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Abstract

We examine daily USD returns for Bitcoin, Ethereum and Litecoin between October 2013
and September 2019 at six separate exchanges employing wavelet methodology. This
approach, as compared to the standard time domain analysis, is superior because it tests
the existence of cyclical persistencies at different investment horizons. We identify
significant but temporal cyclical movements and coherence between the markets at high
frequencies which is broadly consistent with market inefficiency given liquidity
constraints of cryptocurrencies. Moreover, we identify temporal arbitrage opportunities
between the selected exchanges.

1. Introduction

Since their creation more than a decade ago, cryptocurrencies are confronted
with a deep skepticism. Several researchers have suggested that cryptocurrencies
cannot be treated as regular currencies and their exchange rates are often described as
a speculative bubble (Garcia et al., 2014). The exponential rise as well as sharp
decline of the value of cryptocurrencies attracted significant attention in the financial
world and stir up a debate about cryptocurrency markets efficiency. The weak form
of efficient market hypothesis is traditionally tested by various unit root tests (e.g.
Urquhart, 2017) or time-frequency domain analysis (Omane-Adjepong et al., 2019)
focusing on an ability to use their past information in order to predict future returns.

Most of the recent studies conclude that cryptocurrency markets are not
weakly efficient (Urquhart, 2017, Alvarez-Ramirez et al., 2017), especially due to the
time-scale persistency (Omane-Adjepong et al., 2019), long memory (Phillip et al.,
2018), permanent linkages between the cryptocurrencies (Bouri et al., 2019), and
cross-correlation with Dow Jones Industrial Average (Zhang et al., 2018). Price
inconsistency of Bitcoin between popular marketplaces was identified by Pieters and
Vivanco (2017) or Kliber and Wlosik (2019).
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On the contrary, Aslan and Sensoy (2019) and Sensoy (2019) provide a strong
evidence on weak-form informational efficiency for high-frequency data (5-minutes
and 10-minutes series) of Bitcoin, Ethereum, Ripple and Litecoin. Kristoufek (2015)
concludes that the Bitcoin market follows underlying yearly cycles and is driven by
trade, money supply and price level in the long run. Li and Wang (2017) show that
technology and the public perceptions are also important drivers of bitcoin prices.
Such general factors are expected to influence all markets in a similar way and thus
to contribute to price similarities.

Additionally, there is growing body of literature on triangular arbitrage
opportunity identification in the foreign exchange market (Drozdz et al., 2010; Cui et
al., 2019; Gebarowski et al., 2019). Nevertheless, to the best of our knowledge, this
paper represents the first contribution applying wavelet coherence and phase shift for
identification price arbitrage opportunities between the cryptocurrency exchanges.

Despite increasing research on cryptocurrencies, there are only a few
contributions employing wavelet analysis to cryptocurrencies. The standard random
walk approach tests only the mean-reverting property of aggregate time series. In
turn, wavelet analysis of cryptocurrency returns can prove persistent cycles at
different frequencies which may contradict the efficient market hypothesis. It also
provides empirical evidence of the fractal market hypothesis (Peters, 1994;
Kristoufek, 2013) about a dominance of specific investment horizons during
turbulent times holds. As far as different frequencies of cyclical movements represent
specific investment horizons and provide important implications for portfolio
management. From this perspective, we emphasize short investment horizons
domination in 2018 because buying and selling orders were not efficiently cleared
during the price fall.

We cover a period from end of 2013 to September 2019 which includes not
only the fall of cryptocurrency prices in 2018, but also their revival in the first half of
2019 and price correction at the end of the sample. Reflecting the ambiguity in the
previous literature, we make two main contributions to this growing stream of
literature. First, we explore temporal cyclical behavior at high frequencies which
confirm cryptocurrency market inefficiency at short investment horizon from 2017 to
mid-2018. Second, we analyze coherence and phase shift to explore co-movements
between the selected cryptocurrency markets and market arbitrage opportunities
identified by leads and lags between the price cycles.

The paper is organized as follows. Section 2 contains the literature review. A
detailed overview of methods and data is provided in Section 3. Section 4 presents
the results of the continuous wavelet transform and wavelet coherence and Section 5
concludes.

