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Abstract1 

Standard regression quantiles, which are commonly used in heteroscedastic 
regression models, are highly vulnerable with respect to the presence of leverage 
points in the data. The aim of this paper is to propose a novel robust version of 
regression quantiles, which are based on the idea to assign weights to individual 
observations. The novel method denoted as least weighted squares quantiles (LWSQ) 
is applied to a world tourism dataset, where the number of international arrivals is 
modeled for 140 countries of the world as a response of 14 pillars (indicators) of the 
Travel and Tourism Competitiveness Index (TTCI). Here, the economic motivation is 
to investigate whether tourism competitiveness promotes tourism performance. The 
data analysis reveals the advantages of LWSQ. Particularly, LWSQ is able to clearly 
outperform standard regression quantiles in several artificially contaminated 
versions of the tourism dataset. From the economic point of view, the study 
determines countries which are not effective in transforming their competitiveness to 
higher levels of tourist arrivals. 

1. Introduction 
In the standard linear regression model, regression quantiles represent a 

popular statistical methodology for obtaining more complex information compared to 
fitting a single regression hyperplane (Koenker, 2005; Koenker, 2017). They allow to 
capture the distribution of errors in the regression model, which makes them 
especially appealing for (not only econometric) models with heteroscedasticity 
and/or asymmetric random errors. Because regression quantiles do not have 
appealing properties in terms of their statistical robustness, i.e. they are vulnerable 
with respect to the presence of leverage points (outlying values of the independent 
variables) in the data, it is desirable to search for their more robust alternatives. This 
motivates us to propose robust regression quantiles based on the highly robust least 
weighted squares regression estimator; a need for more sophisticated regression 
quantiles was expressed in Hallin and Šiman (2018). The performance of the novel 
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quantiles will be illustrated in a study interested in investigating whether tourism 
competitiveness promotes tourism performance.  

Tourism represents an important sector of the economy with an indisputable 
contribution to the economic growth or employment opportunities for basically all 
countries around the world. The direct contribution of travel and tourism to GDP 
worldwide was approximately 4.5 trillion U.S. dollars in 2019, which corresponds to 
10.4 % of global GDP; on the other hand, the total government spending on tourism 
is estimated to reach 413 billion U.S. dollars (Manzo, 2020). 

To recall a few regression quantiles applications to tourism research (mainly 
related to heteroscedastic financial models), regression quantiles were used to model 
and predict tourist expenditures in Madeira (Almeida and Garrod, 2017), to study the 
effect of inbound tourism on foreign direct investments in Arain et al. (2020), or to 
investigate the stock performance of Korean tourism companies in Jeon (2020). 
Pérez-Rodríguez and Ledesma-Rodríguez (2021) used regression quantiles to find 
the main predictors of tourism expenditures in the Canary Islands. An analogous 
study of the United Kingdom data in Rudkin and Sharma (2017) used the regression 
quantile methodology for selecting the main predictors as well, but with the aim to 
recommend optimal decisions for policy makers. Other empirical studies used 
methods of time series analysis or spatial econometrics (cf. Ouchen and Montargot, 
2021) for modeling and predicting the tourism performance evaluated as tourism 
GDP or the number of international arrivals. 

Competitiveness of individual countries in terms of their potential for travel 
and tourism is measured by the Travel and Tourism Competitiveness Index (TTCI), 
which is reported biennially since 2007 by the World Economic Forum. As stated in 
the report of Calderwood and Soshkin (2019), TTCI represents a strategic tool for 
dialogue and cooperation of relevant stakeholders (politicians, investors, destination 
managers) in the travel and tourism industry within the participating countries 
worldwide. The 14 individual pillars of the TTCI characterize a potential or 
preparedness of countries for the development of travel and tourism, in other words 
the material and technical basis or precondition evaluated without reflecting the real 
tourism performance (Das and Dirienzo, 2012). Some of the TTCI pillars were also 
shown to contribute to the competitiveness of the whole economy in Krstic et al. 
(2016), who performed cluster analysis of TTCI pillars of 31 sub-Saharan countries, 
or to be correlated with indexes related to the globalization of the economies 
worldwide (Ivanov and Webster, 2013). Still, TTCI without being confronted with 
the real tourism performance would remain limited for any practical applications. 

It seems thus natural to model (explain, predict) tourism performance 
evaluated e.g. by the number of international arrivals to each individual country by 
the competitiveness evaluated by TTCI pillars. This motivates us to be interested in 
the hypothesis whether tourism competitiveness promotes tourism performance, in 
other words if TTCI may be interpreted as a reliable predictor of tourism 
performance. The question also is which particular TTCI pillars are the most relevant 
in this relationship. From the application point of view, such investigations allow to 
evaluate whether a given country practically fulfils its potential for tourism, i.e. 
whether the tourist performance corresponds to the expected values conditioning on 
its actual infrastructure. However, such connections of tourism performance with the 
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potential (e.g. evaluated by TTCI) have been described as rare (Bazargani and Kiliç, 
2021) and continually overlooked (Hanafiah et al., 2016). 

Let us now recall some remarkable studies, where the connection between 
tourism performance and competitiveness was investigated. The number of 
international arrivals was shown to be related with some of the TTCI pillars more 
strongly than with other economic indicators in the study of Hanafiah et al. (2016) 
over 8 countries of Southeastern Asia; the study however used only correlation 
analysis and asked for a more advanced statistical treatment of the problem. The 
number of tourist arrivals in 10 Mediterranean countries was modeled as a response 
of the TTCI pillars in Marti and Puertas (2017); the regression model considered the 
numbers of arrivals from one country to another, however only using an artificial 
dichotomization of the countries to two groups (more competitive and less 
competitive) to avoid more complex statistical modeling. Bazargani and Kiliç (2021) 
considered a regression model of tourism performance explained by TTCI pillars for 
countries across the world. They concluded that the relationships found by ordinary 
least squares are too heterogeneous, multidimensional, and difficult to interpret, as 
they used logarithm of all variables including the number of international arrivals and 
values of TTCI pillars. We are however not aware of any study of the relationship 
between tourism performance and TTCI based on regression quantile methodology. 
The importance of regression quantiles for such task was emphasized by Lyócsa et 
al. (2020), who used advanced time series methods to analyze tourism activity data 
for 4 countries of Southern Europe; their cross-quantilograms revealed tourism 
activities to behave similarly across countries. 

The methodological Section 2 recalls important robust regression estimators 
and proposes a robust version of regression quantiles. In Section 3, the novel least 
weighted squares quantiles are applied to reveal how competitiveness contributes to 
tourism performance in the analysis of a world tourism dataset, where the number of 
international arrivals is explained by 14 TTCI pillars across 140 countries. The 
robustness of the novel quantiles is revealed over artificially contaminated versions 
of the dataset. Section 4 brings conclusions. 

2. Methods 
Throughout the paper, the linear regression model 

𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑖𝑖1 + ⋯+ 𝛽𝛽𝑝𝑝𝑋𝑋𝑖𝑖𝑝𝑝 + 𝑒𝑒𝑖𝑖 ,   𝑖𝑖 = 1, … ,𝑛𝑛, (1) 

is considered, which can be rewritten in the matrix notation as 𝑌𝑌 = 𝑋𝑋𝛽𝛽 + 𝑒𝑒. We 
denote 𝑋𝑋𝑖𝑖 = �𝑋𝑋𝑖𝑖1, … ,𝑋𝑋𝑖𝑖𝑝𝑝�

𝑇𝑇 ∊ ℝ𝑝𝑝 for 𝑖𝑖 = 1, … ,𝑛𝑛. 

