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Abstract 

The aim of this paper is to propose and test a novel Particle Filter  method called Sequential 
Gibbs Particle Filter allowing to estimate complex latent state variable models with 
unknown parameters. The framework is applied to a stochastic volatility model with 
independent jumps in returns and volatility. The implementation is based on a new design 
of adapted proposal densities making convergence of the model relatively efficient as 
verified on a testing dataset. The empirical study applies the algorithm to estimate 
stochastic volatility with jumps in returns and volatility model based on the Prague stock 
exchange returns. The results indicate surprisingly weak jump in returns components and 
a relatively strong jump in volatility components with jumps in volatility appearing at the 
beginning of crisis periods. 

1. Introduction 
Bayesian Markov Chain Monte Carlo (MCMC) and Particle Filter (PF) 

algorithms have become standard tools of financial econometrics specifically in 
connection with asset return stochastic volatility and jumps’ modeling. The algorithms 
generalize the popular Kalman filter applicable to linear Gaussian state space models 
involving a latent state variable and possibly a vector of unknown parameters that need 
to be estimated based on a sequence of observed variables linked to the latent ones. 
The Kalman filter allows recursive filtering of the state space variables’ (Gaussian) 
distributions given on-going observations. The state variables distributions can be also 
estimated (smoothed-out) based on the full set of observed variables. In addition, since 
the marginal likelihood of the parameters can be solved analytically, the vector of 
unknown parameters can be estimated by the likelihood maximization.  

The Bayesian MCMC and PF algorithms can be applied to estimate latent 
variables and parameters of non-linear and non-Gaussian state space models. The idea 
of MCMC algorithms is to iteratively and consistently sample individual parameters 
and state variables (or their blocks) conditional on the rest of the parameters and the 
state variables. Under certain mild conditions the chain converges to the target 
distributions of the latent variables and the parameters conditional on the observed 
variables and the model specification (see e.g. Johannes M., Polson N., 2009 for an 
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overview). The PF algorithms introduced first in Gordon et al. (1993) aim to represent 
the latent state variables distributions empirically by sets of weighted values (particles) 
that are recursively updated based on new observations. The main advantage of the 
method is that it does not rely on any local linearization or other functional 
approximation. The price paid for this flexibility is computational cost, but with an 
increase of computational power and parallelization the method has become more-and-
more popular (see e.g. Doucet, Johansen, 2009 or Speekenbrink, 2016 for an 
overview).  

The aim of the paper is twofold. Firstly, we propose and test a novel PF method 
that we call Sequential Gibbs Particle Filter. We will demonstrate that the method 
outperforms in terms of efficiency a state-of-the-art recently published PF method 
(Fulop and Li, 2013). Secondly, in our empirical study we apply the algorithm to 
estimate a stochastic volatility model with jumps in returns and volatility based on the 
Prague stock exchange returns. The results will allow us to asses persistence of the 
stochastic volatility and the degree of presence of jumps in returns and volatility. We 
will be able to answer the question whether in the price process jumps in volatility play 
a more important than jumps in returns. The possible applications of the estimated 
model include dynamical Value at Risk estimation, volatility forecasting, or 
derivatives valuation. 

The PF algorithms are relatively simple to implement if the model parameters 
are known but becomes challenging if the parameters are unknown. One possibility 
how to approach the problem of unknown model parameters is to treat them in the PF 
algorithm as latent variables and thus implicitly introduce to them certain stochastic 
dynamics (Gilks, Berzuini, 2001, Chopin, 2002, Andrieu et al., 2004, Carvahlo et al., 
2010, or Speekenbrink, 2016). The problem of this approach is that the stochastic 
dynamics is not consistent with the original assumption of constant (yet unknown) 
model parameters and so the resulting estimates do not have to be consistent. Liu and 
West (2001) use a kernel density estimate of the parameter distribution, together with 
a shrinkage, in order to alleviate the problem. Alternatively, MCMC step can be used 
to re-sample the parameters (Gilks and Berzuini, 2001, Storvik, 2010, Fearnhead, 
2002, Lopes et al., 2011). Nevertheless, as shown in Chopin et al. (2010), the parameter 
distribution will still suffer from degeneration, unless the past evolutions of the latent 
states are re-sampled as well, together with the parameters. Chopin et al. (2013) and 
Fulop et al. (2013) propose to approximate the Bayesian parameter distributions by 
particles and at the same time for each parameter vector to estimate the conditional 
latent state variable particles. The sequentially updated weights of the state variable 
values can be used to obtain marginal weights of the parameters’ values. In this way, 
the two-dimensional particle filter structure can be propagated dynamically based on 
new observations. While the latent variable particles can be rejuvenated relatively 
frequently (or at each step) using the standard resample-move method, this is not 
possible for the parameter particles since there is no stochastic dynamics given by the 
model. In addition, sampling of new parameter values means recalculation of the 
conditional latent variable particle filter from the very beginning if we want to stay 
consistent with the model assumption. In order to limit the significant computational 
cost of the latent particles recalculation Fulop and Li (2013) propose to control for 
degeneracy of the particle filter, i.e. rejuvenate and recalculate the latent variable 
particle filter only if the degeneracy falls under certain threshold. The new parameters 
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are sampled in a Metropolis-Hasting accept-reject approach based on a proposal 
distribution, e.g. multivariate normal, fitted to the estimated posterior distribution. This 
means that the costly latent state variable particle recalculation step might have to be 
repeated several times before the parameter value is accepted. In addition, depending 
on the proposal distribution, the algorithm may easily get stuck in local maxima 
regions of the parameter space. The marginalized resample move Fulop, Li (2013) 
algorithm is then illustrated on real data for a Lévy jump stochastic volatility model 
and a structural credit risk model. In Fulop et al. (2014) the algorithm is applied to 
estimate a self-exciting asset pricing model that also takes into account co-jumps 
between prices and volatility. 