2. Literature Review

The efficient market hypothesis states that exchange rates or prices of any
financial assets manifest all available information at any time. The previous literature
focuses especially on the weak form efficiency, which implies that the current prices
fully reflect the information obtained in the past prices. This version of efficient
market hypothesis is traditionally tested by various unit root tests. The random walk
hypothesis implies that new information is immediately reflected in asset prices,
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concluding that future price changes will reflect only future news and will be
independent of the lagged price changes.

In addition to the weak version, the literature (Fama, 1970 and 1991)
discusses the semi-strong and strong versions of the efficient market hypothesis. The
semi-strong efficiency states that current exchange rates fully react to all publicly
available information, which not only includes the past prices but also any other
variables like inflation, interest rates, etc. In the case of the semi-strong efficiency,
multivariate analysis cannot ensure better performance than the naive random walk
strategy either. Finally, the strong form efficiency implies that current prices fully
reflect all existing information both public and private. Under this hypothesis, no
investors should be able to generate profits even if they trade with the knowledge not
yet publicly available at the time (e.g. in the case of insider information).

Price inconsistencies across multiple exchanges of traditional financial assets
have been in the spotlight of research in the last decades (Fama, 1991, Malkiel, 2003,
Lo, 2007). While random walk approach and unit root or cointegration tests dominate
the empirical literature on efficient market hypothesis, several authors employ
alternative cross-spectral analysis based on the method described by Granger (1969).
Granger and Morgenstern (1979) use the cross-spectral methods in order to
characterize the long-run relationships between the non-stationary time series of the
stock prices. They discover that the price dynamics of stock markets is not only
based on supply and demand, but it rather reflects a single market. In sum, the earlier
literature shows that besides regular economic factors, asynchronies in production,
transaction costs, speculative movements and market-specific constraints can have an
impact on the adjustment speed of different markets. Not all markets are significantly
cointegrated and only geographical close markets have a stable equilibrium
relationship. Moreover, the earlier literature identified frequent and important
financial market anomalies (e.g. excess volatility) which have become the base for
behavioral finance (Shiller, 2003).

The standard random walk approach tests only the mean-reverting property of
aggregate time series. In turn, wavelet analysis of cryptocurrency returns can prove
persistent cycles at different frequencies which may contradict the efficient market
hypothesis. It also provides empirical evidence of the fractal market hypothesis
(Peters, 1994; Rachev et al., 1999; Weron and Weron, 2000; Kristoufek, 2013)
because different frequencies of cyclical movements represent specific investment
horizons which poses important implications for portfolio management. The fractal
market hypothesis, in comparison with traditional Efficient Market Hypothesis,
assumes that different market participants analyse past events and news with
different time horizons (Weron and Weron, 2000). With respect to fractal market
hypothesis the wavelet analysis explores time-varying investment horizons,
especially situations when the long-term investors start to panic and sell during the
price fall.

Additionally, Bauméhl (2018) confirms that a cross-spectral approach and can
provide more information on the dependence structure of different frequencies than a
detrended moving-average cross-correlation analysis. Moreover, Kristoufek and
Vosvrda (2013) propose a new measure of market efficiency based on the fractal
dimension and entropy and measure long-range dependence. They also employ time-
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frequency analysis and test dominance of specific investment horizons during the
Financial Crisis after 2007 (Kristoufek, 2018; Kristoufek and Vosvrda, 2019).

Following general discussion, we use the terms cryptocurrency and exchange
rate between cryptocurrencies, although the decentralised nature of cryptocurrencies
and high volatility have led to extensive discussion whether they can be classified as
currency in the sense of a transaction medium (Li and Wang, 2017). Especially the
high volatility makes cryptocurrencies less attractive for regular transactions than fiat
money. Alvarez-Ramirez et al. (2018) document the risks for users to engage with
cryptocurrencies as a transaction medium with such a significant price fluctuation.
Urquhart (2017) shows that Bitcoin exchanges do not fulfil the property of efficient
markets. Thus, several scholars argue that cryptocurrencies hardly fulfil the
traditional characteristics of an exchange tool we commonly refer to as currency
(Bariviera et al., 2017).