2.1 Least Squares and Weighted Least Squares 

The most common estimation technique for estimating 𝛽𝛽 = �𝛽𝛽0, … ,𝛽𝛽𝑝𝑝�
𝑇𝑇 ∊

ℝ𝑝𝑝+1, i.e. the least squares estimator, is vulnerable to outlying values (outliers) in the 
data and therefore various robust regression estimators, which are resistant to the 
presence of outliers in the data, have been proposed and investigated as more reliable 
alternatives (Maronna et al., 2018; Jurečková et al., 2019). 
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To avoid further confusions, let us recall the weighted least squares (WLS) 
with specified non-negative weights 𝑤𝑤1, … ,𝑤𝑤𝑛𝑛 fulfilling the natural requirement 
∑ 𝑤𝑤𝑖𝑖 = 1.𝑛𝑛
𝑖𝑖=1  Let 𝑢𝑢𝑖𝑖(𝑏𝑏) denote the residual of the i-th measurement based on a given 

estimate 𝑏𝑏 = �𝑏𝑏0, … , 𝑏𝑏𝑝𝑝�
𝑇𝑇
of 𝛽𝛽, i.e. 

𝑢𝑢𝑖𝑖(𝑏𝑏) = 𝑌𝑌𝑖𝑖 − 𝑏𝑏0 − 𝑏𝑏1𝑋𝑋𝑖𝑖1 − ⋯− 𝑏𝑏𝑝𝑝𝑋𝑋𝑖𝑖𝑝𝑝 ,   𝑖𝑖 = 1, … ,𝑛𝑛. (2) 

The WLS estimator, which is also known as Aitken estimator or generalized least 
squares (Greene, 2018), is defined by minimizing a weighted estimate of 𝜎𝜎2 in the 
form 

𝑏𝑏𝑊𝑊𝑊𝑊𝑊𝑊 = arg min
𝑏𝑏∊ℝ𝑝𝑝+1

�  𝑤𝑤𝑖𝑖𝑢𝑢𝑖𝑖2(𝑏𝑏).
𝑛𝑛

𝑖𝑖=1

 
 

The WLS estimator has an explicit form; denoting by 𝑊𝑊 = 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝑤𝑤1, … ,𝑤𝑤𝑛𝑛) the 
diagonal matrix with the weights on the main diagonal, the WLS estimator is 
obtained as  

𝑏𝑏𝑊𝑊𝑊𝑊𝑊𝑊 = (𝑋𝑋𝑇𝑇𝑊𝑊𝑋𝑋)−1𝑋𝑋𝑇𝑇𝑊𝑊𝑌𝑌.  

2.2 Robust Regression 
An important focus of robust statistics is to combine high robustness and high 

efficiency of estimators (Maronna et al., 2018). Highly robust methods are 
understood as methods with a high breakdown point, i.e. a high resistance against 
outliers in the data. Formally, the finite-sample breakdown point is defined as the 
minimal fraction of data that can drive an estimator beyond all bounds when set to 
arbitrary values (Davies and Gather, 2005). Because robust statistics evolved as a 
methodology suitable for a contaminated normal distribution, efficiency is 
considered as a key characteristic as well. Efficiency of a linear regression estimator 
evaluates its performance in the model with normal errors without outliers; more 
formally, it evaluates the asymptotic variability of an estimator relatively to the 
optimal (smallest) variability, which is achieved by maximum likelihood estimates. 

Established robust regression methods for estimating 𝛽𝛽 in (1) include MM-
estimators or the least trimmed squares. M-estimators, based on a generalization of 
the maximum likelihood method (Huber and Ronchetti, 2009), were the first robust 
regression estimators, which however turned out not to attain a high breakdown 
point. Subsequently, S-estimators were defined as minimizers of a selected robust 
measure scale evaluated for the residuals, which achieve a high breakdown point but 
only a low efficiency (Davies, 1990). Later, MM-estimators (not to be confused with 
the method of moments) were proposed as two-stage procedures with a computation 
starting with estimating the scale by an S-estimator, and proceeding with computing 
an M-estimator with such fixed scale. Such two-stage construction ensures MM-
estimators to control both the breakdown point and the efficiency above the required 
level specified by the user (Yohai, 1987). 

The least weighted squares (LWS) estimator (Víšek, 2011; Kalina and 
Tichavský, 2020) represents another (but much less known) robust alternative to the 
least squares, which is able to combine high e_ciency and high robustness in terms of 
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the breakdown point, if a suitable weight function is chosen (Čížek, 2011). The LWS 
estimator, which is distinct from the WLS estimator, turned out to yield reliable 
results over simulated as well as real data. An extension of the LWS to a robust 
instrumental variables estimator was proposed in Kalina (2012) and a nonlinear 
version of the LWS in Kalina et al. (2021). We denote the ranks of (2) by 
𝑅𝑅1(𝑏𝑏), … ,𝑅𝑅𝑛𝑛(𝑏𝑏), i.e. with 𝑅𝑅𝑖𝑖(𝑏𝑏) denoting the rank of 𝑢𝑢𝑖𝑖2(𝑏𝑏) among 𝑢𝑢12(𝑏𝑏), … ,𝑢𝑢𝑛𝑛2(𝑏𝑏), 
to stress the dependence on b. We will use the concept of weight functions (Víšek, 
2011) denoted as 𝜓𝜓: [0,1] → [0,1] that are defined as non-increasing and continuous 
functions on [0,1] with 𝜓𝜓(0) = 1 and 𝜓𝜓(1) = 0.  

The LWS estimator formally defined as  

𝑏𝑏𝑊𝑊𝑊𝑊𝑊𝑊 = arg min
𝑏𝑏∊ℝ𝑝𝑝+1

�𝜓𝜓�
𝑅𝑅𝑖𝑖(𝑏𝑏) − 1/2

𝑛𝑛
� (𝑢𝑢𝑖𝑖(𝑏𝑏))2

𝑛𝑛

𝑖𝑖=1

 (3) 

performs down-weighting of individual measurements through the idea to assign 
small (or zero) weights to potential outliers and is thus robust also with respect to 
leverage points, i.e. observations outlying in the independent variables (regressors) 
(Jurečková et al., 2019). Equivalently, (3) may be expressed as 

𝑏𝑏𝑊𝑊𝑊𝑊𝑊𝑊 = arg min
𝑏𝑏∊ℝ𝑝𝑝+1

�𝜓𝜓�
𝑖𝑖 − 1 2⁄

𝑛𝑛
�𝑢𝑢(𝑖𝑖)

2 (𝑏𝑏),
𝑛𝑛

𝑖𝑖=1

  

where 𝑢𝑢(1)
2 (𝑏𝑏) ≤ ⋯ ≤ 𝑢𝑢(𝑛𝑛)

2 (𝑏𝑏). In the computations here, we use the LWS with the 
particular choice 

𝜓𝜓1(𝑡𝑡) = �1 −
𝑡𝑡
𝛼𝛼
� 𝐼𝐼[𝑡𝑡 < 𝛼𝛼],   𝑡𝑡 ∊ (0,1), (4) 

where 𝐼𝐼 denotes indicator function and 𝛼𝛼 ∊ (1 2⁄ , 1) is specified. The choice 
𝛼𝛼 = 3 4⁄  is used in the computations of this paper. Such choice ensures the 
breakdown point to be 0.25, which is the most common choice in robust statistics as 
claimed e.g. by Hubert et al. (2008). The weight function (4) turned to outperform 
the prediction performance (cross-validation mean square error) of other weight 
functions in numerical experiments of Kalina and Tichavský (2020). 

