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Abstract 

This paper investigates systemic risk and contagion processes in an interbank network 
using network science methods. The interbank network is studied to understand the 
contagion process within a network considering differences in the network structure and 
the characteristics of components. Simulations support the claim that heterogeneous 
networks are more resilient to contagious shocks, while these shocks are more 
problematic in homogeneous networks. This paper also shows that more 
interconnections among banks could accelerate or block the contagion process, 
depending on the structure of the network and the seniority of debts in the interbank 
network. 

1. Introduction1 
In recent decades, globalization and free markets have increased interdependencies 
among financial institutions worldwide, creating a more complex financial structure. 
After the global financial crisis of 2007-2008, which played a significant role in the 
failure of different financial institutions, many concerns arose in academia, industry, 
and regulatory bodies about the stability of complex financial systems and possible 
future systemic failures. Since then, a sizeable body of literature has concentrated on 
measuring systemic risk and preventing systematic failure before it passes critical 
thresholds. 

Systemic risk is the keyword in studying financial networks. It generally refers 
to a cascade of failures, or in other words, the financial domino effect caused by a 
shock in the system. Systemic risk could result from an aggregate negative shock 
through the system affecting individual entities. It means that it is not only about 
single risky events but also a series of adverse events correlated with each other in a 
system. The interbank market plays an essential role within financial systems as it is 
a system of banks connected by credit links. Financial distresses such as insolvency 
and illiquidity when an institution cannot fulfill its financial obligations may result 
in a contagion process affecting other institutions within the network. For instance, 
Mitchener and Richardson (2019) document the role of the interbank network in the 
amplification of financial shocks during the Great Depression.  

Haldane and May (2011) show how systemic risk is affected by the source of 
initial shocks and the financial network structure. They show that the degree of 
vulnerability of an individual financial institution and the network structure are 
decisive factors in studying systemic risk in banking ecosystems. The latter is 
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closely related to the degree of interconnectedness within interbank networks. On 
the one hand, a higher interconnectedness of the interbank network can mitigate the 
shock by diffusing it throughout the system among several network members. On the 
other hand, a higher interconnected network means a larger part of the network is 
exposed to the shock if the interconnectedness passes a critical threshold, resulting in 
more defaults.  An externality arising from a high degree of interconnectedness 
among financial institutions, particularly banks, is too connected to fail (TCTF) 
problem alongside the too big to fail (TBTF) problem. The TCTF paradigm refers to 
the failure of institutions with a high degree of centrality in a financial network. 
Leventides et al. (2019) study the resilience of financial networks with different 
structures and a high degree of centrality to exogenous shocks. They show that 
networks with a higher level of concentration around the largest nodes are less stable 
during financial distress. 

In their seminal paper, Allen and Gale (2000) show how small shocks can be 
amplified and significantly affect interbank markets with incomplete network 
structures. Similarly, Georg (2013), Montagna and Lux (2017) confirm that 
interbank network structure has a crucial impact on financial stability in times of 
distress. However, there are studies arguing that the network topology does not play 
a role in the propagation of risk and resilience of the interbank network (e.g., Krause 
and Giansante 2012; Birch and Aste 2014). 

This paper investigates the contagion process within a weighted directed 
interbank network in line with the abovementioned studies. Financial institutions are 
interconnected through the interbank lending market within a network, which can 
take two different topologies: scale-free resembling a real-world network and a 
dense network with a higher degree of interconnectedness. Employing network 
measures and epidemic modeling, simulations in this paper analyze the contagion 
process throughout the network in the case of the largest institution’s default. 

The key finding of this work is twofold. First, regardless of the network 
structure, a network consisting of banks with heterogeneous characteristics is more 
resilient to contagion and systemic defaults when the seniority level of the debt is the 
same for all institutions in the network. Second, the results show that a 
heterogeneous network with components with different financial characteristics is 
resilient to contagion processes when the banks are extensively interconnected. In 
contrast, a dense network of homogeneous banks with the same financial metrics but 
a higher degree of interconnectedness is more vulnerable to systemic shocks and 
failures. 

The contribution of this work is the presented model allowing for two layers of 
linkages (senior debt and subordinated debt) between financial institutions inside the 
network. The most related study to this paper is Bargigli et al. (2015), which 
proposes a multiplex network model of the Italian banking system in which layers 
differ due to different maturity times. This paper, however, separates network 
linkages based on debt seniority. 

The paper proceeds as follows. The following section reviews theoretical and 
empirical contributions to the literature, emphasizing the network-based models. 
Section 3 presents the model. The results and findings are discussed in the 
subsequent section. Section 5 draws some conclusions and discusses future avenues 
for research. 
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2. Relevant Literature 
There is a growing literature measuring systemic risk and contagion in the 

financial network, particularly interbank networks. The literature follows different 
strands. Part of the literature mainly concentrates on the theoretical foundations of 
systemic risk within financial markets. A significant number of these studies show 
that while the interbank network can absorb financial shocks in the case of proper 
liquidity management mechanism, it can also amplify the shock within the economy 
when the network is incomplete (Allen and Gale 2000; Allen et al. 2012; Eisenberg 
and Noe 2001; Gai et al. 2011; Thurner et al. 2003; Rochet and Tirole 1996;). 
Moreover, studying credit lines in interbank networks, Orhun (2017) shows that 
given the optimal liquidity network of Allen and Gale (2000), the interbank network 
is robust even when the banks face an aggregate liquidity shock. 