From the perspective of the market efficiency hypothesis, one important
aspect of cryptocurrency pricing is that the cryptocurrencies are traded on many
different exchanges. Briere et al. (2015) show that Bitcoin prices can vary widely
across different exchanges at the same time, which contradicts market efficiency. It is
relevant to point out that cryptocurrency exchanges are not directly based on the
blockchain, so they are not a decentralised ledger and do not suffer from the long
transaction time of system. They rather operate like traditional asset exchanges with
matching algorithms bringing buyers and sellers together.

Brandvold et. al (2015) focus on the price discovery on several exchanges,
which were popular with market participants at the time. They point out, that due to
the missing regulation framework the deposition/withdrawal process and fees of the
different exchanges can vary drastically. Brandvold et. al (2015) notice that these
characteristics can lead to diverging prices on the cryptocurrency exchanges, which
has already been mentioned by Briere et. al (2015). Their results show that exchanges,
which were struggling at the time due to hacking attacks, such as Mt. Gox (McMillan,
2014), are not cointegrated with other markets. These exchanges either traded with a
discount or a premium on the Bitcoin prices. Another significant aspect discovered
by Brandvold et al. (2015) is the change in trading activity, based on the location and
currency of the exchange.

De Jong et al. (2001) analyse the multivariate time series data by using short
intervals to capture the high frequency aspect while trying to avoid possible noise in
the time series. They conclude that the most popular exchanges, measured by their
trading volume, are the most important price leaders and smaller exchanges follow
the market with a lag.

Several recent studies challenge the efficiency of cryptocurrency markets with
a particular focus on Bitcoin (Alvarez-Ramirez et al., 2017), showing that the market
is not uniformly efficient and may exhibit cyclic behaviour in price returns. Yermack
(2013) supports this claim in his analysis, by comparing the high value of certain
cryptocurrencies, such as Bitcoin to the volumes traded on the exchanges. He
concludes that Bitcoin is not a currency but a speculative investment opportunity, due
to long transaction times and a limited number of places where the currency is
accepted. This is supported by the study of Halaburda and Gandal (2016), claiming
that the value of cryptocurrencies primarily derived by its relation to other
cryptocurrencies, not its underlying economic values. According to several statistics,
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almost a third of respondents held cryptocurrencies solely for investment purposes
(OECD, 2019). If cryptocurrencies are held as an asset, they are significantly
effective as a supplement to a portfolio, due to their low correlation to regular assets,
such as gold (Brandvold et al., 2015).

Li and Wang (2017) also point out that most of the earlier studies do not focus
on price determination in cryptocurrency markets, but rather on discovering potential
bubbles, which have occurred several times since the creation of Bitcoin in 2008.
Supply and demand are important determinants for the price of Bitcoin (Buchholz et
al., 2012), but several authors, such as Kristoufek (2015) and Yermack (2013), have
argued that the price formation of a Bitcoin cannot be explained completely by
regular economic theories. They have stated that influencing factors over these
markets are difficult to identify, due to the unique properties. The decentralised
system excludes governments, laws, and other legal entities as factors of direct
influence on the pricing of cryptocurrencies. This includes the taxation of such
financial instruments because governments currently don’t have the technical
capabilities to track the possession of cryptocurrency assets to their citizens (Naidu,
2016).

Kristoufek (2013, 2015, 2018) presents, to the best of our knowledge, so far
the only contribution, employing wavelet coherence analysis, which identifies
possible drivers of the Bitcoin price over short-term and long-term perspectives. His
study does focus on the correlation with traditional financial assets and explicitly
excludes transactions, which were conducted on an exchange, hence using the
information directly contained in the blockchain. He analyses the influence of the
technical aspects of Bitcoin, such as the amount of the coin produced per second and
the mining difficulty on the Bitcoin/USD exchange rate, with time series on a one-
minute basis. The Fourier spectral analysis points out several spectral peaks in lower
frequencies, showing cycles of one year and half a year and revealing the
phenomenon that Chinese volume leads the USD prices. Kristoufek (2015) concludes
that the Bitcoin market follows underlying yearly cycles and is driven by
macroeconomic factors in the long run.