The least trimmed squares (LTS) estimator can be perceived as a special case 
of the LWS with weights equal only to 1 or 0. More formally, it is defined as (3) with 

𝜓𝜓2(𝑡𝑡) = 𝐼𝐼[𝑡𝑡 < 𝛼𝛼],   𝑡𝑡 ∊ (0,1), (5) 

where again 𝛼𝛼 = 3 4⁄  is used in our computations. The LTS estimator corresponds 
(approximately) to the least squares computed only across _n data points with the 
smallest squares residuals. 

Local robustness with respect to small changes of the data has received much 
less attention compared to robustness with respect to outliers (see p. 30 of Jurečková 
et al. (2019)). In (1), the least squares estimator is not sensitive to local replacement 
of values, i.e. is locally robust. The LTS estimator is known to be highly locally 
sensitive (see Section 4.9 of Jurečková et al. (2019)) and the LWS is much better in 
this respect (Víšek, 2011). However, local sensitivity has not been sufficiently 
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investigated for other common robust estimators including MM-estimators. Still, 
robust regression methods as such are not appropriate for models with a skewed 
response, which represents a serious complication of analyzing the tourism 
performance models (Ivanov and Webster, 2013). This follows also from the analysis 
of the TTCI data by Kalina et al. (2019), who focused on methodological issues of 
regression modeling under heteroscedasticity. Therefore, we now take resort to 
considering regression quantiles for the model (1). 

2.3 Regression Quantiles 
Regression quantiles (Koenker, 2005) are able to capture the relationship of 

the response on the regressors in a more complex way compared to the least squares 
regression. In (1), the residuals of approximately 𝜏𝜏·100 % of the data points have to 
lie below the hyperplane of the regression 𝜏𝜏-quantile with a given 𝜏𝜏 ∊
(0,1). Formally, the regression τ-quantile in (1) is defined as 

𝑏𝑏𝑅𝑅𝑅𝑅(𝜏𝜏) = arg min
𝑏𝑏∊ℝ𝑝𝑝+1

�𝜌𝜌𝜏𝜏(𝑢𝑢𝑖𝑖(𝑏𝑏)),
𝑛𝑛

𝑖𝑖=1

 (6) 

where the function 𝜌𝜌𝜏𝜏  is defined as 

𝜌𝜌𝜏𝜏(𝑥𝑥) = �
(𝜏𝜏 − 1)𝑥𝑥,    𝑖𝑖𝑖𝑖 𝑥𝑥 < 0;  
𝜏𝜏𝑥𝑥,              𝑖𝑖𝑖𝑖 𝑥𝑥 ≥ 0.   

Equivalently, (6) can be expressed as  

𝑏𝑏𝑅𝑅𝑅𝑅(𝜏𝜏) = arg min
𝑏𝑏∊ℝ𝑝𝑝+1

��(1 − 𝜏𝜏)𝐼𝐼[𝑢𝑢𝑖𝑖(𝑏𝑏) < 0] + 𝜏𝜏𝐼𝐼[𝑢𝑢𝑖𝑖(𝑏𝑏) > 0]� |𝑢𝑢𝑖𝑖(𝑏𝑏)|
𝑛𝑛

𝑖𝑖=1

.  

A set (family) of several regression quantiles jointly has been many times 
successfully applied to the analysis of heteroscedastic regression models. The 𝐿𝐿1 
estimator (i.e. the regression quantile with 𝜏𝜏 = 0.5, regression median, or least 
absolute deviation estimator) has sometimes been described as a robust estimator, 
although it does not possess a high breakdown point. 

Concerning robustness properties of regression quantiles, they are known to 
have a bounded influence function and therefore a small gross-error sensitivity (p. 43 
of Koenker (2005)) but only a small breakdown point (p. 46 of Koenker (2005)), so 
they are not robust if the regressors contain leverage points. It is for this reason that 
regression quantiles are not suitable for outlier detection. In addition, they are not 
locally robust (Castillo et al., 2008). 

2.4 Least Weighted Squares Quantiles 
The aim of this section is to propose a novel robust version of regression 

quantiles for the model (1), stemming from the idea of the LWS or LTS estimators. 
The least weighted squares quantiles (shortly LWS-quantiles, LWSQ) are formally 
defined in the following way. 
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Definition 2.1. Let us consider the linear regression model (1) and let us 
assume a given weight function 𝜓𝜓. For a given 𝑐𝑐 > 0, the LWSQ as an estimator of 𝛽𝛽 
in (1) is defined as 

𝑏𝑏𝑊𝑊𝑊𝑊𝑊𝑊𝑅𝑅(𝑐𝑐) = arg min
𝑏𝑏∊ℝ𝑝𝑝+1

�𝜓𝜓�
𝑅𝑅𝑖𝑖(𝑏𝑏) − 1/2

𝑛𝑛
� �𝑐𝑐𝐼𝐼

[𝑢𝑢𝑖𝑖(𝑏𝑏) > 0]
+𝐼𝐼[𝑢𝑢𝑖𝑖(𝑏𝑏) < 0]� (𝑢𝑢𝑖𝑖(𝑏𝑏))2.

𝑛𝑛

𝑖𝑖=1

 (7) 

It will be convenient to consider an equivalent expression for (7) in the form 

𝑏𝑏𝑊𝑊𝑊𝑊𝑊𝑊 = arg min
𝑏𝑏∊ℝ𝑝𝑝+1

�𝜓𝜓�
𝑖𝑖 − 1 2⁄

𝑛𝑛
� (𝑐𝑐𝐼𝐼[𝑢𝑢𝑖𝑖(𝑏𝑏) > 0] + 𝐼𝐼[𝑢𝑢𝑖𝑖(𝑏𝑏) < 0])𝑢𝑢(𝑖𝑖)

2 (𝑏𝑏).
𝑛𝑛

𝑖𝑖=1

 (8) 

The LWSQ is based on implicit weights assigned to individual observations, 
which is the very idea of the LWS (3). In fact, the choice 𝑐𝑐 = 1 corresponds exactly 
to the LWS estimator, while estimates with 𝑐𝑐 < 1 focus on upper quantile (ideally 
above the LWS estimator) and 𝑐𝑐 > 1 on lower quantiles. Thus, it is recommendable 
to consider a family of LWS-quantiles for the model (1) for various values of c above 
1 as well as below 1. In the computations, we use the weight function 𝜓𝜓1 defined in 
(4) and justified in Section 2.2. 

As a special case of LWSQ, let us now consider the implicit weights to be 
equal only to 1 or 0. Such weights corresponding to the weight function 𝜓𝜓2  (5) are 
used in the LTS estimator, which is a special case of the LWS. The LWSQ with (5) 
will be denoted as the LTS-quantile (LTSQ). Using 𝜓𝜓2  and 𝑐𝑐 = 1 exactly yields the 
LTS estimator.  