Our proposed Sequential Gibbs Particle Filter (SGPF) algorithm follows the 
same two-dimensional parameter-latent variable particle filter structure as in Fulop, Li 
(2013) but rejuvenates the parameter particle by a Gibbs sampler conditional on 
sampled instances of the latent state variables. I.e., the algorithm samples a parameter 
given the marginalized posterior probabilities and a full history of the latent variable 
from the respective latent state particle. The Gibbs sampling conditional on the history 
of latent states is usually possible, in particular for stochastic volatility and jump 
models. In this way we save the costly accept-reject recalculations and at the same 
search the parameter space in a more consistent and efficient way. Our approach should 
not be confused with the concept of Particle Markov Chain Monte Carlo (PMCMC) or 
Particle Gibbs (PG) sampler from Andrieu et al. (2010) although the theoretical results 
can be applied also in our case. In Andrieu et al. (2010) the particle filters play the role 
of subcomponents of a full MCMC algorithm. That is, instead of standard resampling 
of the latent variables a PF is employed. It is then used to resample the parameters 
using an accept-reject approach or a Gibbs sampler, and then the PF is run again etc. 
In our case, the perspective is opposite, we run a full marginalized resample-move PF 
and use a Gibbs sampler to rejuvenate the parameter particle conditional on the 
posterior latent variable paths’ distribution. 

Asset return stochastic volatility and jump models are of major interest in 
financial econometrics due to their close relationship to market risk modeling and 
derivatives valuation. Since volatility and jumps themselves are not observable while 
the related asset returns are (and the models are typically non-linear and non-Gaussian) 
the Bayesian MCMC and PF models naturally come into consideration. The first 
break-through application of the Bayesian methods for the analysis of stochastic 
volatility models has been made in Jacquier et al. (1994). The authors applied an 
MCMC algorithm to estimate a stochastic volatility model on the US stock return data. 
The estimation method is shown to outperform classical estimation approaches such 
as the Method of Moments. Since then extensive research has confirmed viability of 
the MCMC and PF methods (see e.g. Pitt, Shephard, N., 1999, Shephard, 2004, 
Chronopoulou, Spiliopoulos, 2018, or Johannes, Polson, 2009 for an overview). A 
number of papers demonstrate importance of jumps in returns and volatility asset 
return dynamics modeling (Eraker et al., 2003, Eraker, 2004, Witzany, 2013) or Fičura, 
Witzany (2016) utilizing high-frequency data and the concept of realized volatility. 
Particle filters with an MCMC move to update the unknown parameters have been 
applied to stochastic volatility models with jumps by Johannes et al. (2002) or Raggi, 
Bordignon (2008). For approaches incorporating realized variance estimators into 
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stochastic volatility models setting see e.g. Takahashi et al. (2009), Fičura, Witzany 
(2017), or Maneesoonthorn et al. (2017). 

The rest of this paper is organized as follows. In Section 2 we introduce the 
general state filtering problem, the basic particle filter method and our novel Sequential 
Gibbs Particle Filter algorithm. Then, after setting the stochastic volatility model with 
jumps in returns and volatility, we provide step-by-step details of the sampling 
algorithm, in particular focusing on adaptation of the proposal densities in order to 
make the filter more efficient. In Section 3 we firstly report results of the tests of the 
algorithm on artificially generated data and then apply it to real data from the Prague 
stock exchange. Finally, in Section 4 we summarize the results and conclude. 

2. Methodology 

State Filtering Problem 
A general state-space model can be written as: 

 
𝑦𝑦𝑡𝑡 = 𝐻𝐻(𝑥𝑥𝑡𝑡 ,𝑤𝑤𝑡𝑡 ,𝜃𝜃) 

𝑥𝑥𝑡𝑡 = 𝐹𝐹(𝑥𝑥𝑡𝑡−1,𝑣𝑣𝑡𝑡 ,𝜃𝜃) 
(1) 

Where the observation 𝑦𝑦𝑡𝑡 is assumed to be conditionally independent on the 
hidden state 𝑥𝑥𝑡𝑡,  𝑤𝑤𝑡𝑡  and 𝑣𝑣𝑡𝑡 are mutually independent noises, and 𝜃𝜃 is a vector of static 
parameters. Density 𝑝𝑝(𝑦𝑦𝑡𝑡|𝑥𝑥𝑡𝑡,𝜃𝜃) is called the observation density, while density 
𝑝𝑝(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1,𝜃𝜃) is called the transition density of the Markov process of the hidden state 
with initial distribution 𝑝𝑝(𝑥𝑥0|𝜃𝜃). 

The task of state filtering and parameter learning is to estimate: 

𝑝𝑝(𝑥𝑥𝑡𝑡 ,𝜃𝜃|𝑦𝑦1:𝑡𝑡) = 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑦𝑦1:𝑡𝑡,𝜃𝜃)𝑝𝑝(𝜃𝜃|𝑦𝑦1:𝑡𝑡). (2) 

Particle Filter Algorithm with Known Parameters 
For now we will focus on the state filtering problem, which is the estimation of 

𝑝𝑝(𝑥𝑥𝑡𝑡|𝑦𝑦1:𝑡𝑡,𝜃𝜃) for all 𝑡𝑡 assuming that 𝜃𝜃 is given. Therefore, we will further omit 𝜃𝜃 in the 
notation. 

Following the notation of Fulop, Li (2013) given 𝑀𝑀 particles �𝑥𝑥𝑡𝑡−1
(𝑖𝑖) ; 𝑖𝑖 =

1,2, … ,𝑀𝑀� with weights 𝑤𝑤�𝑡𝑡−1
(𝑖𝑖)  representing empirically the density 𝑝𝑝(𝑥𝑥𝑡𝑡−1|𝑦𝑦1:𝑡𝑡−1), we 

can approximate the density 𝑝𝑝(𝑥𝑥𝑡𝑡|𝑦𝑦1:𝑡𝑡) by drawing 𝑥𝑥𝑡𝑡𝑖𝑖 from a proposal density 
𝑔𝑔�𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1𝑖𝑖 ,𝑦𝑦𝑡𝑡� and assigning importance weights to the sample: 

