1.80 0.97 -18.12 
9 0.60 1.74 1.20 -16.06  0.54 1.74 1.08 -16.53 

12 0.57 1.60 1.24 -12.18  0.53 1.60 1.14 -12.45 
24 0.52 1.58 1.14 -7.03  0.50 1.58 1.08 -7.49 

Notes: The table shows the performance of long-short decile portfolios in the U.S. (Panel A and B) and 
internationally (Panel C and D) for periods 1995-2004 and 2005-2018. Monthly mean returns, standard 
deviation, annualized Sharpe ratio and maximum drawdown for strategies labelled 1 to 24 are reported. The 
label corresponds to the horizon h for which we obtain the predictions and, at the same time, the holding 
period for a given portfolio. The displayed values are in percentages except for the Sharpe ratio. 
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Table D.2 Performance metrics of Long-Short Decile Portfolios over Time 
 

 

Without transaction costs  With transaction costs 

 Sortino CVaR 99% Alpha Beta  Sortino CvaR 99% Alpha Beta 

 Panel A: U.S. 1995-2004 
1 
 

3.14 -12.46 3.25 -0.23  1.72 -13.55 2.05 -0.25 

2 2.54 -11.79 2.26 -0.14  1.75 -12.32 1.69 -0.14 
3 2.60 -8.40 1.82 -0.13  1.89 -8.84 1.44 -0.13 
4 2.37 -8.03 1.57 -0.08  1.81 -8.33 1.27 -0.08 
5 1.52 -9.61 1.18 -0.10  1.14 -9.89 0.94 -0.10 
6 2.11 -7.14 1.33 -0.15  1.69 -7.35 1.13 -0.15 
9 1.60 -6.90 0.95 -0.07  1.31 -7.03 0.81 -0.07 
12 1.69 -6.42 0.90 -0.04  1.44 -6.52 0.78 -0.04 
24 2.03 -7.03 1.17 -0.05  1.90 -7.11 1.11 -0.05 
 Panel B: U.S. 2005-2018 
1 1.31 -6.78 0.90 -0.21  1.11 -6.89 0.79 -0.20 
2 1.37 -5.86 0.79 -0.13  1.26 -5.91 0.74 -0.13 
3 1.21 -6.08 0.73 -0.12  1.14 -6.12 0.70 -0.11 
4 1.68 -4.71 0.80 -0.12  1.61 -4.73 0.78 -0.12 
5 1.83 -4.47 0.76 -0.07  1.76 -4.50 0.74 -0.07 
6 1.59 -4.56 0.68 -0.08  1.54 -4.58 0.66 -0.08 
9 2.11 -3.70 0.69 -0.04  2.05 -3.71 0.68 -0.04 
12 2.62 -2.84 0.63 -0.01  2.56 -2.85 0.62 -0.01 
24 3.00 -2.34 0.57 0.01  2.96 -2.34 0.57 0.01 
 Panel C: International 1995-2004 
1 7.54 -4.89 2.91 -0.10  3.50 -5.98 1.74 -0.10 
2 3.21 -7.91 2.02 -0.03  2.09 -8.56 1.45 -0.03 
3 2.53 -7.38 1.53 -0.02  1.75 -7.82 1.14 -0.01 
4 2.45 -6.38 1.38 -0.02  1.78 -6.78 1.08 -0.02 
5 3.03 -4.75 1.42 -0.06  2.31 -5.06 1.17 -0.06 
6 2.87 -4.76 1.31 -0.08  2.24 -5.02 1.09 -0.08 
9 3.40 -4.58 1.36 -0.01  2.86 -4.76 1.20 -0.01 
12 3.03 -5.21 1.31 0.02  2.65 -5.35 1.18 0.02 
24 2.33 -5.48 1.12 0.05  2.15 -5.56 1.05 0.05 
 Panel D: International 2005-2018 
1 2.45 -4.92 1.10 -0.12  1.28 -5.43 0.67 -0.11 
2 1.88 -5.37 0.91 -0.11  1.32 -5.61 0.69 -0.11 
3 1.84 -4.81 0.79 -0.09  1.41 -4.98 0.65 -0.09 
4 1.78 -4.12 0.65 -0.03  1.37 -4.28 0.53 -0.03 
5 2.08 -3.77 0.64 -0.01  1.68 -3.89 0.54 -0.01 
6 2.01 -3.44 0.59 0.00  1.66 -3.54 0.50 0.00 
9 2.15 -3.36 0.59 0.02  1.88 -3.43 0.53 0.02 
12 2.29 -2.95 0.55 0.04  2.04 -3.00 0.50 0.04 
24 2.13 -2.77 0.48 0.06  2.00 -2.79 0.45 0.06 