To study equivariance properties of LWSQ, let us now denote LWSQ (with an 
arbitrary c) computed for the matrix X of regressors and the vector of the responses Y 
as 𝑏𝑏𝑊𝑊𝑊𝑊𝑊𝑊𝑅𝑅[𝑋𝑋,𝑌𝑌]. Let us recall that scale equivariant estimators in (1) are defined as  

𝑏𝑏𝑊𝑊𝑊𝑊𝑊𝑊𝑅𝑅[𝑋𝑋, 𝑘𝑘𝑌𝑌] = 𝑘𝑘𝑏𝑏𝑊𝑊𝑊𝑊𝑊𝑊𝑅𝑅[𝑋𝑋,𝑌𝑌]   for all  𝑘𝑘 > 0, (9) 

regression equivariant estimators as 

𝑏𝑏𝑊𝑊𝑊𝑊𝑊𝑊𝑅𝑅[𝑋𝑋,𝑌𝑌 + 𝑋𝑋𝑡𝑡] = 𝑏𝑏𝑊𝑊𝑊𝑊𝑊𝑊𝑅𝑅[𝑋𝑋,𝑌𝑌] + 𝑡𝑡   for all  𝑡𝑡 ∊ ℝ𝑝𝑝, (10) 

and affine equivariant estimators as 

𝑏𝑏𝑊𝑊𝑊𝑊𝑊𝑊𝑅𝑅[𝑋𝑋𝑋𝑋,𝑌𝑌] = 𝑋𝑋−1𝑏𝑏𝑊𝑊𝑊𝑊𝑊𝑊𝑅𝑅[𝑋𝑋,𝑌𝑌] (11) 

for all positive definite matrices A of dimension 𝑝𝑝 × p. 

Theorem 2.1. In the model (1), the least weighted squares quantiles (LWSQ) are 
scale equivariant, regression equivariant, and affine equivariant. 

The computation of the LWSQ and LTSQ may exploit a straightforward 
adaptation of the FAST-LTS algorithm of Rousseeuw and Van Driessen (2006). 
While there is no immediate interpretation of c within LWSQ, it remains possible to 
use LWSQ to divide the observations to 5 groups. This can be performed using 
Algorithm 1 for LWSQ and in an analogous way for LTSQ, using the notation ⌊𝑥𝑥⌋ 
for the integer part of 𝑥𝑥 > 0. With such notation,  �̃�𝑐1 corresponds to the bottom 
quintile and �̃�𝑐4  to the top quintile.  
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The step of formula (3) is conservative for situations with quantile crossing, 
which is a phenomenon common for standard regression quantiles. To explain this, 
let us consider an example of regression quintiles (i.e. the set of 4 quantiles dividing 
the errors to 5 groups of about equal sizes). It would be undesirable if e.g. the 
computed 3rd regression quintile of the response was smaller than the 2nd quintile. 
While our main focus is robustness and not quantile crossing, let us remark that 
available non-crossing regression quantiles are obtained as constrained versions of 
regression quantiles with a simple condition not allowing the crossing (Bondell et al., 
2010) or with parametric models for the conditional quantile functions, which is the 
case of the NCQR approach of Sottile and Frumento (2021). All these non-crossing 
approaches however remain vulnerable with respect to leverage points. 

The result of LWSQ (and particularly of Algorithm 1) can be visualized by 
means of a map, which will be denoted as LWS-ReQuieM (as abbreviation of LWS-
Regression QUIntilE Map). The map is obtained as a map depicting the quantity (3) 
for each particular country. An analogous map may be created also for standard 
regression quintiles with given constants 𝜏𝜏1, … , 𝜏𝜏4 (and without a need to apply 
Algorithm 1). In such a case, the map will be denoted as RQ-ReQuieM, i.e. 
regression quintile map obtained with (standard) regresssion quantiles. 

ALGORITHM 1 Dividing the Observations in (1) to 5 Quintiles According to LWSQ. 

Data: Data for the regression model (1) 
Result: A factor variable (𝑞𝑞1, … , 𝑞𝑞𝑛𝑛)𝑇𝑇 assigning each country to one 5 quintiles 
according to LWSQ 
Result: Optimal values of �̃�𝑐1,…,�̃�𝑐4 yielding such assignment 

1. 

 
�̃�𝑐1 ∶= arg min

𝑐𝑐>0
�𝐼𝐼�𝑌𝑌𝑖𝑖 ≤ 𝑋𝑋𝑖𝑖𝑇𝑇𝑏𝑏𝑊𝑊𝑊𝑊𝑊𝑊𝑅𝑅(𝑐𝑐)� = ⌊𝑛𝑛 5⁄ ⌋
𝑛𝑛

𝑖𝑖=1

 

2. For 𝑗𝑗 ∊ {2,3,4}, find �̃�𝑐𝑗𝑗 as 

�̃�𝑐𝑗𝑗 ∶= arg min
0≤𝑐𝑐≤𝑐𝑐̃𝑗𝑗−1

�𝐼𝐼�𝑋𝑋𝑖𝑖𝑇𝑇𝑏𝑏𝑊𝑊𝑊𝑊𝑊𝑊𝑅𝑅(�̃�𝑐𝑗𝑗−1) ≤ 𝑌𝑌𝑖𝑖 ≤ 𝑋𝑋𝑖𝑖𝑇𝑇𝑏𝑏𝑊𝑊𝑊𝑊𝑊𝑊𝑅𝑅(𝑐𝑐)� = ⌊𝑛𝑛 5⁄ ⌋
𝑛𝑛

𝑖𝑖=1

 

3. 

 𝑞𝑞𝑖𝑖 ≔  �𝐼𝐼�𝑌𝑌𝑖𝑖 ≤ 𝑋𝑋𝑖𝑖𝑇𝑇𝑏𝑏𝑊𝑊𝑊𝑊𝑊𝑊𝑅𝑅(�̃�𝑐𝑗𝑗)�,    𝑖𝑖 = 1, … ,𝑛𝑛.
4

𝑗𝑗=1

 

3. Analysis of the World Tourism Data 

3.1 Data Description 
The aim of the analysis is to model the number of international arrivals (in 

millions, denoted as Y) as a response of 𝑝𝑝 = 14 pillars of TTCI overviewed in Table 
1. We work with 𝑛𝑛 = 140 countries, for which both the response and the TTCI 
pillars are available. The regressors are used from Calderwood and Soshkin (2019) 
and the values of the response (originally published by World Bank) from Roser 
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(2020). The response comes from the year 2016; because the response is not 
available for a few of developing countries for 2016, we had to take their response 
from the last available year. We perform all computations in R software using 
packages het.test, quantreg, qrcm, RobRSVD, robustHD, rrcov, and rworldmap. 

Table 1 The 14 Pillars of the Travel and Tourism Competitivenes Index (TTCI), Which 
Are All Used as Predictors in the Main Model (12) 
Index Pillar 
1 BE Business Environment 
2 SS Safety and Security 
3 HH Health and Hygiene 
4 HRLM Human Resources and Labor Market 
5 ICT Information and Communication Technologies Readiness 
6 TT Prioritization of Travel and Tourism 
7 IO International Openness 
8 PC Price Competitiveness 
9 ES Environmental Sustainability 
10 ATI Air Transport Infrastructure 
11 GPI Ground and Port Infrastructure 
12 TSI Tourist Service Infrastructure 
13 NR Natural Resources 
14 CRBT Cultural Resources and Business Travel 

3.2 Exploratory Data Analysis 
The response and all the considered regressors are continuous and always 

positive and the regression errors are highly asymmetric. The median of the response 
is 2.55 million; 33 countries (i.e. 23 % of the total number of the countries) have the 
response above 10 million. All further computations consider LTS and LTSQ with 
the weight function (5), LWS and LWSQ with (4), and MM-estimators with 
breakdown point 0.5 and efficiency 0.95. 

Our basic model is the linear model (1) with p = 14, i.e. 