However, frequency analysis is widely used for investment horizon
identification at different capital markets. Barunik et al. (2016) employ wavelet
analysis to investigate relationship at different investment horizons between gold, oil
and stocks. Barunik and Kocenda (2019) find asymmetric connectedness between oil
and forex markets and Njegi¢ et al. (2019) confirm stock-bond interactions or
Buraskovic et al. (2019) employ wavelet analysis for two-asset portfolio optimization.

As mentioned before, most research exclusively focusses on Bitcoin as the
most popular cryptocurrency on the market but ignores other significant
cryptocurrencies with similar market volumes. A small number of essays address this
issue, thus including multiple cryptocurrencies in their analysis. Corbet et al. (2018)
examine the return and the volatility transmission of the three most popular
cryptocurrencies, by using the approach of generalized variance decomposition to
measure possible spillover effects on different markets. The authors employ a
frequency approach to estimate unconditional connectedness relations and a time
domain approach to analyse directional connectedness. The paper claims that the
Bitcoin price has a strong effect on the price dynamics of the other analysed
cryptocurrencies without sufficient explanation of their volatility spillovers. They
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conclude that the cryptocurrency markets are strongly interconnected but could be
potentially isolated from other markets over the short term. Similar to Li and Wang
(2017), they argue that main drivers of prices are technology and the perception of
cryptocurrencies by the public.

3. Data and Methods

Previous research in the field of cryptocurrency pricing has been mainly
focused on the oldest and the most prominent cryptocurrency, Bitcoin, while only a
few authors have considered other blockchain-based currencies (see e.g. Corbet et al.,
2018). Filling this gap in the literature, we analyze fluctuations in log returns of the
main three cryptocurrencies (Bitcoin, Ethereum, and Litecoin). We use daily data
(closing prices at midnight, synchronized with the UTC time zone)* from the six
largest cryptocurrency exchanges: Bitfinex, Bitstamp, Bittrex, Coinbase, Kraken and
Poloniex, between October 6, 2013 (August 7, 2015, for Ethereum and October 24,
2013, for Litecoin) and September 21, 2019.°

Our data set covers the period of unprecedented rise in the value of all
analyzed cryptocurrencies as well as its subsequent correction and corresponding
portfolio rebalancing (Figure 1). Interestingly, the markets recovered again during
2019, but experienced a new correction at the end of the sample. According to the
available data, the value of Bitcoin started at slightly more than USD 100 (available
only from Kraken) in 2013. The highest closing price of Bitcoin nearly USD 20,000
per token, was achieved on December 16, 2017. It is interesting to note that the
crashes of 2018 and 2019 occurred simultaneously on all major crypto-exchanges.®

The time-frequency domain analysis can be applied to test the weak form of
efficient market hypothesis, especially the presence of cyclical persistencies at
different frequencies. The presence of any persistencies means that past information
can be used to predict future returns for given investment horizons given by
identified frequency scales.

In the first step, following Torrence and Webster (1999) we employ
continuous wavelet transformation using Morlet wavelet,

—t2

Yt) = \/% e twole 3, 1)

which provides an optimal trade-off between both time and frequency localization in
financial time series (Crowley, 2007; Rua, 2010; Poménkova et al., 2014; Kapounek
and Kucerova, 2019). The oscillation is regulated by the parameter w,, leading to
improved scale localization but decreased time localization and vice-versa.

! Due to low liquidity and long transaction periods, daily data are likely to be more appropriate for the
presented analysis than high frequency (e.g. minute) data.

2 The data are obtained from the free database http://www.CryptoDataDownload.com.

% Some smaller crypto-markets (e.g. quadrigacx and coinfloor, which are not analysed here) experienced
the crash up to two days later in 2018. However, the price levels on these markets were lower than on the
main markets.
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Figure 1 Time Domain Representation of the Analyzed Time Series
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Following Rua (2010), we choose w, = 6 as it exhibits strong similarities to Fourier
period leading to a better interpretation of the result.