Notes: Additional performance measures of long-short decile portfolios in the U.S. (Panel A and B) and 
internationally (Panel C and D) for periods 1995-2004 and 2005-2018. Sortino ratio, conditional value at risk at 
99%, Alpha and Beta (with regards to market returns in the U.S./internationally) are presented. The label 
corresponds to the horizon h for which we obtain the predictions and, at the same time, the holding period for a 
given portfolio. 
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D.2 Gradient Boosted Regression Trees Results 
As a robustness check, we use gradient-boosted regression trees10 instead of 

feedforward neural networks. Sample splitting is the same as with neural networks. 
We use a hyperparameter search to select optimal parameters that perform well out-
of-sample. For the optimal number of trees, we test 50, 100, 200, 300, 400, and 500. 
The maximum depth of each tree between one and nine is considered, and learning 
rates are 0.01, 0.025, 0.05, and 0.1. 

We obtain predictions of cumulative returns at various horizons using gradient-
boosted regression trees on the U.S. sample. We constructed portfolios in the same 
way as with neural networks. Results of long-short decile portfolios at various 
horizons, with a holding period equal to the forecasting horizon used, are presented 
in Table D.3. Results for the one-month horizon have a comparable Sharpe ratio to 
neural networks, but it is slightly more volatile. Looking at longer horizons, the two-
month portfolio has a higher Sharpe ratio after accounting for transaction costs, 
benefiting from the reduced turnover of the strategy. The short leg of portfolios is not 
profitable with transaction costs, similar to neural networks portfolios in the U.S. 
However, in this case, a long-only component is more profitable and has a higher 
Sharpe ratio than a long-short strategy. Short only component seems ineffective in 
this case. More performance metrics for portfolios are in Table D.4. Betas of 
portfolios are around -0.40, almost double that of neural networks. In Figure D.1 are 
cumulative returns of long-short decile portfolios. Without transaction costs one-
month, then two-month portfolios dominate. When we account for transaction costs, 
the two-month portfolio is better. 

Double-sorted portfolios were made with cutoffs of top 15% and bottom 15%. In 
Table D.5 is shown the performance of double-sorted long-short portfolios. The 
portfolio 1-2 has a slightly higher Sharpe ratio than the one-month decile portfolio. 
Double-sorted portfolios have higher mean returns. Cumulative returns of double-
sorted long-short portfolios in comparison with one-month long-short decile portfolio 
are in Figure D.2. Additional performance metrics are in Table D.6. Betas are more 
negative than in the case of decile portfolios. 

Performance of long-short buy/hold spread of 10%/20% is presented in Table 
D.7. Portfolio 2-1 has the highest Sharpe ratio and mean, higher than the one-month 
decile portfolio. Additional metrics for these portfolios are in Table D.8. Cumulative 
returns of buy/hold spread portfolios are in Figure D.3. Portfolio 2-1 outperforms the 
benchmark model (one-month long-short decile portfolio). 