𝑌𝑌𝑖𝑖 = 𝛽𝛽0 + 𝛽𝛽1𝐵𝐵𝐵𝐵𝑖𝑖 + ⋯+ 𝛽𝛽14𝐶𝐶𝑅𝑅𝐵𝐵𝐶𝐶𝑖𝑖 + 𝑒𝑒𝑖𝑖 ,       𝑖𝑖 = 1, … ,𝑛𝑛, (12) 

Testing by means of Student's t-test reveals that pillars CRBT, GPI and TSI 
are significant in (12), while CRBT has the strongest association with the response. 
The plots of Y against single individual regressors reveal a strong heteroscedasticity 
in (12); some of such plots are shown in Figure 1. Values of the correlation 
coefficient r computed for important pairs of regressors are equal to 𝑟𝑟(𝑋𝑋14,𝑋𝑋11) =
0.41, 𝑟𝑟(𝑋𝑋14,𝑋𝑋12) = 0.40, and 𝑟𝑟(𝑋𝑋11,𝑋𝑋12) = 0.70. The quite high value of the 
coefficient of determination 𝑅𝑅2 = 0.70 in (12) advocates using the linear model; 
a similar value 0.68 is obtained across the 75 % of observations used within the LTS 
estimator. The linearity of the trend in (12) was also found to be reasonable in plots 
of Y against every regressor separately. Also standard diagnostic tools including the 
plot of residuals against fitted values reveal the linear model to be suitable, although 
heteroscedasticity is apparent there (as discussed in Section 3.3). 

Further, we performed outlier detection by means of the LTS and LWS 
estimators. This approach declares such observations to be outliers which fulfil  
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�𝑢𝑢𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊� > 2.5 𝜎𝜎�,       𝑖𝑖 = 1, … ,𝑛𝑛,  

where 𝑢𝑢1𝑊𝑊𝑊𝑊𝑊𝑊, … ,𝑢𝑢𝑛𝑛𝑊𝑊𝑊𝑊𝑊𝑊 are residuals of the LWS fit and 𝜎𝜎�𝑊𝑊𝑊𝑊𝑊𝑊 is an LWS- or LTS 
estimate of 𝜎𝜎 (Kalina, 2012). The method finds 5 outliers (France, United States, 
Spain, China, and Italy), which are in fact the 5 countries with the largest response. 
An analogous outlier detection based on the LTS detects the same outliers as the 
LWS. 

3.3 Heteroscedasticity Testing and Modeling 
In (1), heteroscedasticity is confirmed by the White test (White, 1980) with p-

value 𝑝𝑝 ≈ 4 · 10−6 or the Breusch-Pagan test with 𝑝𝑝 ≈ 2 · 10−6, where the latter 
explains the heteroscedasticity by fitting residuals of (1) against all regressors. 
Because the estimates in (1) are influenced by heteroscedasticity, it is recommended 
to estimate its parameters by means of Aitken estimator (Section 2.1). Here, let us 
consider the Aitken model 

𝑌𝑌𝑖𝑖
�𝑘𝑘𝑖𝑖

= 𝛾𝛾0 + 𝛾𝛾1
𝑋𝑋𝑖𝑖1
�𝑘𝑘𝑖𝑖

+ ⋯+ 𝛾𝛾𝑝𝑝
𝑋𝑋𝑖𝑖𝑝𝑝
�𝑘𝑘𝑖𝑖

+ 𝑖𝑖𝑖𝑖,       𝑖𝑖 = 1, … ,𝑛𝑛, (13) 

with parameters 𝛾𝛾0, … , 𝛾𝛾𝑝𝑝 and random errors 𝑖𝑖1, … , 𝑖𝑖𝑛𝑛. We take �𝑘𝑘𝑖𝑖 = 𝑌𝑌�𝑖𝑖  for 𝑖𝑖 =
1, … ,𝑛𝑛, where 𝑌𝑌�𝑖𝑖 is the estimated value of 𝑌𝑌𝑖𝑖  obtained by the least squares in the 
original model (12). The White test performed in the Aitken model yields p=0.96. 
Although it may seem that it is preferable to use the Aitken model, which is in fact 
popular in tourism modeling applications (Assaf and Tsionas, 2020), graphical 
visualizations not shown here reveal that there is basically no trend of the response 
against the regressors in the Aitken model (even after a possible trimming away of 
potential outliers). We thus conclude that the auxiliary regression model (13) is not 
precisely suitable; instead of a tedious tuning of this transformed model, we take 
resort to regression quantiles and LWSQ, where mainly the latter turns out to be 
suitable for the given heteroscedastic data (without any specific tuning). 

Table 2 Results of Hypothesis Tests Applied to Regression Quantiles and LWS-
Quantiles. Values of 𝐜𝐜�𝟏𝟏,…,𝐜𝐜�𝟒𝟒 Were Found by Algorithm 1 
Method Significant variables in (12) 
Regression quantile (𝜏𝜏 = 0.2) CRBT, PC, NR 
Regression quantile (𝜏𝜏 =0.4) CRBT, SS, PC, TSI, ICT, HH 
Regression quantile (𝜏𝜏 =0.6) CRBT, TSI, PC, ICT 
Regression quantile (𝜏𝜏 =0.8) CRBT, ES, SS, ATI 
LWSQ (�̃�𝑐1) CRBT, PC 
LWSQ (�̃�𝑐2) CRBT, PC, TSI, SS 
LWSQ (�̃�𝑐3) CRBT, TSI, PC 
LWSQ (�̃�𝑐4) CRBT, TSI, ATI, SS 

3.4 Regression Quantiles and LWSQ 
We computed regression quantiles and their non-crossing alternative (NCQR) 

of Sottile and Frumento (2021) in the model (12), so that the countries are divided to 
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5 quintiles. Also LTS-quantiles and LWS-quantiles are computed, which divide the 
countries 5 quintiles; this computation used the automatic procedure of Algorithm 1 
for finding suitable values of �̃�𝑐1,…,�̃�𝑐4. 

We performed a variable selection for regression quantiles and LWSQ by 
means of a standard backward stepwise selection procedure. Individual tests for 
regression quantiles are based on regression rank scores (RSS) as proposed by 
Gutenbrunner et al. (1993), and tests for LWSQ are based on nonparametric 
bootstrap. The significant variables are reported in Table 2. For regression quantiles, 
the significant variables are quite unstable in their dependence on 𝜏𝜏, and some of the 
regressors (especially for 𝜏𝜏 = 0.4) have their p-values close to 5 %, so their effect is 
not unambiguous. For LWSQ, it is clearer to see how the significant regressors 
depend (in a more stable way) on c: CRBT remains the most important predictor of Y 
for all quantiles, PC is the second strongest predictor for lower quantiles, and TSI the 
second strongest predictor for upper quantiles. Such finding has the following 
economic interpretation. CRBT is focused on cultural resources, i.e. potential for an 
interesting spending of leisure time, which is an important factor for basically all 
destinations. Specifically for visitors of countries in top quantiles, high quality of 
services and a higher level of tourist infrastructure (TSI) are important. For visitors 
of countries in bottom quantiles with less developed services, it is the lower price 
(i.e. an appealing level of PC) which makes the countries attractive and has thus 
effect on the tourism performance. 

To perform a comparison of various tools used in (12), we used nonparametric 
bootstrap in a standard way to estimate variability of 𝑏𝑏0, … , 𝑏𝑏𝑝𝑝 for various estimators. 
Estimates of 𝛽𝛽14, i.e. of the parameter corresponding to the CRBT pillar, are reported 
in the first column of Table 3. Nonparametric bootstrap estimates of standard 
deviations are presented there as well, which were obtained with 1000 bootstrap 
samples in each case. The variability of each type of quantiles depends on the actual 
quantile and is typically increasing with an increasing quintile. The variability of 
LWSQ is smaller compared to that of regression quantiles and especially compared 
to LTSQ; in an analogous way, the LWS estimator has a smaller variability 
compared to the LTS. An interpretation of the regression quantiles and LWSQ on the 
level of individual countries follows in Section 3.5. 