 𝑤𝑤𝑡𝑡
(𝑖𝑖) =

𝑝𝑝�𝑦𝑦𝑡𝑡|𝑥𝑥𝑡𝑡𝑖𝑖�𝑝𝑝�𝑥𝑥𝑡𝑡𝑖𝑖|𝑥𝑥𝑡𝑡−1𝑖𝑖  �
𝑔𝑔�𝑥𝑥𝑡𝑡𝑖𝑖|𝑥𝑥𝑡𝑡−1𝑖𝑖 ,𝑦𝑦𝑡𝑡�

𝑤𝑤�𝑡𝑡−1
(𝑖𝑖) , for 𝑖𝑖 = 1, … ,𝑀𝑀, 

 

(3) 

which are then normalized by 𝑤𝑤�𝑡𝑡
(𝑖𝑖) = 𝑤𝑤𝑡𝑡

(𝑖𝑖) ∑ 𝑤𝑤𝑡𝑡
(𝑖𝑖)𝑀𝑀

𝑗𝑗=1� . 
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The particles can be resampled at the end of every step or only time-to-time 
when the particle degenerates too much, i.e. when the effective sample size falls below 
certain threshold,  

𝐸𝐸𝐸𝐸𝐸𝐸 = 1 ∑ �𝑤𝑤�𝑡𝑡
(𝑖𝑖)�

2𝑀𝑀
𝑗𝑗=1⁄ < 𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇ℎ𝑟𝑟. (4) 

For a non-adapted filter not using the information given by the new observation 
𝑦𝑦𝑡𝑡 the proposal density equals to the transition density 𝑔𝑔�𝑥𝑥𝑡𝑡𝑖𝑖|𝑥𝑥𝑡𝑡−1𝑖𝑖 ,𝑦𝑦𝑡𝑡� = 𝑝𝑝�𝑥𝑥𝑡𝑡𝑖𝑖|𝑥𝑥𝑡𝑡−1𝑖𝑖  � 
and the weight update equation is thus simply: 

𝑤𝑤𝑡𝑡
(𝑖𝑖) = 𝑝𝑝�𝑦𝑦𝑡𝑡|𝑥𝑥𝑡𝑡𝑖𝑖�𝑤𝑤�𝑡𝑡−1

(𝑖𝑖) . (5) 

Sequential Parameter Learning 
A possible approach to estimate the unknown parameters 𝜃𝜃 is to run the particle 

filter algorithm for an augmented state space variable 〈𝑥𝑥𝑡𝑡 ,𝜃𝜃𝑡𝑡〉 introducing a stochastic 
dynamics to the parameter vector 𝜃𝜃. A proposal density 𝑔𝑔(𝜃𝜃𝑡𝑡|𝜃𝜃𝑡𝑡−1) combined with the 
marginal likelihood 𝑝𝑝(𝑦𝑦1:𝑡𝑡|𝜃𝜃) estimated by the particle filter can be used to sample a 
new 𝜃𝜃𝑡𝑡 using an accept-reject step. For example, the proposal density can be a simple 
random walk density 𝜃𝜃𝑡𝑡 ∼ 𝑁𝑁(𝜃𝜃𝑡𝑡−1,Σ) allowing the parameters to move to regions with 
higher marginal likelihood. However, as noted in Fulop, Li (2013), this approach does 
not necessarily lead to a successful solution due to the fact that the particle 
�𝑥𝑥1:𝑡𝑡

(𝑖𝑖); 𝑖𝑖 = 1,2, … ,𝑀𝑀� has not been estimated with a static parameter vector 𝜃𝜃 leading 
to a possible inconsistency in the marginal likelihood estimation.  

Further on, we elaborate the two-level particle filter proposed by Fullop, Li 
(2013) where we consider a set of parameter particles �Θ𝑡𝑡

(𝑖𝑖); 𝑖𝑖 = 1,2, … ,𝑀𝑀� with 

normalized weights �W�𝑡𝑡
(𝑖𝑖); 𝑖𝑖 = 1,2, … ,𝑀𝑀� and, in addition, for each Θ𝑡𝑡

(𝑖𝑖) a set of latent 

state particles �𝑥𝑥𝑠𝑠
(𝑖𝑖,𝑗𝑗); 𝑗𝑗 = 1,2, … ,𝑁𝑁� for 𝑠𝑠 = 1, … , 𝑡𝑡 conditional on the same parameter 

vector Θ = Θ𝑡𝑡
(𝑖𝑖). We assume for simplicity that the latent particles are resampled at 

each step and so their weights need not be necessarily stored. However, before 
resampling of the latent states their weights can be used to update the parameter 
weights based on the following: 

𝑝𝑝(Θ|𝑦𝑦1:𝑡𝑡) = �𝑝𝑝(Θ, 𝑥𝑥1:𝑡𝑡|𝑦𝑦1:𝑡𝑡)𝑑𝑑𝑥𝑥1:𝑡𝑡 (6) 

and the recursive decomposition 

𝑝𝑝(Θ,𝑥𝑥1:𝑡𝑡|𝑦𝑦1:𝑡𝑡) = 𝑝𝑝(𝑥𝑥𝑡𝑡|Θ,𝑥𝑥1:𝑡𝑡−1,𝑦𝑦1:𝑡𝑡)𝑝𝑝(Θ,𝑥𝑥1:𝑡𝑡−1|𝑦𝑦1:𝑡𝑡−1) 

∝ 𝑝𝑝(𝑦𝑦𝑡𝑡|𝑥𝑥𝑡𝑡 ,Θ)𝑝𝑝(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1,Θ) 𝑝𝑝(𝑥𝑥1:𝑡𝑡−1|𝑦𝑦1:𝑡𝑡−1,Θ)𝑝𝑝(Θ|𝑦𝑦1:𝑡𝑡−1). 
(7) 

Therefore, 
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𝑝𝑝(Θ|𝑦𝑦1:𝑡𝑡) = 𝑝𝑝(Θ|𝑦𝑦1:𝑡𝑡−1)�𝑝𝑝(𝑦𝑦𝑡𝑡|𝑥𝑥𝑡𝑡,Θ)𝑝𝑝(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1,Θ) 𝑝𝑝(𝑥𝑥1:𝑡𝑡−1|𝑦𝑦1:𝑡𝑡−1,Θ)𝑑𝑑𝑥𝑥1:𝑡𝑡  . (8) 