This paper relates to the strand of the literature that applies network analysis to 
financial networks. This area of research is mainly concerned with the effect of 
network topology on the contagion process. Studying contagion in a simulated 
financial network, Nier et al. (2007) show that at low levels of connectivity, an 
increase in connectivity would increase the chance of systemic failure. In contrast, 
high connectivity levels improve the banking system’s ability to absorb shocks to 
prevent systemic failure. On a related note, Klinger and Teply (2016) investigate the 
relationship between the financial system` and sovereign debt crises by constructing 
an agent-based network model of an artificial financial system. The authors show 
that in the short term, all support measures improve the systemic stability of the 
interbank network, and in the longer run, some settings mitigate the systemic risk. 

Several studies also propose various network measurements and indicators for 
connectedness and systemic risk in interbank networks. Combining variance 
decomposition of vector autoregressions (VARs) and network topology theory, 
Diebold and Yılmaz (2014) propose different connectedness measures in interbank 
networks, particularly among major U.S. financial institutions. The authors show 
that these measures are intimately related to key measures of connectedness in the 
network literature and can measure systemic risk. Following the same approach, 
Baruník and Křehlík (2018) introduce a framework based on the spectral 
representation of variance decomposition and connectedness measures. The authors 
monitor shocks at different frequencies to assess their effects on system-wide 
connectedness or systemic risk. The results show that shocks to one asset in the 
system will have a long-term effect when connectedness is created at lower 
frequencies, while in the case of connectedness at higher frequencies, shocks will 
have a short-term impact. 

Moreover, Montagna and Lux (2017) study systemic risk in simulated scale-free 
interbank networks. The authors show how the net worth ratio on total assets and 
interbank assets on total assets affect the spread of an idiosyncratic shock. The 
results indicate that a shell structure in the diffusion of losses in the network, i.e., 
creditor banks of the defaulted entity, mostly fails before the others, and it is 
possible to classify the defaults of the different shells in the cascade events. They 
also find that random networks or networks based on a maximum entropy principle 
lead to fewer contagious defaults than scale-free networks. This finding is in contrast 
with the results in previous studies. For instance, comparing different interbank 
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structures, Georg (2013) argues that random networks are more vulnerable to 
systemic risk than interbank networks with few large and many smaller banks. 

This paper is also closely related to the strand of literature using network 
structures and balance sheets to study systemic risk and contagion processes in 
different countries’ financial/interbank networks. Boss et al. (2004) study the impact 
of network structure on the stability of the Austrian interbank market. They suggest 
two significant general results: first, the interbank network is a small world with a 
very low degree of separation between any two nodes in the system; second, a more 
realistic class of scale-free networks must be used for future modeling interbank 
relations. Similarly, Cajueiro and Tabak (2008) and Iori et al. (2008) investigate the 
Brazilian and Italian interbank networks, respectively. They also find a scale-free 
structure for these markets. There are few banks with a high level of interconnection 
and a more significant number of small banks with few connections. They also 
investigate the characteristics of the nodes to understand the role of the different 
types of banks in the interbank network. They show that smaller private domestic 
retail banks play a crucial role as creditors in the stability of the interbank network. 

Using a worldwide dataset, Cihak et al. (2012) show that an increase in the 
degree of interconnectedness in a country’s banking system that is less connected to 
the international banking network is associated with a lower probability of a 
systemic crisis. However, once the degree of interconnectedness passes a certain 
threshold, further increases in interconnectedness will negatively affect network 
stability. In a similar study focusing on the interbank markets in Central and Eastern 
Europe, Fiala and Havranek (2017) show that the degree of interconnectedness in the 
local interbank market is the main amplifier of the contagion compared to the 
linkages to the foreign markets. Moreover, Tonzer (2015) studies the cross-border 
contagion in interbank networks and finds that in stable times, a higher level of 
interconnectedness in the banking system can help network resilience in the case of 
positive spillover effects. In contrast, studying the European interbank network, 
Gabrieli and Salakhova (2019) show that a denser network with a shorter average 
path is less resilient to contagion, while a higher level of clustering increases 
network stability. There are other studies showing the importance of the network 
structure in different national and international interbank networks (see, e.g., 
Aldasoro and Alves 2018; Chen et al. 2020; Erkol et al. 2016; Kanno 2015; 
Langfield et al. 2014; Liu et al. 2020; Martinez-Jaramillo et al. 2014; Müller 2006; 
Philippas et al. 2015; Silva et al. 2016). One may consult Upper (2011) and Silva et 
al. (2017) for a comprehensive summary of contagion simulations in different 
interbank networks. 