A graphical visualization of regression quantiles may be presented only for 
the relationship of Y against a single regressor; such graphs for selected regressors 
reveal a clear heteroscedasticity, as shown in the left images of Figure 1, where the 
variability of Y typically increases with increasing values of individual pillars. 
Standard regression quintiles give a quite poor fit especially for countries with a low 
value of the response (also due to their leverage effect). For regression quantiles, 
quantile crossing does not represent a major problem of regression quantiles here, as 
revealed in our evaluation using the diagnostic tools (function diagnose.qc) of the 
qrcm package (Frumento, 2021). Graphical visualizations of NCQR are quite similar 
to those obtained with standard regression quantiles. The LWS-quantiles for the 
relationship of Y against a single regressor are presented in the right images of Figure 
1. The LWS-quantiles do not suffer from quantile crossing and mainly are more 
parallel (and thus more suitable for countries with a low value of the response) 
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compared to standard regression quantiles. An interpretation of regression quantiles 
and LWSQ on the level of individual states follows in Section 3.5. 

Figure 1 Plots of the Response Y (Number of International Arrivals) Against Selected 
Individual Pillars of TTCI 

 
 

    

    
 

Notes: Left: Regression Quintiles with the Parameter τ Equal to 0.2 (Bottom Line), 0.4, 0.6, and 0.8 (Top Line). 
Right: LWS-quintiles with Values of the Parameter c Automatically Obtained by Algorithm 1. First Row: Y 
Against CRBT (Cultural Resources and Business Travel); Second Row: Y Against TSI (Tourist Service 
Infrastructure); Third Row: Y Against GPI (Ground and Port Infrastructure). 
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3.5 Regression Quantiles and LWSQ: Interpretation by Means of Quintile Maps 
Returning to the full model (12), the multivariate information captured by 

regression quantiles or LWS-quantiles about the relationship between Y and the 
regressors on the nationwide level may be revealed by the RQ-ReQuieM map or 
LWS-ReQuieM map, which are shown in Figure 2; there, countries with unavailable 
data (i.e. not included in the 𝑛𝑛 = 140 countries) remain white. These maps show 5 
groups of countries around the world according to their real tourism performance 
conditioning on their theoretical potential (expressed by TTCI pillars); such 
knowledge cannot be acquired by means of standard tools of Sections 3.2 or 3.3. 

Figure 2 Regression Quintile Maps of the World Computed for the Model (12)  

 

 
 
Notes: Top: RQReQuieM Computed with Standard Regression Quantiles. Bottom: LWS-ReQuieM Computed 
with LWS-quantiles. The Shade of Every Individual Country Corresponds to its Regression Quintile (Top: 
Standard, Bottom: LWSQ). There are 5 Shades from Light (Bottom Quintile) to Dark (Top Quintile); for White 
Countries/Regions, the Data are not Available.  
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These maps allow a clear economic interpretation of the computed quantiles. 
In reality, some countries may have a much higher level of tourism performance than 
one could expect based on its values of the 14 pillars. This is e.g. the case of Saudi 
Arabia with numerous religious pilgrims who are not discouraged by a low tourist 
infrastructure, or Turkey with beautiful beaches and good (but unmeasurable) 
reputation among travellers. On the other hand, it is even more useful to identify 
countries which do not efficiently exploit their tourism capacity relatively to (or 
conditioning on) their highly developed infrastructure. Such countries with a low 
effectivity of exploiting their (actually high) potential for tourism include Belgium, 
Switzerland, or Finland; also Portugal remains to belong among these countries to 
some extent, in spite of its large investments to tourism in the last decade. 

A comparison of regression quantiles and LWSQ, i.e. a comparison of the top 
and bottom maps of Figure 2, reveals however some remarkable differences for some 
countries. Italy belongs to the top fifth according to LWSQ, which is reasonable, as it 
belongs to the 5 countries with the largest Y (cf. Section 2.1); it surprisingly belongs 
only to the second top fifth according to standard regression quantiles. Further, let us 
consider Chad with a very small number of tourists (its Y is 0.12) and at the same 
time very low performance in the pillars. The fitted values of all 4 standard 
regression quintiles evaluated for Chad are negative and thus the country would 
appear in the top fifth even with a zero number of tourists. This problem disappears if 
using LWSQ, where Chad is found in the middle fifth among all the countries. More 
realistic results are obtained with LWSQ also for Mauritania or Guyana. On the 
whole, we believe that the results of LWSQ are more suitable compared to those of 
standard regression quantiles especially due to the leverage effect of the countries 
with a very small number of tourists, or due to local sensitivity of regression 
quantiles; this motivates us to perform further comparisons of the quantiles (and 
other estimators). 

3.6 Artificially Contaminated Data 
To show the main advantages of LWSQ, i.e. its robustness with respect to 

data contamination, we compared various methods for 4 contaminated versions of the 
dataset of Section 3.1. For each of the following contamination scenarios denoted as 
(A)‒(D), the contaminated data are generated 1000 times and the presented results 
are averaged. 

(A) Asymmetric contamination by severe outliers for countries with a large 
response. For the 25 countries described for scenario B, the response 𝑌𝑌𝑖𝑖  is 
replaced by 𝑌𝑌𝑖𝑖 − |𝑍𝑍𝑖𝑖|, where 𝑍𝑍1, … ,𝑍𝑍𝑛𝑛 are i.i.d. generated from the normal 
N(0; 25) distribution. 

(B) Symmetric contamination by severe outliers for countries with a large 
response. Particularly, if 𝐶𝐶𝑅𝑅𝐵𝐵𝐶𝐶𝑖𝑖 > 4 and 𝑌𝑌𝑖𝑖 > 15 for the i-th country, the 
response 𝑌𝑌𝑖𝑖 is replaced by 𝑌𝑌𝑖𝑖 + 𝑍𝑍𝑖𝑖 , where 𝑍𝑍1, … ,𝑍𝑍𝑛𝑛are i.i.d. generated from 
N(0; 49). In this way, 25 countries are contaminated. 

(C) Contamination for countries with a very small response. If 𝐶𝐶𝑅𝑅𝐵𝐵𝐶𝐶𝑖𝑖 < 1.2 and 
at the same time 𝑌𝑌𝑖𝑖 < 1 for the i-th country, the response 𝑌𝑌𝑖𝑖  is replaced by 
𝑌𝑌𝑖𝑖 + 𝑍𝑍𝑖𝑖 , where 𝑍𝑍1, … ,𝑍𝑍𝑛𝑛 are i.i.d. following the uniform 
𝑈𝑈(−2,2)distribution. In this way, 14 countries are contaminated. 
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(D) Local contamination of the response for all the 140 countries; the response 
𝑌𝑌𝑖𝑖  for every 𝑖𝑖 = 1, … ,𝑛𝑛 is replaced by 𝑌𝑌𝑖𝑖 + 𝑍𝑍𝑖𝑖 , where 𝑍𝑍1, … ,𝑍𝑍𝑛𝑛 are i.i.d. 
generated from N(0; 25). 