In the second step, we test the law of one price between the analyzed crypto-
markets, because earlier research suggests that cryptocurrency prices are highly
different in various crypto-exchanges. Therefore, we analyze cyclical co-movement
employing squared coherency which is common time-localized oscillation in
analyzed time series. The coherency is interpreted as a co-movement or time-
frequency varying correlation. The results of the coherency are normalized and can
range from 0 to 1, where a small value suggest a very weak correlation and values
close to 1 indicate a strong correlation between the signals.

The significance of the wavelet coherence analysis at the five percent level is
achieved by comparison to a random distribution generated from a Monte Carlo
Simulation as proposed by Grinsted et al. (2004). Moreover, we apply phase shifts in
order to obtain delays between the cycles of two signals. In our analysis shifts of up
to 180° with a change in polarity are computed. The arrows indicate the direction of
lag between the signals in presented figures. The methodology is widely used in
wavelet literature (see details in Grinsted et al., 2004).

4. Market Efficiency and Arbitrage Results

4.1 Continuous Wavelet Transform and Market Efficiency

We analyze the individual exchange rates of cryptocurrencies using the CWT
to identify optically cyclical persistency in specific periods and frequencies. For
efficient markets, we would expect no significant cycles in value of cryptocurrencies
because these regularities could be exploited by market participants. This approach
allows us to identify periods with significant regularities and thus with possibilities
for profitable trading.

Figure 2 presents the returns of analyzed cryptocurrencies and crypto-
exchanges in the frequency domain. The areas surrounded by black lines display the
significance of the cycles on a five percent level as tested against red noise using
Monte Carlo simulations. The coned line in the bottom half of the graphic displays
the regions which are influenced by the so called “edge effects.” These effects occur
when the wavelet is centered near the beginning or the end of the time series, which
can potentially disturb the results for these periods. Data outside of this line cannot
be statistically inferred in the analysis. The affected areas are defined as the cone of
influence (Torrence and Compo, 1998). The color intensity represents the power
spectrum of the results. This spectrum can range from dark blue for low-power areas
up to bright yellow for high-power spectra.

In the case of Bitcoin (Figure 2a), we cannot reject the efficient market
hypotheses before 2017 for any crypto-exchange as there are nearly no or only very
short and nearly randomly distributed areas of significant cycles. However, the
picture has completely changed from the beginning of 2017 to the mid of 2018 and
again in 2019, when significant arrears are visible especially around the investment
horizon of 60 to 120 days. Moreover, the results confirm the fractal market
hypothesis. The cryptocurrencies have seen significant demand from investors from
the beginning of 2017. On the contrary, the cryptocurrency exchanges suffered
massive selloffs in 2018, when supply exceeded the demand. These counteracting
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developments resulted in significant cycles over a broad range of frequencies, which
can correspond to prevailing investment horizons during the year 2017 and 2018.
Finally, we can see high similarities between the all crypto-exchanges and
cryptocurrencies.

This pattern is slightly different from the cycles found for the other two
alternative cryptocurrencies. Both Ethereum (Figure 2b) and Litecoin (Figure 2c) are
characterized by significant occasional cycles nearly during the whole analyzed
period. In general, mainly shorter cycles (below 60 days) are significant for these
currencies. However, the periods with significant cycles at specific frequencies are
relatively short, usually not much longer than one or two full cycles of these
frequencies, which makes it more difficult for investors to exploit them for profitable
trading and creates mostly selling signals as a result of increasing uncertainty.

The importance of these regularities has also declined towards the end of the
sample as the importance of trading in these currencies lost on importance as well.
Finally, we can see somewhat larger differences between patterns found for different
crypto-exchanges.

Figure 2a Continuous Wavelet Transform of Bitcoin at Selected Exchanges
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Notes: Colour scales represent wavelet power using Morlet wavelet, the areas surrounded by black lines
denote the results of Monte Carlo significance test, and light shading shows region influenced by
edge effects.

Source: Own Estimations.
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Figure 2b Continuous Wavelet Transform of Ehtereum at Selected Exchanges
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Source: Own Estimations.