Finally, another stream of research related to this work uses epidemic modeling 
for studying systemic risk in financial networks. Blume et al. (2011) study the 
interbank network as an epidemic in this respect. They show that issues such as the 
trade-offs between clustered and anonymous market structures expose a fundamental 
dynamic in which minimal amounts of overlinking in financial networks with 
contagious risk can have substantial consequences for possible future systemic 
failures. Consistent with the TCTF problem, Brandi et al. (2018) further show that 
the riskiness of a bank is better captured by its network centrality. Among others, 
Bucci et al. (2019), Dehshalie et al. (2021), Hurd et al. (2017), and Toivanen (2013) 
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employ epidemiological methods to study systemic risk and contagion within 
various financial and interbank networks. 

3. Model 
The model presented in this paper is a weighted directed interbank network 

consisting of nodes representing banks. Banks are interconnected by their simplified 
balance sheets. To have an empirically reliable model, the characteristics of the 
network resemble the real-world interbank network. Hence, in the formation of the 
network, the size of assets and liabilities of the banks are similar to those of the most 
prominent Italian banks on two criteria: first, having total assets of at least 20 billion 
Euros; second, not being a subsidiary or branch of a foreign-based institution. Based 
on these conditions, the interbank network consists of 10 banks. It is also assumed 
that larger financial institutions tend to borrow (lend) from (to) institutions of the 
same size. Similar to the Italian interbank network, two systemically important 
nodes have the most significant amount of capital and the most considerable 
exposure to other banks in the network (i.e., Intesa Sanpaolo and UniCredit). There 
are other eight banks ranked by their total assets. 

Table 1 
assets Ai liabilities Li 

liquid assets 𝛼𝛼𝑖𝑖 senior debt 𝑏𝑏𝑗𝑗𝑠𝑠 

illiquid assets 𝛽𝛽𝑖𝑖 
senior loans 𝑙𝑙𝑖𝑖 
subordinated loans 𝑙𝑙𝑖𝑖

𝑗𝑗
 

junior debt 𝑏𝑏𝑖𝑖
𝑗𝑗 

net worth 𝑊𝑊𝑖𝑖 

Notes: Balance sheet of bank 𝑖𝑖 regarding its interbank connections. Assets can be written as 𝐴𝐴𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖 +
𝑙𝑙𝑖𝑖𝑠𝑠 + 𝑙𝑙𝑖𝑖

𝑗𝑗  and liability is 𝐿𝐿𝑖𝑖 = 𝑏𝑏𝑖𝑖𝑠𝑠 + 𝑏𝑏𝑖𝑖
𝑗𝑗 . Besides, 𝑊𝑊𝑖𝑖 = 𝐴𝐴𝑖𝑖 − 𝐿𝐿𝑖𝑖  is the net worth of bank i. 

As shown in Table 1, it is assumed that each bank has two levels of liability on 
its balance sheet: senior debt 𝑏𝑏𝑠𝑠and junior (subordinated) debt 𝑏𝑏𝑗𝑗. These two levels 
of liabilities make an interbank network with two layers of connections. However, 
since interbank exposures are assumed to be senior, the main analysis focuses only 
on the senior layer of this network. On the assets side, there are four elements: liquid 
assets 𝛼𝛼, illiquid assets 𝛽𝛽, senior loans 𝑙𝑙𝑠𝑠, and subordinated loans 𝑙𝑙𝑗𝑗. The total assets 
and total liabilities of bank 𝑖𝑖 are 𝐴𝐴𝑖𝑖  and 𝐿𝐿𝑖𝑖 , respectively; and the value of all assets 
after paying off the liabilities is the net worth of the bank denoted by 𝑊𝑊𝑖𝑖. Assuming 
two banks, 𝑎𝑎 and 𝑏𝑏, there is a link 𝑎𝑎 → 𝑏𝑏 implying a loan 𝑙𝑙𝑎𝑎𝑎𝑎  made by bank 𝑎𝑎 to 
bank 𝑏𝑏, and the opposite exposure is shown by 𝑙𝑙𝑎𝑎𝑎𝑎. In general, the sum of all weights 
flowing into bank 𝑖𝑖 is 𝑏𝑏𝑖𝑖 =  ∑ 𝑙𝑙𝑗𝑗𝑖𝑖𝑗𝑗∈𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑠𝑠  , which is the total liabilities of bank 𝑖𝑖 in the 
interbank network. On the other hand, the sum of all weights flowing out of bank i, 
𝑙𝑙𝑖𝑖 =  ∑ 𝑙𝑙𝑖𝑖𝑗𝑗𝑗𝑗∈𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑠𝑠 , is the total interbank claims of bank 𝑖𝑖, where for both 𝑏𝑏𝑖𝑖  and 𝑙𝑙𝑖𝑖, 
𝑗𝑗 ≠ 𝑖𝑖. 