Note that the set �𝑥𝑥1:𝑡𝑡
(𝑖𝑖,𝑗𝑗); 𝑗𝑗 = 1,2, … ,𝑁𝑁� with the uniform normalized weights 𝑤𝑤𝑡𝑡−1

(𝑖𝑖 ,𝑗𝑗) =
1
𝑁𝑁

 (due to resampling) represents the density proportional to 

𝑝𝑝(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1,Θ)𝑝𝑝(𝑥𝑥1:𝑡𝑡−1|𝑦𝑦1:𝑡𝑡−1,Θ) and the weights before normalization are 𝑤𝑤𝑡𝑡
(𝑖𝑖,𝑗𝑗) =

𝑝𝑝 �𝑦𝑦𝑡𝑡|𝑥𝑥𝑡𝑡
(𝑖𝑖,𝑗𝑗),θ� 1

𝑁𝑁
 . Hence, it follows that the parameter particle weights can be updated 

as follows: 

W𝑡𝑡
(𝑖𝑖) = W�𝑡𝑡−1

(𝑖𝑖) �𝑤𝑤𝑡𝑡
(𝑖𝑖,𝑗𝑗).

𝑗𝑗

 (9) 

As above, if the set of parameter particles degenerates too much, i.e. if 

𝐸𝐸𝐸𝐸𝐸𝐸 = 1 � �𝑊𝑊�𝑡𝑡
(𝑖𝑖)�

2𝑀𝑀

𝑗𝑗=1
� < 𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇ℎ𝑟𝑟  (10) 

where 𝑊𝑊�𝑡𝑡
(𝑖𝑖) are the parameter particle weights after normalization and 𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇ℎ𝑟𝑟  is a 

threshold, the parameter particles need to be resampled. In this case we want to sample 
consistently a new set particles �Θ�𝑡𝑡

(𝑖𝑖); 𝑖𝑖 = 1,2, … ,𝑀𝑀� with initial equal weights W�𝑡𝑡
(𝑖𝑖) =

1/𝑀𝑀. Unfortunately, in order to be consistent for each Θ = Θ�𝑡𝑡
(𝑖𝑖) the latent state particles 

�𝑥𝑥𝑠𝑠
(𝑖𝑖,𝑗𝑗); 𝑗𝑗 = 1,2, … ,𝑁𝑁� must be sampled again from the very beginning conditional on 

the new parameter vector Θ making the algorithm much more computationally 
demanding.  

Resampling of Θ is based on the result of Del Moral (2004) according to which 
the likelihood 𝑝𝑝(Θ|𝑦𝑦1:𝑡𝑡) approximated by the particle filters is unbiased. Fullop, Li 
(2013) fit a multivariate normal distribution to the empirical distribution �Θ𝑡𝑡

(𝑖𝑖); 𝑖𝑖 =

1,2, … ,𝑀𝑀� with normalized weights �W�𝑡𝑡
(𝑖𝑖); 𝑖𝑖 = 1,2, … ,𝑀𝑀� (or to resampled equally 

weighted parameter particles) and sample from it proposals Θ𝑡𝑡
∗(𝑖𝑖).  

The proposals are accepted based on the likelihood ratio 𝑊𝑊�𝑡𝑡
(𝑖𝑖)/𝑊𝑊�𝑡𝑡

∗(𝑖𝑖) multiplied 
by the multivariate normal distribution likelihood ratio where 𝑊𝑊�𝑡𝑡

∗(𝑖𝑖) is the proposed 
parameter vector normalized probability weight based on resampling of the latent state 
particles. The accept-reject algorithm (for 𝑖𝑖 = 1,2, … ,𝑀𝑀) might be necessary to repeat 
more times if the acceptance ratio is too low making the algorithm even more 
computationally demanding. 

Sequential MCMC Particle Filter Algorithm 
Our algorithm is based on the fact that (under certain mild conditions) the 

particle filters with fixed parameters deliver unbiased estimates of the true density  
𝑝𝑝�𝑥𝑥1:𝑡𝑡|𝑦𝑦1:𝑡𝑡,Θ𝑡𝑡

(𝑖𝑖)� and, according to Del Moral (2004), the likelihood 𝑝𝑝(Θ|𝑦𝑦1:𝑡𝑡) 
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approximated by the particle filters is also unbiased. It follows that the empirical 
distribution obtained as a mix of the particle filters �𝑥𝑥1:𝑡𝑡

(𝑖𝑖 ,𝑗𝑗); 𝑗𝑗 = 1,2, … ,𝑁𝑁� with weights 

𝑊𝑊�𝑡𝑡
(𝑖𝑖) is an unbiased approximation of the density 𝑝𝑝(𝑥𝑥1:𝑡𝑡|𝑦𝑦1:𝑡𝑡) unconditional on the 

parameters. Therefore, for 𝑘𝑘 = 1, … ,𝑀𝑀 we can sample paths  𝑥𝑥1:𝑡𝑡
∗(𝑘𝑘) from the mixed 

distribution and a new parameter value Θ𝑡𝑡
∗(𝑘𝑘) from 𝑝𝑝�Θ|𝑥𝑥1:𝑡𝑡

∗(𝑘𝑘),𝑦𝑦1:𝑡𝑡�. Practically, we 
firstly sample a parameter block 𝑖𝑖 from the discrete probability distribution �𝑖𝑖,𝑊𝑊�𝑡𝑡

(𝑖𝑖)� 

and then a path from the equally weighted set of particles  �𝑥𝑥1:𝑡𝑡
(𝑖𝑖,𝑗𝑗); 𝑗𝑗 = 1,2, … ,𝑁𝑁�. It 

should be noted that the sequence �𝑥𝑥𝑠𝑠
(𝑖𝑖,𝑗𝑗); 𝑠𝑠 = 1,2, … , 𝑡𝑡� is not a path in the sense of the 

transition relationship 𝑥𝑥𝑡𝑡 = 𝐹𝐹(𝑥𝑥𝑡𝑡−1,𝑣𝑣𝑡𝑡 ,𝜃𝜃)  due to the effect of resampling. Following 
the notation of Andrieu et al. (2010) we need to store the indices 𝑗𝑗0 = 𝐴𝐴(𝑖𝑖, 𝑗𝑗1, 𝑠𝑠) 
representing the parent 𝑥𝑥𝑠𝑠−1

(𝑖𝑖,𝑗𝑗0) of 𝑥𝑥𝑠𝑠
(𝑖𝑖,𝑗𝑗1) where the index  𝑗𝑗0 changed due to resampling. 