 
 
 
 
 
 

 

                                                             
10 See subsection B.1 for more details. 
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Table D.3 Performance of Long-Short Decile Portfolios in the U.S. 
 Without transaction costs  With transaction costs  
 Mean Std Sharpe MDD  Mean Std Sharpe MDD Turnover 

Panel A: Long-short portfolio 

1 1.84 5.59 1.14 -47.63  1.23 5.48 0.78 -49.68 121.56 
2 1.75 5.67 1.07 -41.85  1.44 5.63 0.89 -42.98 59.46 
3 1.14 5.19 0.76 -39.71  0.93 5.17 0.62 -40.62 40.77 
4 1.15 5.44 0.73 -38.67  0.98 5.43 0.63 -43.32 32.35 
5 1.01 5.34 0.65 -46.94  0.87 5.32 0.57 -50.32 26.84 
6 0.90 4.99 0.63 -52.73  0.79 4.98 0.55 -55.25 23.13 
9 0.98 4.09 0.83 -45.34  0.90 4.07 0.76 -47.43 16.69 
12 0.98 4.36 0.78 -63.57  0.92 4.36 0.73 -64.64 12.62 
24 0.86 4.74 0.63 -67.57  0.83 4.75 0.61 -68.14 6.14 

Panel B: Long only component of the strategy 
1 1.78 6.13 1.00 -54.38  1.48 6.10 0.84 -54.91 121.22 
2 1.68 6.08 0.95 -52.37  1.53 6.06 0.87 -52.69 59.12 
3 1.32 5.53 0.83 -52.41  1.22 5.52 0.76 -52.84 40.30 
4 1.26 5.28 0.83 -53.69  1.18 5.27 0.78 -53.97 32.00 
5 1.21 5.56 0.75 -59.39  1.14 5.56 0.71 -59.59 26.52 
6 1.18 5.38 0.76 -54.92  1.13 5.38 0.73 -55.12 22.60 
9 1.22 5.61 0.76 -55.82  1.19 5.60 0.73 -55.90 16.18 
12 1.23 5.69 0.75 -54.12  1.20 5.69 0.73 -54.23 12.02 
24 1.20 5.47 0.76 -50.79  1.18 5.47 0.75 -50.85 5.84 

Panel C: Short only component of the strategy 
1 0.07 7.98 0.03 -84.96  -0.28 7.92 -0.12 -85.96 121.81 
2 0.06 8.04 0.03 -82.67  -0.12 8.02 -0.05 -83.31 59.61 
3 -0.20 8.25 -0.08 -83.78  -0.32 8.24 -0.14 -84.71 41.12 
4 -0.13 8.39 -0.05 -82.93  -0.22 8.38 -0.09 -83.74 32.58 
5 -0.21 8.38 -0.09 -83.68  -0.29 8.37 -0.12 -84.31 27.06 
6 -0.30 8.27 -0.12 -85.54  -0.36 8.27 -0.15 -86.02 23.55 
9 -0.24 8.14 -0.10 -82.30  -0.29 8.14 -0.13 -82.72 17.13 
12 -0.27 7.99 -0.12 -80.40  -0.31 7.99 -0.13 -82.28 13.18 
24 -0.39 7.52 -0.18 -85.69  -0.41 7.52 -0.19 -86.36 6.47 

Notes: The table shows the performance of long-short decile portfolios in the U.S. for the period between 1995 
and 2018. Monthly mean returns, standard deviation, annualized Sharpe ratio and maximum drawdown for 
strategies labelled 1 to 24 are reported. The label corresponds to the horizon h for which we obtain the 
predictions and, at the same time, the holding period for a given portfolio. In Panel A are the results of the long-
short portfolio. The results are decomposed into long and short components in Panel B and Panel C. The 
displayed values are in percentages except for the Sharpe ratio.  
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Table D.4 Performance Measures of Long-Short Decile Portfolios in the U.S. 
 Without transaction costs  With transaction costs 