Each bank in the network uses its liabilities 𝐿𝐿𝑖𝑖  to invest at interest rate 𝑅𝑅𝑖𝑖  that 
can be equal to or larger than one concerning the investment conditions. The profit 
made in this transaction can be shown as 𝜌𝜌𝑖𝑖 =  (𝑅𝑅𝑖𝑖 −  1) 𝐿𝐿𝑖𝑖. Following Smerlak et al. 
(2015), there are three different solvency conditions for a bank to pay off its 
liabilities:  
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1. Solvent: A bank is solvent if 

𝛼𝛼𝑖𝑖 + 𝜌𝜌𝑖𝑖 + �𝑥𝑥𝑖𝑖𝑗𝑗 ≥ 𝑟𝑟𝑏𝑏𝑖𝑖𝑠𝑠 + 𝑟𝑟𝑏𝑏𝑖𝑖
𝑗𝑗,

𝑗𝑗≠𝑖𝑖

 (1) 

where 𝑥𝑥𝑗𝑗𝑖𝑖 =  𝑟𝑟�𝑙𝑙𝑖𝑖𝑗𝑗𝑠𝑠 + 𝑙𝑙𝑖𝑖𝑗𝑗
𝑗𝑗 �. The interbank borrowing rate is equal to the risk-free rate 

denoted by 𝑟𝑟 . 𝑙𝑙𝑖𝑖𝑗𝑗𝑠𝑠
 and 𝑙𝑙𝑖𝑖𝑗𝑗

𝑗𝑗  are the loan made by bank 𝑖𝑖  to bank 𝑗𝑗  in senior and 
subordinated forms, respectively. The equation means that bank 𝑖𝑖  pays off its 
liabilities in full. 
 
2. Partial solvent: Bank 𝑖𝑖 is partially solvent and pays off a fraction of its liabilities if 

0 <  𝛼𝛼𝑖𝑖 + 𝜌𝜌𝑖𝑖 + �𝑥𝑥𝑖𝑖𝑗𝑗 − 𝑟𝑟𝑏𝑏𝑖𝑖𝑠𝑠 < 𝑟𝑟𝑏𝑏𝑖𝑖
𝑗𝑗,

𝑗𝑗≠𝑖𝑖

 

Therefore, for the amount repaid by bank 𝑖𝑖 to bank j, we have 

𝑥𝑥𝑖𝑖𝑗𝑗 =
𝑙𝑙𝑖𝑖𝑗𝑗
𝑏𝑏𝑖𝑖
𝑗𝑗 (𝛼𝛼𝑖𝑖 + 𝜌𝜌𝑖𝑖 − 𝑏𝑏𝑖𝑖𝑠𝑠 + �𝑥𝑥𝑖𝑖𝑗𝑗 ).

𝑗𝑗≠𝑖𝑖

 

3. Insolvent: Bank 𝑖𝑖 cannot pay off any part of its liabilities, which may lead to 
default if 

𝛼𝛼𝑖𝑖 + 𝜌𝜌𝑖𝑖 + �𝑥𝑥𝑖𝑖𝑗𝑗 ≤ 𝑟𝑟𝑏𝑏𝑖𝑖
𝑗𝑗,

𝑗𝑗≠𝑖𝑖

 

Hence, 𝑥𝑥𝑖𝑖𝑗𝑗 =  0 for each 𝑗𝑗 ≠  𝑖𝑖. After all payments, the updated net worth of bank 𝑖𝑖 is 

𝑊𝑊𝑖𝑖 =  𝛼𝛼𝑖𝑖 + 𝛽𝛽𝑖𝑖 + 𝜌𝜌𝑖𝑖 − 𝑏𝑏𝑖𝑖𝑠𝑠 + ��𝑥𝑥𝑖𝑖𝑗𝑗 − 𝑥𝑥𝑗𝑗𝑖𝑖�,
𝑗𝑗≠𝑖𝑖

 

where 𝑥𝑥𝑖𝑖𝑗𝑗  and 𝑥𝑥𝑗𝑗𝑖𝑖  imply the repayment of junior loans. Bank 𝑖𝑖 is in the safe mode if 
𝑊𝑊𝑖𝑖 >  0 or failed if 𝑊𝑊𝑖𝑖 ≤  0. 

Table 2 Network Measures for the Benchmark Networks Before Shocks and 
Individual Defaults 

Measures Scale-free network Dense network 

Density 0.13 0.20 

 Average Degree 2.40 3.60 

 ASPL 1.54 1.48 

 Reciprocity 0.50 0.56 

 Assortativity -0.07 -0.35 
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Figure 1 Scale-Free and Dense Networks 

(a) Scale-free network   (b) Dense network 

 
Notes: Two directed networks of 10 banks, which are formed with two different methods. The left one is a 
scale-free network, while the right one is a denser network with more connections between the nodes. The 
size of a node is related to its net worth (Wi). 

The interbank network takes two different formations. The first resembles a 
scale-free network with few banks with a high level of interconnection and a more 
significant number of small banks with few connections. Since the two largest banks 
in the Italian interbank network form two clusters, scale-free is a reasonable 
topology for the interbank market modeled in this study. Moreover, several studies 
show that real-world interbank networks usually exhibit characteristics similar to 
scale-free topology (Boss et al. 2004; Degryse and Nguyen 2007; Georg 2013). The 
formation of a scale-free network is based on a power-law degree distribution: 

𝑝𝑝𝑏𝑏 = 𝑘𝑘−𝛾𝛾 . 