These variables allow us to keep track of the genealogy of the particle and reconstruct 
the ancestral lineage {𝐵𝐵(𝑖𝑖, 𝑗𝑗, 𝑠𝑠); 𝑠𝑠 = 1,2, … , 𝑡𝑡}  given 𝐵𝐵(𝑖𝑖, 𝑗𝑗, 𝑡𝑡) = 𝑗𝑗 and going backward 
by  

𝐵𝐵(𝑖𝑖, 𝑗𝑗, 𝑠𝑠 − 1) = 𝐴𝐴(𝑖𝑖,𝐵𝐵(𝑖𝑖, 𝑗𝑗, 𝑠𝑠), 𝑠𝑠) for 𝑠𝑠 = 𝑡𝑡, … ,2. (11) 

Thus, given 𝑖𝑖 we sample 𝑗𝑗 ∈ {1, … ,𝑁𝑁} and the path 

𝑥𝑥1:𝑡𝑡
(𝑖𝑖,𝑗𝑗) = �𝑥𝑥𝑠𝑠

(𝑖𝑖,𝐵𝐵(𝑖𝑖,𝑗𝑗,𝑠𝑠)); 𝑠𝑠 = 1,2, … , 𝑡𝑡�. (12) 

The point is that the move can be usually, e.g. in case of stochastic volatility or 
stochastic volatility with jumps model, done using a Gibbs sampler. However, the 
MCMC step can be used even if a Gibbs sampler is not known for example using an 
accept-reject approach where we accept a newly proposed parameter or keep the old 
one. In any case, after sampling (and accepting) a new parameter Θ = Θ�𝑡𝑡

(𝑖𝑖) we still have 
to resample the latent state particles �𝑥𝑥𝑠𝑠

(𝑖𝑖 ,𝑗𝑗); 𝑗𝑗 = 1,2, … ,𝑁𝑁, 𝑠𝑠 = 1, . . 𝑡𝑡�. The advantage 
of this parameter sampling approach is that it does not rely on an ad hoc parameter 
proposal distribution as in Fulop, Li (2013) and prevents repeating of computationally 
costly accept-reject rounds. 

Stochastic Volatility Model with Jumps in Returns and Volatility 
We are going to consider the stochastic volatility model with independent 

jumps in returns and volatility   

 
𝑦𝑦𝑡𝑡 = 𝜎𝜎𝑡𝑡𝜀𝜀𝑡𝑡 + 𝑍𝑍𝑡𝑡𝐽𝐽𝑡𝑡 

ℎ𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽ℎ𝑡𝑡−1 + 𝛾𝛾𝜀𝜀𝑉𝑉,𝑡𝑡 + 𝑍𝑍𝑉𝑉𝑡𝑡𝐽𝐽𝑉𝑉𝑡𝑡  
 

(13) 

Where 𝜀𝜀𝑡𝑡~𝑁𝑁(0,1); 𝜀𝜀𝑉𝑉,𝑡𝑡~𝑁𝑁(0,1);  ℎ𝑡𝑡 = log(𝑉𝑉𝑡𝑡); 𝑉𝑉𝑡𝑡 = 𝜎𝜎𝑡𝑡2, 𝐽𝐽𝑡𝑡~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜆𝜆), 𝑍𝑍𝑡𝑡~𝑁𝑁(𝜇𝜇𝐽𝐽 ,𝜎𝜎𝐽𝐽), 
and in addition 𝐽𝐽𝑉𝑉𝑡𝑡~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵�𝜆𝜆𝐽𝐽𝑉𝑉�, 𝑍𝑍𝑉𝑉𝑡𝑡~𝑁𝑁(𝜇𝜇𝐽𝐽𝑉𝑉 ,𝜎𝜎𝐽𝐽𝑉𝑉). 
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Here, the observed values 𝑦𝑦𝑡𝑡 represent a time series of log-returns of an asset 
with zero mean, i.e. net of a long-term mean return if needed. In order to implement 
the sequential Gibbs generally described above PF we need to specify sequential 
resampling of the state space variables 𝒙𝒙𝑡𝑡 = (ℎ𝑡𝑡 , 𝐽𝐽𝑡𝑡 ,𝑍𝑍𝑡𝑡 , 𝐽𝐽𝑉𝑉𝑡𝑡 ,𝑍𝑍𝑉𝑉𝑡𝑡) and Gibbs resampling 
of the parameters Θ = �𝛼𝛼,𝛽𝛽, 𝛾𝛾,𝜆𝜆, 𝜇𝜇𝐽𝐽 ,𝜎𝜎𝐽𝐽 ,𝜆𝜆𝐽𝐽𝑉𝑉 ,𝜇𝜇𝐽𝐽𝑉𝑉 ,𝜎𝜎𝐽𝐽𝑉𝑉�.  

Given a path 𝒙𝒙1:𝑡𝑡 based on an ancestral lineage defined above the Gibbs 
sampling is relatively standard, for details see e.g. Witzany (2013): 

Sample 𝜆𝜆 and 𝜆𝜆𝐽𝐽𝑉𝑉 from the posterior beta distribution given by 𝐽𝐽1:𝑡𝑡 and 𝐽𝐽𝑉𝑉1:𝑡𝑡 and 
appropriate prior distributions. 