For each contamination scenario, the averaged values of 𝑏𝑏𝐶𝐶𝑅𝑅𝐶𝐶𝑇𝑇  obtained for 
contaminated data divided by 𝑏𝑏𝐶𝐶𝑅𝑅𝐶𝐶𝑇𝑇   for raw data are reported in Table 3. To assess 
the variability of these ratios, nonparametric bootstrap estimates of their standard 
deviations are presented as well; for the sake of computational feasibility, the 
contaminated data were generated only 100 times here and 100 bootstrap samples 
were considered for each contaminated dataset. Ideally, robust tools should have 
values of the ratio r close to 1 together with small values of the standard deviation.  

Table 3 Results of the Computations of Various Regression Methods Evaluated in 
the Model (12)  
  Contaminated data 
 Raw data Scenario A Scenario B Scenario C Scenario D 
Estimator 𝑏𝑏𝐶𝐶𝑅𝑅𝐶𝐶𝑇𝑇 (SD) Ratio (SD) Ratio (SD) Ratio (SD) Ratio (SD) 
LS 7.94 (1.31) 0.85 (0.016) 1.00 (0.048) 1.03 (0.002) 1.00 (0.034) 
MM 4.48 (1.15) 0.97 (0.008) 1.02 (0.122) 1.30 (0.013) 1.01 (0.152) 
LTS 2.44 (2.06) 0.97 (0.022) 1.02 (0.157) 1.87 (0.300) 1.44 (0.621) 
LWS 4.97 (1.13) 0.96 (0.011) 1.02 (0.061) 1.05 (0.003) 1.03 (0.063) 
RQ(0.2) 4.10 (1.07) 0.89 (0.094) 1.02 (0.117) 1.42 (0.025) 1.14 (0.246) 
RQ(0.4) 5.18 (1.24) 0.87 (0.069) 1.02 (0.093) 1.14 (0.017) 1.09 (0.133) 
RQ(0.6) 7.93 (1.67) 0.91 (0.047) 0.99 (0.072) 1.10 (0.004) 1.02 (0.098) 
RQ(0.8) 9.88 (1.91) 0.92 (0.038) 1.02 (0.077) 1.07 (0.004) 1.00 (0.080) 
NCQR(0.2) 3.82 (1.23) 0.92 (0.103) 1.04 (0.126) 1.37 (0.058) 1.12 (0.267) 
NCQR(0.4) 5.21 (1.27) 0.87 (0.070) 1.02 (0.096) 1.15 (0.018) 1.09 (0.139) 
NCQR(0.6) 7.89 (1.73) 0.91 (0.047) 0.99 (0.074) 1.10 (0.004) 1.02 (0.102) 
NCQR(0.8) 9.86 (2.02) 0.92 (0.038) 1.02 (0.078) 1.07 (0.004) 1.00 (0.082) 
LTS(�̃�𝑐1) 1.96 (0.87) 0.97 (0.020) 1.03 (0.176) 2.02 (0.308) 1.67 (1.357) 
LTS(�̃�𝑐2) 2.31 (1.22) 0.97 (0.022) 1.01 (0.163) 1.95 (0.263) 1.41 (0.942) 
LTS(�̃�𝑐3) 3.24 (2.19) 0.97 (0.019) 1.03 (0.159) 1.83 (0.255) 1.38 (0.578) 
LTS(�̃�𝑐4) 4.85 (2.32) 0.98 (0.018) 1.03 (0.153) 1.74 (0.249) 1.26 (0.429) 
LWS(�̃�𝑐1) 2.20 (0.64) 0.98 (0.017) 1.02 (0.109) 1.08 (0.004) 1.06 (0.124) 
LWS(�̃�𝑐2) 2.48 (0.91) 0.98 (0.013) 1.01 (0.094) 1.05 (0.004) 1.07 (0.085) 
LWS(�̃�𝑐3) 5.17 (1.15) 0.96 (0.012) 1.03 (0.061) 1.06 (0.003) 1.02 (0.061) 
LWS(�̃�𝑐4) 8.83 (1.37) 0.96 (0.012) 1.02 (0.075) 1.03 (0.004) 1.01 (0.053) 

Notes: Values of �̃�𝑐1,…,�̃�𝑐4 Were Found by Algorithm 1. (I) For the Raw TTCI data, Estimates of 𝛽𝛽14 (Denoted 
Here as 𝑏𝑏𝐶𝐶𝑅𝑅𝐶𝐶𝑇𝑇) Corresponding to the Effect of CRBT (Cultural Resources and Business Travel) are Reported, 
Together with Nonparametric Bootstrap Estimates of the Standard Deviation of each Estimate. (II) For 4 
Contamination Scenarios, the Averaged Values of 𝑏𝑏𝐶𝐶𝑅𝑅𝐶𝐶𝑇𝑇 Obtained for Contaminated Data Divided by 𝑏𝑏𝐶𝐶𝑅𝑅𝐶𝐶𝑇𝑇 for 
Raw Data are Reported; These Ratios are Accompanied by Their Averaged Standard Deviations. 

Contamination (A) by asymmetric outliers deteriorates the performance of 
regression quantiles, while the robust quantiles LWSQ and LTSQ remain resistant; 
the variability of LWSQ remains smaller compared to variability of all other 
quantiles. For all types of quantiles under (A), estimating the lowest quintile is more 
difficult (with a larger variability) compared to the top quintile. If the data are 
contaminated by outliers in a symmetric way (B), the estimation is not so difficult 
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compared to the situation (A) and values of r do not change greatly. For scenario (C), 
standard regression quantiles are harmed by the artificially introduced influential 
points with leverage effect, while LWS-quantiles outperform all other quantiles in 
terms of both r and its variability. For local contamination (D), LWS-quantiles again 
outperform all other types of quantiles in terms of both r and its variability. For all 
4 contamination scenarios jointly, we can say that the performance of NCQR is not 
much different from that of standard regression quantiles. 

To give an additional argument in favor of LWSQ, we perform another 
contamination study denoted as scenario (E). Instead of (12), we consider the model 
with CRBT as the response of a single regressor HRLM. 

(E) There are 6 artificial observations considered, which are obtained as shifted 
copies of the 6 countries with the largest value of CRBT. The 6 new 
observations shown in the top left corner of the bottom plots in Figure 3 are 
shifted by 2.5 horizontally with an unaltered value of CRBT. 

Figure 3 Plots of CRBT against HRLM  

    
 

    
Notes: Left: Regression Quintiles with the Parameter τ Equal to 0.2 (Bottom Line), 0.4, 0.6, and 0.8 (Top Line). 
Right: LWS-quintiles with Values of the Parameter c Automatically Obtained by Algorithm 1. Top Row: Raw 
Data. Bottom Row: Contaminated Data in Contamination Scenario (E). 
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The results of standard regression quantiles for contamination (E) shown in 
Figure 3 are very different from those obtained for raw data; the top regression 
quintile is heavily influenced by the leverage effect of the contamination, i.e. is 
focused on the minority trend with a negative slope, while the other quintiles 
correspond to the majority trend with a positive slope. LWS-quantiles work well for 
contamination (E) and remain to yield a robust solution, which is visually much 
similar to the figure obtained for raw data. To explain such good fit, LWS-quintiles 
are determined by the large majority of countries with a small value of CRBT here, 
and the outliers have weights exactly zero in the computation of the top LWS-
quintile; naturally, also the points in the left bottom corner (such as Mauritania with 
the very smallest CRBT) have a small influence on LWS-quintiles. Thus, scenario 
(E) reveals the robustness of LWSQ and non-robustness of regression quantiles with 
respect to leverage points. 