The parameter 𝛾𝛾 can take different numbers depending on the research context. De 
Masi et al. (2006) show that this parameter is between 2.15 and 2.7 in the Italian 
interbank network. Moreover, González-Avella et al. (2016) document that the 
reported value for 𝛾𝛾 in the economics and finance literature is typically between 2 
and 3. Following the suggested values in the literature, particularly those for the 
Italian interbank market, 𝛾𝛾 equals 2.5 in forming the interbank network presented in 
this study. 

The second network, dense network, is a denser network on a relative basis. This 
topology exhibits a higher degree of interconnectedness between banks, which 
means a denser and more connected network than the scale-free network. Unlike 
scale-free or random networks, the dense network is arbitrarily formed. Studying this 
type of network aims to assess the role of a higher degree of linkage in an interbank 
network compared to interbank networks that are more frequently observed in the 
real world, i.e., scale-free networks. One can check that there are repeating patterns, 
both triadic and 5-element motifs, in the second network, while there is no repeating 
pattern in the first network. Figure 1 depicts both networks, and Table 2 summarizes 
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their properties. Moreover, despite differences, both networks’ characteristics 
resemble the actual interbank network characteristics. For example, both networks 
have a low level of negative assortativity., which is consistent with previous studies 
on real financial networks (Soramäki et al., 2007). 

3.1 Solvent-Insolvent (SI) Epidemic Model 
In addition to the primary balance sheet-based model, this study employs a 

basic epidemic model to investigate interbank contagion. Epidemic models capture 
the dynamics of the propagation of disease within a community. This class of 
models addresses questions regarding the spread of an event (e.g., disease or default) 
in various networks, such as social networks, the population in a country, and 
interbank networks. Of the most well-known epidemic methods, susceptible-infected 
(SI), susceptible-infected-recovered (SIR), and susceptible-infected-susceptible 
(SIS) are the most used in different fields of research. For instance, in a recent study, 
Fukui and Furukawa (2020) document the properties of coronavirus outbreaks by 
using a stochastic SIR model, which can be insightful for studies focusing on the 
dynamics of interbank contagion. 

Kermack and McKendrick (1927) introduce a simple epidemic model to study 
disease spreading among population networks. Although investigating disease 
spreading or event spreading in a network is a naive method, it is still commonly 
used in the scientific literature. In this two-stage method, there are two kinds of 
nodes in the network: susceptible and infected. Once one becomes infected, 
susceptible nodes become infected, and the disease will spread throughout the entire 
network. The model can be written as: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

=
𝛽𝛽𝛽𝛽𝑑𝑑
𝑛𝑛

, 

 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −
𝛽𝛽𝛽𝛽𝑑𝑑
𝑛𝑛

, 

where 𝛽𝛽 is susceptible, and 𝑑𝑑 is infected. Besides, 𝛽𝛽 is the infection rate and can be 
translated to the probability of contagion in the network. Parameters are defined 
such that 

𝑠𝑠 =
𝛽𝛽
𝑛𝑛

,   𝑥𝑥 =
𝑑𝑑
𝑛𝑛

,   𝑠𝑠 = 1 − 𝑥𝑥.  

Then we have a reduced model: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝛽𝛽(1 − 𝑥𝑥)𝑥𝑥. (2) 

The solution to this logistic growth equation leads to 

𝑥𝑥(𝑑𝑑) =
𝑥𝑥0 𝑒𝑒𝛽𝛽𝛽𝛽

1 − 𝑥𝑥0 + 𝑥𝑥0 𝑒𝑒𝛽𝛽𝛽𝛽
   

In the context of financial markets, one can interpret the concept in financial jargon 
as solvent-insolvent. At any point in time, an individual bank is either solvent or 
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insolvent (default). Suppose that a bank is susceptible to a specific default 
probability. Bilateral exposures that connect banks are transmission channels to 
diffuse the shock among different banks in the network. To catch the contagion 
process, one of the connected banks must initially become insolvent. Since this 
insolvent bank transmits the so-called disease at the rate 𝛽𝛽 , the probability that 
another bank becomes insolvent can be obtained using Equation (2) with still solvent 
banks. 

Translating the SI framework into a solvent-insolvent framework for the 
interbank network presented in this study is trivial. First, having the same 
characteristics, banks form a homogeneous interbank network. In other words, it is 
assumed that banks exhibit identical balance sheets. Second, the default probability 
of the banks can be interpreted as an infection rate. Although this simple solvent-
insolvent framework can be a helpful tool for investigating contagion in an interbank 
network, it has some drawbacks facing real-world simulations. For example, an 
insolvent financial institution does not suddenly declare bankruptcy, and it could use 
the extra funding to repay its obligations. 

4. Results 
Removing a bank initiates the shock in the network. This shock applies to the 

most systemically important component in the network: the bank with the highest 
number of connections to other banks. This shock implies the worst-case scenario in 
the system. This scenario implies that Equation (1) does not hold for the largest bank 
of the network, resulting in the bank’s default. The default of the largest bank will 
further cause a cascade of failures, and consequently, it could lead the network to a 
systemic default. 