Sample 𝜇𝜇𝐽𝐽 ,𝜎𝜎𝐽𝐽 from the posterior normal and inverse gamma distributions given 
𝑍𝑍1:𝑡𝑡 with wide suitable prior distributions. Note that here we use only those 𝑍𝑍𝑠𝑠 for 
which the corresponding jump indicator 𝐽𝐽𝑠𝑠 = 1. 

Similarly, sample 𝜇𝜇𝐽𝐽𝑉𝑉 , 𝜎𝜎𝐽𝐽𝑉𝑉 from the posterior normal and inverse gamma 
distributions given 𝑍𝑍𝑉𝑉1:𝑡𝑡. 

In order to resample the stochastic volatility process parameters 𝛼𝛼,𝛽𝛽,𝛾𝛾 we use 
the Bayesian linear regression model: 

𝜷𝜷� = (𝑿𝑿′𝑿𝑿)−1𝑿𝑿𝑿𝑿,𝒆𝒆� = 𝑿𝑿 − 𝑿𝑿𝜷𝜷� (14) 

where 𝑿𝑿 is the column vector {ℎ𝑠𝑠 − 𝑍𝑍𝑉𝑉𝑠𝑠𝐽𝐽𝑉𝑉𝑠𝑠; 𝑠𝑠 = 2, … , 𝑡𝑡}  and 𝑿𝑿 has two columns, first 
with ones and the second with the corresponding “explanatory” factors {ℎ𝑠𝑠−1; 𝑠𝑠 =
2, … , 𝑡𝑡}.  Then  

(𝛾𝛾∗)2 ∝ 𝐼𝐼𝐼𝐼 �
𝐵𝐵 − 2

2 ,
𝒆𝒆�′𝒆𝒆�
2 �, 

(𝛼𝛼∗ ,𝛽𝛽∗)′ ∝ 𝑁𝑁�𝜷𝜷�, (𝛾𝛾∗)2(𝑿𝑿′𝑿𝑿)−1�. 
(15) 

As usual, the distributions can be multiplied with suitable conjugate prior 
distributions. 

Regarding the latent state variables 𝒙𝒙𝑡𝑡 sampled based on the particles 𝒙𝒙1:𝑡𝑡−1 
and a new observation 𝑦𝑦𝑡𝑡, in order to build an efficient PF algorithm, it is important to 
design proposal densities adapted to the information whenever possible. Given the 
jump in volatility indicator 𝐽𝐽𝑉𝑉𝑡𝑡  and its size 𝑍𝑍𝑉𝑉𝑡𝑡 , it is straightforward to resample the 
latent volatility from the normal distribution 𝑝𝑝(ℎ𝑡𝑡|ℎ𝑡𝑡−1, 𝐽𝐽𝑉𝑉𝑡𝑡 ,𝑍𝑍𝑉𝑉𝑡𝑡) given by (13). Next, 
given ℎ𝑡𝑡 it is relatively simple to adapt the jump in return occurrence 𝐽𝐽𝑡𝑡 proposal 
probability since the likelihood density of 𝑦𝑦𝑡𝑡 is normal conditional on 𝐽𝐽𝑡𝑡. Similarly, if 
𝐽𝐽𝑡𝑡=1 the jump in return size can be Gibbs sampled from a normal distribution given by 
the first equation in (13). Unfortunately, we cannot use the same approach to adapt  
𝐽𝐽𝑉𝑉𝑡𝑡 ,𝑍𝑍𝑉𝑉𝑡𝑡  since ℎ𝑡𝑡 on the left hand side of the equation is itself latent and not observed.  

Adapted Jumps in Volatility 
The key idea of our novel approach is to adapt 𝑍𝑍𝑉𝑉𝑡𝑡  taking into account the 

observed realized log-variance log (𝑦𝑦𝑡𝑡2) . Let us firstly assume there is no jump in 
return,  𝐽𝐽𝑡𝑡 = 0. To obtain a consistent normal proposal 𝑍𝑍𝑉𝑉𝑡𝑡~𝑁𝑁(𝜇𝜇𝑍𝑍,𝑝𝑝𝑟𝑟 , 𝜎𝜎𝑍𝑍,𝑝𝑝𝑟𝑟) conditional 
on  𝐽𝐽𝑉𝑉𝑡𝑡 = 1 we can use the equation 
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log(𝑦𝑦𝑡𝑡2) = ℎ𝑁𝑁𝐽𝐽𝑡𝑡 + 𝑍𝑍𝑉𝑉𝑡𝑡 + 𝛾𝛾𝜀𝜀𝑉𝑉 ,𝑡𝑡 + log(𝜀𝜀𝑡𝑡2) , (16) 

where ℎ𝑁𝑁𝐽𝐽𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽ℎ𝑡𝑡−1 and approximate log(𝜀𝜀𝑡𝑡2) by 𝑁𝑁(𝑐𝑐1, 𝑐𝑐22) where 𝑐𝑐1 =
−1.27, 𝑐𝑐2 = 2.22  (as 𝜀𝜀𝑡𝑡 ∼ 𝑁𝑁(0,1) ). Therefore 𝑍𝑍𝑉𝑉𝑡𝑡  can be proposed from the normal 
distribution 

𝜑𝜑�𝑍𝑍𝑉𝑉𝑡𝑡;𝜇𝜇𝑍𝑍,𝑝𝑝𝑟𝑟 , 𝜎𝜎𝑍𝑍,𝑝𝑝𝑟𝑟�

∝ 𝜑𝜑 �𝑍𝑍𝑉𝑉𝑡𝑡; log(𝑦𝑦𝑡𝑡2)− ℎ𝑁𝑁𝐽𝐽𝑡𝑡

− 𝑐𝑐1,�𝛾𝛾𝑡𝑡2 + 𝑐𝑐22�𝜑𝜑(𝑍𝑍𝑉𝑉𝑡𝑡; 𝜇𝜇𝐽𝐽𝑉𝑉,𝑡𝑡 ,𝜎𝜎𝐽𝐽𝑉𝑉,𝑡𝑡) 

(17) 

Where 

 