4. Conclusions  
In this paper, novel robust regression quantiles (LWSQ) for the standard 

linear regression model (1) are proposed. The method is inspired by the LWS 
estimator, which has appealing properties (high efficiency, high robustness to 
outliers, and high local robustness to small changes of the data). While investigating 
statistical properties of LWSQ remains to be an open problem for future research, the 
performance of LWSQ is investigated here on a particular world tourism dataset. The 
results of LWSQ for the original data turn out to be meaningful, and remain to be 
resistant for data after an artificial contamination. From the point of view of small 
variability, they outperform the standard regression quantiles and the non-crossing 
(but also non-robust) regression quantiles of Sottile and Frumento (2021) on the 
presented data. LWS-quantiles also turned out empirically to outperform standard 
regression quantiles in robustness and stability of variable selection. 

From the economic point of view, this paper brings a new insight into the 
tourism performance (at least based on the last available pre-COVID-19 numbers), 
which is modeled here by means of TTCI pillars on the level of individual countries 
across the whole world. The model turns out to have a large explanatory power and 
the presented unique analysis by regression quantile methodology allows an easy 
identification of the position of every individual country (Vašaničová et al., 2017) 
from the point of view of its exploiting the potential for tourism. Such differences 
between the current and potential tourist flow, which has been denoted as the latent 
tourism demand, have remained quite complicated to reveal until now (Eugenio-
Martin and Cazorla-Artiles, 2020). Also the pillars of TTCI which are the main 
determinants of tourism performance, i.e. the key factors with the largest explanatory 
power, are identified here. 

Particularly, the analysis allows to determine countries which are not effective 
in transforming their competitiveness to higher levels of tourist arrivals as those in 
the bottom quantiles. As a consequence, these countries should make investments to 
their infrastructure in order to enhance tourism growth (ideally if retaining principles 
of sustainable tourism). We can say that countries in higher quantiles can be used as 
reference points for the development of those lagging behind (Marti and Puertas, 
2017). Comparing the quantiles of different countries and identifying groups 
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(clusters) of countries in the same quantile may lead to international coordination of 
promoting tourism within such clusters. Such idea corresponds to the findings of 
Lyócsa et al. (2020), who revealed tourism activities of different countries to be 
interconnected and encouraged cooperative strategies for policymakers of different 
countries allowing to contribute to their joint growth of tourism performances. 

The main limitation of the presented results consists in relying on the pillars 
of the TTCI index, which remains popular but has already been subject to criticism. 
Alternative versions of TTCI were proposed by Rodríguez-Díaz and Pulido-
Fernández (2021), who proposed a sophisticated standardization of the weights 
(compared to using arbitrary weights of TTCI), or by Férnandez et al. (2022), who 
suggested to adapt TTCI to reflect the vulnerability of destinations to consequences 
of the COVID-19 pandemic. Future studies of tourist arrivals would profit from 
considering more detailed data on the level of time series or on the level of 
international arrivals from one country to another country, instead of the aggregated 
number of arrivals. Our study is also void of using any additional economic indexes, 
which also could contribute to explaining the number of international arrivals, such 
as the Global Competitiveness Index (GCI), the KOF Globalization Index, or the 
Global Knowledge Index (GKI). 
  



168                                                 Finance a úvěr-Czech Journal of Economics and Finance, 72, 2022 no. 2 

APPENDIX 
 

Proof of Theorem 2.1. It is convenient to consider the definition (8) of LWSQ. To 
prove scale equivariance, it will be useful to write  

arg min
𝑏𝑏∊ℝ𝑝𝑝+1

�𝜓𝜓�
𝑖𝑖 − 1 2⁄

𝑛𝑛
� �𝑐𝑐𝐼𝐼�𝑣𝑣(𝑖𝑖)(𝑏𝑏) > 0� + 𝐼𝐼�𝑣𝑣(𝑖𝑖)(𝑏𝑏) < 0��𝑣𝑣(𝑖𝑖)

2 (𝑏𝑏).
𝑛𝑛

𝑖𝑖=1

 

with 𝑣𝑣𝑖𝑖 = 𝑘𝑘𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑖𝑖𝑇𝑇𝑏𝑏 for 𝑖𝑖 = 1, … ,𝑛𝑛, which may be further expressed as  

 arg min
𝑏𝑏∊ℝ𝑝𝑝+1

�𝜓𝜓�
𝑖𝑖 − 1 2⁄

𝑛𝑛
� �𝑐𝑐𝐼𝐼�𝑢𝑢(𝑖𝑖)(𝑏𝑏 𝑘𝑘⁄ ) > 0� + 𝐼𝐼�𝑢𝑢(𝑖𝑖)(𝑏𝑏 𝑘𝑘⁄ ) < 0�� �𝑢𝑢(𝑖𝑖)(𝑏𝑏 𝑘𝑘⁄ )�

2
.

𝑛𝑛

𝑖𝑖=1

 

Here, 𝑏𝑏 𝑘𝑘⁄  plays the role of 𝑏𝑏𝑊𝑊𝑊𝑊𝑊𝑊𝑅𝑅[𝑋𝑋,𝑌𝑌], so that 𝑏𝑏𝑊𝑊𝑊𝑊𝑊𝑊𝑅𝑅[𝑋𝑋, 𝑘𝑘𝑌𝑌] = 𝑘𝑘𝑏𝑏𝑊𝑊𝑊𝑊𝑊𝑊𝑅𝑅[𝑋𝑋,𝑌𝑌], in 
other words (9) is obtained for any k > 0. To prove regression equivariance, we may 
express 𝑏𝑏𝑊𝑊𝑊𝑊𝑊𝑊𝑅𝑅[𝑋𝑋,𝑌𝑌 + 𝑋𝑋𝑡𝑡] again as (4) but this time with 𝑣𝑣𝑖𝑖 = 𝑌𝑌𝑖𝑖 +  𝑋𝑋𝑖𝑖𝑇𝑇𝑡𝑡 − 𝑋𝑋𝑖𝑖𝑇𝑇𝑏𝑏 for 
𝑖𝑖 = 1, … ,𝑛𝑛. Then, we obtain  

arg min
𝑏𝑏∊ℝ𝑝𝑝+1

�𝜓𝜓�
𝑅𝑅𝑖𝑖(𝑏𝑏) − 1 2⁄

𝑛𝑛
� (𝑐𝑐𝐼𝐼[𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑖𝑖𝑇𝑇(𝑏𝑏 − 𝑡𝑡) > 0]

𝑛𝑛

𝑖𝑖=1

+ 𝐼𝐼[𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑖𝑖𝑇𝑇(𝑏𝑏 − 𝑡𝑡) < 0])�𝑢𝑢𝑖𝑖(𝑏𝑏)�2, 

where 𝑏𝑏 − 𝑡𝑡 corresponds to 𝑏𝑏𝑊𝑊𝑊𝑊𝑊𝑊𝑅𝑅[𝑋𝑋,𝑌𝑌], so that (10) is immediately obtained. 
Finally to prove affine equivariance, let us express 𝑏𝑏𝑊𝑊𝑊𝑊𝑊𝑊𝑅𝑅[𝑋𝑋𝑋𝑋,𝑌𝑌] as (4) but here with 
𝑣𝑣𝑖𝑖 = 𝑌𝑌𝑖𝑖 − 𝑋𝑋𝑖𝑖𝑇𝑇𝑋𝑋𝑏𝑏 for 𝑖𝑖 = 1, … ,𝑛𝑛. Now 𝑋𝑋𝑏𝑏 may be interpreted as 𝑏𝑏𝑊𝑊𝑊𝑊𝑊𝑊𝑅𝑅[𝑋𝑋,𝑌𝑌], which 
immediately leads to obtaining (11). 
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