Figure 2c Continuous Wavelet Transform of Litecoin at Selected Exchanges
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Notes: Colour scales represent wavelet power using Morlet wavelet, the areas surrounded by black lines
denote the results of Monte Carlo significance test, and light shading shows region influenced by
edge effects.

Source: Own Estimations.

4.2 Coherence and Market Arbitrage

The previous analysis showed that the wavelet test has largely failed to reject
the efficient market hypothesis with the exception of Bitcoin since 2017. However,
the investors are likely to interact between different markets. Usually, this is done
through arbitrage trading as investors buy assets at underpriced and/or sell them at
over-priced markets. In the case of cryptocurrencies, low market liquidity, high fees
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and long transaction times limit the possibilities of the direct arbitrage. Nevertheless,
investors may use information revealed on alternative markets and leave the markets
if they see downward developments, or vice versa.® This channel could be as
efficient as direct arbitrage in achieving highly similar developments across different
crypto-exchanges.

From this perspective, it is interesting to analyze co-movements between the
crypto-exchanges as the arbitrage hypothesis implies a high degree of
synchronization of these markets. In particular, we analyze the movements of
individual cryptocurrencies in the time-frequency domain using wavelet coherence.
Figure 3 illustrate the co-movements of cryptocurrencies at kraken and the other
selected markets.®> As before, we conduct a significance test, which is displayed by
the black lines in the plot with five percent significance interval. Moreover, the
figures show the phase shifts between different crypto-exchanges: The black arrow
pointing to the right indicates that the first named market generates buying and
selling signals for the second market, while an arrow pointing to the left is an
indication for negative correlation. If an arrow is pointing downwards, it indicates
that the second named market in the plot is leading the first one. These references
must be treated carefully, as a lead of 90 degrees can also represent a lag of 270
degrees in relation to the anti-phase.

Similarly, to the previous results, we can see that the movements of the
Bitcoin exchange rates were largely similar between the markets, however, there
have been several exceptions especially for short cycles (up to about 30 days) before
2017, specifically for the pairs including Bitrex and Bitfinex. This pattern is even
stronger for the Ethereum and Litecoin (see blocs B and C of Figure 3).

* For simplicity, we will use the term “arbitrage’ also for using information from other markets.
® Results comparing all markets each to other are available in the Appendix, see Figure Al.
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5. Conclusion

Cryptocurrencies are still novel in the financial world, but they have attracted
already strong research interest. We use a longer period of daily data than earlier
studies, including a highly dynamic period between October 2013 and September 2019.

Our research makes two main contributions to the existing discussion on
cryptocurrencies. First, we employ wavelet analysis, which identifies time-frequency
varying persistency of cycles related to specific investment horizons. We use a broad
range of wavelet indicators, starting from CWT analysis, to coherence analysis and
phase shift, and interpret them from the perspective of the market efficiency.

Second, despite significant low frequency cycles of Bitcoin, Ethereum and
Litecoin returns at different exchanges, the markets do not show significantly
persistent cycles over sufficiently long periods of time. The importance of these cycles
increased during the crash of the cryptocurrencies at the end of 2017, but they
disappeared again more recently. Thus, this implies that short investment horizons
dominated because the long-term investors were selling during the price fall.

Contrary to recent studies (e.g. Bariviera et al., 2017 or Kristoufek and Vosvrda,
2019), we show that cryptocurrencies tend to be most inefficient during turbulent
periods (both in Winter 2017/2018 and in Fall 2019). A possible explanation is that the
beginning of 2017 was determined mainly by demand factors, while excess supply was
more important in 2018. This resulted in more significant cycles during this period.

Moreover, we identified market arbitrage opportunities between the different
exchanges in Summer 2018. However, we show signs of higher interdependence
between different market places during the period of increased volatility. Our results
also pose important implications for portfolio management. The identified phase shift
between the selected cryptocurrency exchanges could serve as the leading indicator at
different investment horizons. Moreover, the identification and subsequent realization
of price arbitrage eliminates market efficiency violation in the long run.
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APPENDIX

Figure A1 Wavelet Coherence of the All Selected Crypto-exchanges
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