𝜇𝜇𝑍𝑍,𝑝𝑝𝑟𝑟 =
(log(𝑦𝑦𝑡𝑡2)− ℎ𝑁𝑁𝐽𝐽𝑡𝑡 − 𝑐𝑐1)𝜎𝜎𝐽𝐽𝑉𝑉,𝑡𝑡

2 + 𝜇𝜇𝐽𝐽𝑉𝑉,𝑡𝑡(𝛾𝛾𝑡𝑡2 + 𝑐𝑐22)
𝜎𝜎𝐽𝐽𝑉𝑉,𝑡𝑡
2 + 𝛾𝛾𝑡𝑡2 + 𝑐𝑐22

, 

𝜎𝜎𝑍𝑍,𝑝𝑝𝑟𝑟 =
𝜎𝜎𝐽𝐽𝑉𝑉,𝑡𝑡�𝛾𝛾𝑡𝑡2 + 𝑐𝑐22

�𝜎𝜎𝐽𝐽𝑉𝑉,𝑡𝑡
2 + 𝛾𝛾𝑡𝑡2 + 𝑐𝑐22

 . 
(18) 

Now, we can adapt 𝐽𝐽𝑉𝑉𝑡𝑡  by estimating the two probabilities 

𝑝𝑝(𝐽𝐽𝑉𝑉𝑡𝑡|𝑦𝑦𝑡𝑡 ,ℎ𝑡𝑡−1) ∝ �𝑝𝑝(𝑦𝑦𝑡𝑡 |ℎ𝑡𝑡)𝑝𝑝(ℎ𝑡𝑡|ℎ𝑡𝑡−1, 𝐽𝐽𝑉𝑉𝑡𝑡)𝑑𝑑ℎ𝑡𝑡 × 𝑝𝑝(𝐽𝐽𝑉𝑉𝑡𝑡) (19) 

for 𝐽𝐽𝑉𝑉𝑡𝑡 = 0,1. In fact, we can evaluate analytically the integral 

𝑝𝑝(𝐽𝐽𝑉𝑉𝑡𝑡| log(𝑦𝑦𝑡𝑡2) ,ℎ𝑡𝑡−1) ∝ �𝑝𝑝(log(𝑦𝑦𝑡𝑡2) |ℎ𝑡𝑡)𝑝𝑝(ℎ𝑡𝑡|ℎ𝑡𝑡−1, 𝐽𝐽𝑉𝑉𝑡𝑡)𝑑𝑑ℎ𝑡𝑡 × 𝑝𝑝(𝐽𝐽𝑉𝑉𝑡𝑡) (20) 

using the approximation of 𝑝𝑝(log(𝑦𝑦𝑡𝑡2) |ℎ𝑡𝑡) by a normal density with known 
parameters based on the log(𝑦𝑦𝑡𝑡2) = ℎ𝑡𝑡 + log(𝜀𝜀𝑡𝑡2). Since 𝑝𝑝(ℎ𝑡𝑡|ℎ𝑡𝑡−1, 𝐽𝐽𝑉𝑉𝑡𝑡) is also 
normal given 𝐽𝐽𝑉𝑉𝑡𝑡 , we can apply the following general identity: 

Lemma1: ∫ 𝜑𝜑(𝑥𝑥; 𝜇𝜇1,𝜎𝜎1)+∞
−∞ 𝜑𝜑(𝑥𝑥; 𝜇𝜇2,𝜎𝜎2)𝑑𝑑𝑥𝑥 = 1

�2𝜋𝜋(𝜎𝜎12+𝜎𝜎22)
exp �(𝜇𝜇1−𝜇𝜇2)2

2�𝜎𝜎12+𝜎𝜎22�
�. 

 
1 Proof: The product of two normal densities is proportional to a normal density: 
𝜑𝜑(𝑥𝑥;𝜇𝜇1, 𝜎𝜎1)𝜑𝜑(𝑥𝑥;𝜇𝜇2,𝜎𝜎2) = 1

2𝜋𝜋𝜎𝜎1𝜎𝜎2 
𝜑𝜑(𝑥𝑥;𝜇𝜇�, 𝜎𝜎�) exp �(𝜇𝜇1−𝜇𝜇2)2

2�𝜎𝜎12+𝜎𝜎22�
� 𝜎𝜎�√2𝜋𝜋, where 𝜇𝜇� = 𝜇𝜇1𝜎𝜎22+𝜇𝜇2𝜎𝜎12

𝜎𝜎12+𝜎𝜎22
 and 𝜎𝜎� = 𝜎𝜎1𝜎𝜎2

�𝜎𝜎12+𝜎𝜎22
 . 

The lemma then follows from ∫ 𝜑𝜑(𝑥𝑥; 𝜇𝜇�,𝜎𝜎�)+∞
−∞ 𝑑𝑑𝑥𝑥 = 1 . 



472                                                Finance a úvěr-Czech Journal of Economics and Finance, 69, 2019 no. 5 

Therefore, using the notation of the lemma, we can set 𝜇𝜇1 = log(𝑦𝑦𝑡𝑡2)− 𝑐𝑐1, 𝜎𝜎1 =
𝑐𝑐2, and 𝜇𝜇2 = 𝛼𝛼 + 𝛽𝛽ℎ𝑡𝑡−1, 𝜎𝜎2 = 𝛾𝛾 if 𝐽𝐽𝑉𝑉𝑡𝑡 = 0, and 𝜇𝜇2 = 𝛼𝛼 + 𝛽𝛽ℎ𝑡𝑡−1 + 𝜇𝜇𝐽𝐽𝑉𝑉, 𝜎𝜎2 =

�𝛾𝛾2 + 𝜎𝜎𝐽𝐽𝑉𝑉2  if , 𝐽𝐽𝑉𝑉𝑡𝑡 = 1. 