For the benchmark model, there is a homogeneous ratio of the junior debt to the 
senior debt in the network, which is 1 9� . The interbank interest rate and interest rate 
on subordinated debt are equal to the risk-free interest rate, 0.01, while the net 
interest rate on investment is 0.02. There is also a random number for the percentage 
of the banks’ liquid assets, which is normally distributed as 𝛼𝛼𝑖𝑖  ∼ 𝑁𝑁(0.08, 0.02) of 
𝐿𝐿𝑖𝑖. Finally, the ratio of interbank borrowings to the total senior liabilities (𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑠𝑠

𝑎𝑎𝑠𝑠
) 

for each bank is fixed at 0.5. 
The result of the benchmark simulation for the scale-free network is shown in 

Table 3. This type of network exhibits a fragile structure due to the shock initiated 
by the largest component’s default—the initial shock results in the default of 4 other 
banks in the network. The network density further falls dramatically from 0.13 to 0, 
which means the remaining solvent banks are not connected as the density is 
virtually zero. In addition, the simulation is repeated for different values of 
𝑅𝑅𝑖𝑖 and (𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑠𝑠

𝑎𝑎𝑠𝑠
). The results depicted in Figure 2 show that the higher the ratio of 

interbank borrowing to the senior debt, the higher number of insolvent banks. In 
contrast, the number of failures decreases when the interest rate 𝑅𝑅𝑖𝑖  and the profit 
made from investment 𝜌𝜌𝑖𝑖  increase. For example, in the case of an interest rate equal 
to 0.05 and 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑠𝑠

𝑎𝑎𝑠𝑠
= 0.5, the largest bank’s default will not make other banks in 

the network insolvent. 
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Table 3 The Result of the Benchmark Simulation for the Scale-Free Network 

Scale-free Network 

𝑅𝑅𝑖𝑖 − 1 = 0.02                            
𝑏𝑏𝑖𝑖𝑏𝑏𝛽𝛽𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑠𝑠

𝑏𝑏𝑠𝑠
= 0.5 

Initial Shock After shock 

Insolvent nodes 0 1 5 

Density 0.13 0.08 0 

Average Degree 2.40 1.30 0 

ASPL 1.54 1 0 

Reciprocity 0.50 0.69 0 

Assortativity -0.07 None None 

Notes: Changes in network measures before, during, and after shock with respect to Ri = 0.02  and   
binterbank
s

bs
= 0.5. 

Figure 2 The Number of Insolvent Banks if the Ratio of Interbank Debt to Total 
Senior Liabilities and Interest Rate Change in the Benchmark Scale-Free Network 

 
(𝑅𝑅𝑖𝑖 − 1) × 100 

On the other hand, the dense network is more stable than the scale-free network. 
The benchmark results in Table 4 imply no severe systemic contagion in the network 
as only one other bank becomes insolvent because of the first bank’s insolvency. It 
means that in the case of the default of important banks in the dense interbank 
network with an adequate number of interconnections, the probability of contagion 
and systemic default is low. In other words, the simulation confirmed the idea that 
more connections in a network reduce the risk of contagion and systemic default. 
These results are in line with a strand of the network documenting the resilience of 
dense interbank networks with a high degree of interconnectedness (Georg, 2013). 
Similar to the scale-free network, changing the ratio of interbank borrowing to the 
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total senior liabilities and the profit made from investments affect the stability of the 
network. Figure 3 shows that the number of failures in the dense network decreases 
in the presence of higher values of 𝑅𝑅𝑖𝑖  and lower values of  𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

𝑠𝑠

𝑎𝑎𝑠𝑠
. 

Table 4 Changes in Network Measures Before, During, and After Shock with Respect 
to 𝐑𝐑𝐢𝐢 =  𝟎𝟎.𝟎𝟎𝟎𝟎  and  𝐛𝐛𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐢𝐛𝐛𝐢𝐢𝐢𝐢𝐢𝐢

𝐬𝐬

𝐛𝐛𝐬𝐬
= 𝟎𝟎.𝟓𝟓 

Dense Network 

𝑅𝑅𝑖𝑖 − 1 = 0.02                 
𝑏𝑏𝑖𝑖𝑏𝑏𝛽𝛽𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑠𝑠

𝑏𝑏𝑠𝑠
= 0.5 

Initial Shock After shock 

Insolvent nodes 0 1 2 

Density 0.20 0.16 0.16 

Average Degree 3.60 2.66 2.66 

ASPL 1.48 1.59 1.59 
Reciprocity 0.56 0.66 0.66 

Assortativity -0.35 -0.37 -0.37 

 

Figure 3 The Number of Insolvent Banks if the Ratio of Interbank Debt to Total 
Senior Liabilities and Interest Rate Change in the Benchmark Dense Network 

 

 
(𝑅𝑅𝑖𝑖 − 1) × 100  

Furthermore, sensitivity analyses are used to examine the preliminary results. To 
this end, first, both networks are reconstructed 500 times with identical balance sheet 
characteristics to the benchmark model but with different arbitrary interbank claims. 
The network properties differ in each simulation. The average value and standard 
deviation for each network measure are reported in Table 5. On average, one can 
check that all assumptions about the two networks’ differences still hold. Second, 
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every constructed network encounters a shock by removing the largest component 
with the highest number of connections, and network resilience is examined by using 
various values of Ri and 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑠𝑠

𝑎𝑎𝑠𝑠
. 