 Sortino CVaR 99% Alpha Beta  Sortino CVaR 99% Alpha Beta 

1 2.19 -10.53 2.12 -0.37  1.35 -11.10 1.50 -0.37 
2 1.93 -11.71 2.04 -0.39  1.53 -12.13 1.73 -0.39 
3 1.27 -11.55 1.48 -0.47  1.00 -11.82 1.27 -0.47 
4 1.27 -11.53 1.54 -0.54  1.06 -11.74 1.38 -0.54 
5 1.08 -12.10 1.35 -0.47  0.92 -12.29 1.22 -0.47 
6 0.98 -12.04 1.25 -0.47  0.84 -12.22 1.13 -0.47 
9 1.35 -9.02 1.23 -0.34  1.22 -9.17 1.15 -0.34 

12 1.18 -10.01 1.18 -0.28  1.09 -10.14 1.12 -0.28 
24 0.93 -10.95 0.98 -0.17  0.90 -11.03 0.95 -0.17 

Notes: Sortino ratio, conditional value at risk at 99%, Alpha and Beta (in comparison with U.S. market returns) 
are reported for long-short decile portfolios for the period between 1995 and 2018. The portfolio label is the 
forecasting horizon and the holding period for the portfolio. 

Figure D.1 Cumulative Returns of Long-Short Decile Portfolios in the U.S. 

 
Notes: The figure shows cumulative returns of long-short decile portfolios without and with transaction costs on 
the U.S. sample. The portfolio label is the forecasting horizon in months and the holding period of the strategy. 
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Table D.5 Double-Sorted Portfolios Performance in the U.S. 
 Without transaction costs  With transaction costs  

 Mean Std Sharpe MDD  Mean Std Sharpe MDD Turnover 

1 - 2 2.05 6.17 1.15 -42.60  1.46 6.05 0.84 -43.44 116.60 
1 - 3 1.93 6.11 1.10 -48.97  1.34 6.00 0.78 -50.85 114.60 
1 - 6 1.72 6.35 0.94 -56.98  1.13 6.24 0.63 -58.65 114.89 
1 - 9 1.92 6.40 1.04 -55.77  1.34 6.28 0.74 -57.51 116.45 
1 - 12 2.04 6.04 1.17 -40.56  1.44 5.93 0.84 -42.87 118.54 
1 - 24 1.97 6.47 1.06 -53.40  1.35 6.41 0.73 -63.92 122.07 

Notes: The table shows the profitability of a double-sorted long-short portfolio in the U.S. between 1995 and 
2018. Portfolio labels (1-2 to 1-24) show which two horizon predictions were used in double sorting. Results 
are shown with and without transaction costs. Monthly mean returns, standard deviation, annualized Sharpe 
ratio, and maximum drawdown are reported. Reported values are in percentages, with the exception of the 
Sharpe ratio. 

 

Table D.6 Double-Sorted Portfolios Performance Metrics - in the U.S. 
 Without transaction costs  With transaction costs 

 Sortino CVaR 99% Alpha Beta  Sortino CVaR 99% Alpha Beta 

1 - 2 2.23 -11.99 2.38 -0.46  1.49 -12.62 1.79 -0.45 
1 - 3 2.03 -12.43 2.31 -0.52  1.32 -13.05 1.72 -0.52 
1 - 6 1.62 -13.65 2.14 -0.57  1.00 -14.30 1.55 -0.57 
1 - 9 1.83 -13.51 2.35 -0.58  1.20 -14.18 1.76 -0.58 
1 - 12 2.19 -11.91 2.43 -0.53  1.42 -12.76 1.82 -0.53 
1 - 24 1.75 -13.20 2.26 -0.41  1.10 -14.40 1.63 -0.41 

Notes: Sortino ratio, conditional value at risk at 99%, Alpha and Beta (with regards to market returns in the 
U.S.) are presented for long-short double-sorting portfolios for the period between 1995 and 2018. Portfolio 
labels are the two forecasting horizons which were used in double sorting. 
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Figure D.2 Cumulative Returns of Long-Short Double Sorting Portfolios in the U.S. 

 

Notes: The figure shows cumulative returns on a logarithmic scale of the double-sorting strategy and of the 
long-short decile portfolio at horizon one in the U.S. The two numbers correspond to horizons on which we 
double-sorted. The holding period is one month. 

 

Table D.7 Buy/Hold Spread Portfolio Performance in the U.S. 

  Without transaction costs  With transaction costs  

buy hold Mean Std Sharpe MDD  Mean Std Sharpe MDD Turnover 

1 1 1.69 5.49 1.07 -44.34  1.24 5.43 0.79 -45.85 84.51 
2 1 1.84 5.85 1.09 -42.53  1.43 5.77 0.86 -43.95 71.74 
3 1 1.53 5.88 0.90 -45.65  1.15 5.82 0.69 -46.88 63.39 
4 1 1.54 6.06 0.88 -46.21  1.18 6.01 0.68 -47.36 61.13 
5 1 1.47 5.95 0.86 -44.82  1.12 5.90 0.66 -46.00 57.91 
6 1 1.31 5.55 0.82 -43.94  0.97 5.50 0.61 -45.27 55.23 
9 1 1.33 5.49 0.84 -41.09  1.02 5.45 0.65 -42.56 51.59 
12 1 1.42 5.41 0.91 -46.73  1.13 5.36 0.73 -53.80 50.97 
24 1 1.36 5.81 0.81 -57.34  1.07 5.80 0.64 -63.66 48.51 

Notes: The profitability of long-short buy/hold spread portfolios in the U.S. for the 1995 to 2018 period. We use 
a buy/hold spread 10%/20% and report the results both without transaction costs and with transaction costs. 
Buy and hold columns show which horizons were used in the portfolio creation. Monthly mean returns, 
standard deviation, annualized Sharpe ratio, and maximum drawdown are reported. All values are reported in 
percentages except for the Sharpe ratio. 
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Table D.8 Buy/Hold Spread Portfolio Performance Metrics - U.S. sample 
  Without transaction costs  With transaction costs 

buy hold Sortino CVaR 99% Alpha Beta  Sortino CVaR 99% Alpha Beta 
1 1 2.07 -10.31 1.93 -0.32  1.42 -10.81 1.48 -0.32 
2 1 2.10 -11.13 2.13 -0.40  1.55 -11.57 1.72 -0.40 
3 1 1.58 -11.92 1.88 -0.48  1.14 -12.47 1.51 -0.48 
4 1 1.54 -12.69 1.97 -0.58  1.13 -13.23 1.60 -0.58 
5 1 1.48 -12.62 1.88 -0.56  1.08 -13.20 1.53 -0.55 
6 1 1.39 -11.74 1.71 -0.54  0.99 -12.20 1.37 -0.54 
9 1 1.44 -11.54 1.71 -0.52  1.06 -11.93 1.40 -0.51 

12 1 1.61 -11.30 1.77 -0.48  1.22 -11.79 1.47 -0.47 
24 1 1.40 -12.24 1.57 -0.31  1.04 -12.85 1.28 -0.31 

Notes: Sortino ratio, conditional value at risk at 99%, Alpha and Beta (in comparison with U.S. market returns) 
are reported for long-short buy and holds spread for the period between 1995 and 2018. We use 10%/20% 
buy/hold spread cutoffs. The portfolio label signifies the horizon based on which we buy and the horizon based 
on which we hold stocks, respectively. 

 

Figure D.3 Cumulative Returns of Buy/Hold Spread Portfolios in the U.S. 

 

Notes: Cumulative returns of long-short buy/hold spread portfolios compared with the benchmark model. We 
use buy/hold spread 10%/20%. The portfolio label signifies the horizon based on which we buy and hold 
stocks, respectively. 
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