Table 5 Average Network Measures Before Applying Shocks and Individual 
Defaults, Drawn from 500 Simulations 

Measures Scale-free network Dense network 

Density 0.18 0.28 
 (0.06) (0.10) 
Average Degree 2.99 4.50 
 (0.57) (0.87) 
ASPL 1.99 1.70 
 (0.29) (0.28) 
Reciprocity 0.59 0.65 
 (0.23) (0.33) 
Assortativity -0.051 -0.35 
 (0.10) (0.21) 

Notes: Standard deviations are in parentheses. 

In line with the benchmark model, the results indicate that the ratio of interbank 
borrowing to senior debt is positively associated with the number of insolvent banks 
in the network due to the initial default shock. On the contrary, the interest rate 𝑅𝑅𝑖𝑖  
negatively affects the number of insolvent banks in the network. In other words, the 
higher external profit available for the bank helps the bank cover its losses due to 
systemic contagion in the network. Tables 6 and 7 show the results of the default of 
the largest bank in the scale-free network and dense network, respectively. The 
interest rate and the ratio of interbank borrowing to total senior liabilities, not 
surprisingly, have opposite impacts on the number of failures in the network for both 
networks. However, the results confirm that the scale-free network is more fragile to 
default shock than the dense network. Ranging from 1.05 to 2.09, the ratio of 
insolvent banks in the scale-free network to the dense network indicates that the 
dense network is more stable in any comparative scenario. The results are similar to 
the common findings in the literature (e.g., Lenzu and Tedeschi 2012; Montagna and 
Lux 2017). Moreover, comparing Figures 4 and 5, one can confirm that in the case 
of dense network, the rate of change in the number of insolvent banks due to 
changes in 𝑅𝑅𝑖𝑖  is flatter, which can be interpreted as a more stable network structure 
in comparison with the scale-free network. 
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Table 6 Average Number of Insolvent Banks Due to Changes in the Ratio of 
Interbank Debt to Total Senior Liabilities and Interest Rate 

(𝑅𝑅𝑖𝑖 − 1) × 100 
 𝑏𝑏𝑖𝑖𝑏𝑏𝛽𝛽𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑠𝑠

𝑏𝑏𝑠𝑠 = 0.50 
𝑏𝑏𝑖𝑖𝑏𝑏𝛽𝛽𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑠𝑠

𝑏𝑏𝑠𝑠 = 0.75 
𝑏𝑏𝑖𝑖𝑏𝑏𝛽𝛽𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑠𝑠

𝑏𝑏𝑠𝑠 = 1 

# of insolvent banks # of insolvent banks # of insolvent banks 
0.5 6.51 6.92 6.92 

 (0.80) (0.88) (0.84) 
1 5.51 6.38 6.43 

 (0.81) (1.21) (0.59) 
1.5 5.47 5.58 6.30 

 (0.81) (0.59) (0.71) 
2 5.07 4.82 5.43 

 (0.82) (0.74) (0.59) 
2.5 4.24 4.78 5.27 

 (0.72) (0.75) (0.70) 
3 4.12 4.34 4.63 

 (0.95) (0.65) (1.24) 
3.5 3.52 3.83 4.37 

 (0.80) (0.99) (1.00) 
4 2.35 3.03 3.93 

 (0.65) (0.79) (0.34) 
4.5 1.29 1.70 2.92 

 (0.61) (0.46) (0.35) 
5 1.10 1.40 1.85 

 (0.30) (0.49) (0.36) 

Notes: Obtained from 500 simulations of the scale-free network. Standard deviations are reported in 
parentheses. 

Figure 4 The Sensitivity of the Number of Insolvent Banks to Changes in the Ratio 
of Interbank Debt to Total Senior Liabilities and Interest Rate Based on Simulated 
Scale-Free Networks 
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4.1 SI Simulations 
Assuming a fixed default probability (DP) for all banks in the system, 

simulations for both networks investigate how interbank contagion spreads over the 
network. Simulations thus consider that all banks share an identical balance sheet 
with homogeneous characteristics. It is also assumed that there is the same ratio of 
loans with junior priority to those with senior priority and the ratio of interbank 
loans to the total senior loans. Therefore, the assumptions are like the benchmark 
model. The interbank linkages formed a network with similar properties reported in 
Table 5. 

The simulations initiate with the insolvency shock of the largest bank, or in 
other words, removing the largest component of the network. Moreover, there is a 
set of default probabilities consisting of 5 different values from 0.1 to 0.5. Unlike the 
balance sheet-based model, the scale-free network shows a higher level of stability 
against a systemic shock than the dense network. In all scenarios, the contagion 
process takes less time to cause a systemic failure in the dense network. On average, 
it takes at least one more period for the scale-free network to encounter a total 
failure, causing the interbank network to collapse compared to the dense network 
scenarios. Figure 6 shows the contagion process with different values of DP for both 
networks. 

The results support the idea that more interconnections in a network make it 
more vulnerable when its components share similar characteristics. There are 
contradicting results in the literature regarding the vulnerability of homogeneous 
interbank networks when connectivity increases. Some studies find that a higher 
degree of interconnectedness positively affects network stability (Allen and Gale 
2000; Iori et al. 2008), while some document opposite results (Li and He, 2011). 
Although the results seem insightful, it must be acknowledged that they are not 
necessarily realistic since homogeneous interbank networks are rarely formed in the 
real world. Moreover, the results are largely dependent on the choice of parameters. 
Besides, in the case of a default in the real network, a bank might recover its debt 
and convert from an insolvent position to a solvent position, which occurs 
frequently. 
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Figure 5 The Sensitivity of the Number of Insolvent Banks to Changes in the Ratio 
of Interbank Debt to Total Senior Liabilities and Interest Rate Based on Simulated 
Dense Networks 

 
(Ri −1)×100 

Table 7 Average Number of Insolvent Banks Due to Changes in the Ratio of 
Interbank Debt to Total Senior Liabilities and Interest Rate 

(𝑅𝑅𝑖𝑖 − 1) × 100 
  𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑠𝑠

𝑎𝑎𝑠𝑠
= 0.50  𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

𝑠𝑠

𝑎𝑎𝑠𝑠
= 0.75        

𝑏𝑏𝑖𝑖𝑏𝑏𝛽𝛽𝑖𝑖𝑖𝑖𝑎𝑎𝑎𝑎𝑏𝑏𝑏𝑏𝑠𝑠

𝑏𝑏𝑠𝑠 = 1 

# of insolvent banks # of insolvent banks # of insolvent banks 

0.5 3.11 4.50 4.77 
 (0.94) (0.67) (1.09) 

1 2.99 4.00 4.65 
 (0.99) (0.45) (1.19) 

1.5 2.99 3.03 4.31 
 (1.03) (0.55) (0.88) 

2 2.41 2.99 3.35 
 (0.85) (0.55) (0.71) 

2.5 2.39 2.42 3.33 
 (0.58) (0.63) (0.73) 

3 2.04 2.20 2.37 
 (0.68) (0.75) (0.63) 

3.5 1.87 1.90 2.21 
 (0.69) (0.83) (0.75) 

4 1.55 1.74 2.19 
 (0.59) (0.82) (0.76) 

4.5 1.50 1.55 1.63 
 (0.50) (0.49) (0.81) 

5 1.05 1.29 1.49 
 (0.23) (0.46) (0.77) 

Notes: Obtained from 500 simulations of the dense network. Standard deviations are reported in parentheses. 
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Figure 6 Simulation Results 

 
           0          2           4           6           8          10          0           2          4           6           8          10 
                                   Time                                                             Time 
Notes: The figure illustrates the results of 500 simulations using the characteristics of the scale-free network 
(left-hand side) and the dense network (right-hand side). 

5. Conclusions 
This paper studies contagion processes in a weighted interbank network 

considering the seniority level of interbank claims. Numerous simulations based on 
two different network topologies and basic epidemic modeling analyze the 
contagion process throughout the interbank network in the case of the shock caused 
by the largest institution’s default. This initial shock and its consequences within the 
interbank network directly address the TCTF paradigm, which a large stream of 
financial literature investigates. The key finding of this paper is twofold. First, 
regardless of the network structure, a network consisting of banks with 
heterogeneous characteristics is more resilient to contagion and systemic defaults 
when the seniority level of the debt is the same for all institutions in the network. 
Moreover, a dense interbank network with a higher degree of interconnectedness 
than the scale-free network exhibits more robustness in the case of contagious 
defaults. This finding is in line with a significant strand of literature such as 
Montagna and Lux (2017), documenting the vulnerability of scale-free interbank 
networks with few money centers having a significant number of connections and a 
large number of smaller banks with few connections. 

  Second, the results show that a heterogeneous network with components that 
have different financial characteristics is resilient to contagion processes when the 
banks are extensively interconnected. In contrast, a dense network consisting of 
homogeneous banks with the same financial metrics but with a higher degree of 
interconnectedness is more vulnerable to systemic shocks and failures than scale-
free networks. There are contradicting results in the literature regarding the 
homogeneity of interbank networks. The results in this paper are consistent with a 
limited part of the literature documenting that a higher degree of interconnectedness 
is negatively associated with network resilience (Li and He, 2011). Therefore, these 
results are worth further investigation. 
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There are several avenues of research for further studies. With the data on 
interbank liabilities, empirical research can investigate an optimal network structure 
and liabilities distribution with the highest resilience to systemic defaults. In 
addition, future research could also examine other aspects of interbank liabilities, 
such as the maturity of interbank claims to construct a more realistic interbank 
network that is empirically tractable. 
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