So far, we have assumed 𝐽𝐽𝑡𝑡 = 0. Provided that 𝐽𝐽𝑡𝑡 = 1 we base our proposal the 
equation 

log�𝑦𝑦𝑡𝑡 − 𝜇𝜇𝐽𝐽�
2

= ℎ𝑡𝑡 + log(𝜀𝜀𝑡𝑡2), (21) 

where the jump in returns is estimated by its mean. Thus we again apply the lemma 
setting 𝜇𝜇1 = log�𝑦𝑦𝑡𝑡 − 𝜇𝜇𝐽𝐽�

2
− 𝑐𝑐1 , 𝜎𝜎1 = 𝑐𝑐2, and 𝜇𝜇2 = 𝛼𝛼 + 𝛽𝛽ℎ𝑡𝑡−1, 𝜎𝜎2 = 𝛾𝛾 if 𝐽𝐽𝑉𝑉𝑡𝑡 = 0, 

and 𝜇𝜇2 = 𝛼𝛼 + 𝛽𝛽ℎ𝑡𝑡−1 + 𝜇𝜇𝐽𝐽𝑉𝑉, 𝜎𝜎2 = �𝛾𝛾2 + 𝜎𝜎𝐽𝐽𝑉𝑉2  if , 𝐽𝐽𝑉𝑉𝑡𝑡 = 1. 

To evaluate consistently the four proposal probabilities 𝑞𝑞(𝐽𝐽𝑉𝑉𝑡𝑡 , 𝐽𝐽𝑡𝑡)  we have to 
take into account that we have been in fact replacing 𝑝𝑝(𝑦𝑦𝑡𝑡|ℎ𝑡𝑡) by  𝑝𝑝(log(𝑦𝑦𝑡𝑡2) |ℎ𝑡𝑡) or 
𝑝𝑝 �log�𝑦𝑦𝑡𝑡 − 𝜇𝜇𝐽𝐽�

2
|ℎ𝑡𝑡�. Generally, if 𝑦𝑦 = 𝑦𝑦(𝑥𝑥) the transformed density satisfies 

𝑝𝑝(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑝𝑝(𝑦𝑦)|𝑑𝑑𝑦𝑦| and so 𝑝𝑝(𝑥𝑥) = 𝑝𝑝(𝑦𝑦)| 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

|. In this case: 

𝑝𝑝(𝑦𝑦𝑡𝑡|ℎ𝑡𝑡) = 𝑝𝑝(log(𝑦𝑦𝑡𝑡2) |ℎ𝑡𝑡) × 2/|𝑦𝑦𝑡𝑡|, 𝑝𝑝(𝑦𝑦𝑡𝑡|ℎ𝑡𝑡) = 𝑝𝑝 �log�𝑦𝑦𝑡𝑡 − 𝜇𝜇𝐽𝐽�
2

|ℎ𝑡𝑡�× 2
�𝑑𝑑𝑡𝑡−𝜇𝜇𝐽𝐽�

. 

It means that we have to adjust the proposal adapted probabilities as follows: 

𝑞𝑞(𝐽𝐽𝑉𝑉𝑡𝑡 , 𝐽𝐽𝑡𝑡 = 0) = 𝑝𝑝(𝐽𝐽𝑉𝑉𝑡𝑡| log(𝑦𝑦𝑡𝑡2) ,ℎ𝑡𝑡−1, 𝐽𝐽𝑡𝑡 = 0) ×
1− 𝜆𝜆
|𝑦𝑦𝑡𝑡|

× 𝑝𝑝(𝐽𝐽𝑉𝑉𝑡𝑡), 

𝑞𝑞(𝐽𝐽𝑉𝑉𝑡𝑡 , 𝐽𝐽𝑡𝑡 = 1) = 𝑝𝑝 �𝐽𝐽𝑉𝑉𝑡𝑡� log�𝑦𝑦𝑡𝑡 − 𝜇𝜇𝐽𝐽�
2

, ℎ𝑡𝑡−1, 𝐽𝐽𝑡𝑡 = 1� ×
𝜆𝜆

�𝑦𝑦𝑡𝑡 − 𝜇𝜇𝐽𝐽�
× 𝑝𝑝(𝐽𝐽𝑉𝑉𝑡𝑡). 

Finally, the proposal jump in volatility probability is 

𝜆𝜆𝐽𝐽𝑉𝑉∗ =
𝑞𝑞(1,0) + 𝑞𝑞(1,1)

𝑞𝑞(1,0) + 𝑞𝑞(1,1) + 𝑞𝑞(0,0) + 𝑞𝑞(0,1) (22) 

and 𝐽𝐽𝑉𝑉𝑡𝑡  is sampled from 𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜆𝜆𝐽𝐽𝑉𝑉∗ ). 
The jump in volatility size 𝑍𝑍𝑉𝑉𝑡𝑡  is sampled from the mixed normal density 

𝑔𝑔(𝑍𝑍𝑉𝑉𝑡𝑡|ℎ𝑡𝑡−1, 𝑦𝑦𝑡𝑡) = (1− 𝜆𝜆)𝜑𝜑�𝑍𝑍𝑉𝑉𝑡𝑡;𝜇𝜇𝑍𝑍,𝑝𝑝𝑟𝑟
0 , 𝜎𝜎𝑍𝑍,𝑝𝑝𝑟𝑟

0 � + 𝜆𝜆𝜑𝜑�𝑍𝑍𝑉𝑉𝑡𝑡; 𝜇𝜇𝑍𝑍,𝑝𝑝𝑟𝑟
1 ,𝜎𝜎𝑍𝑍,𝑝𝑝𝑟𝑟

1 � (23) 

where 𝜇𝜇𝑍𝑍,𝑝𝑝𝑟𝑟
0 , 𝜎𝜎𝑍𝑍,𝑝𝑝𝑟𝑟

0  are given by (18) in case 𝐽𝐽𝑉𝑉𝑡𝑡 = 0 and analogously 𝜇𝜇𝑍𝑍,𝑝𝑝𝑟𝑟
1 ,𝜎𝜎𝑍𝑍,𝑝𝑝𝑟𝑟

1  for 
𝐽𝐽𝑉𝑉𝑡𝑡 = 1. 

Adapted Jumps in Returns 
As noted above, the adaptation of jumps in returns is much easier compared to 

adaptation of jumps in volatility. If  𝐽𝐽𝑡𝑡 = 0, then 𝑍𝑍𝑡𝑡 and 𝑦𝑦𝑡𝑡 are independent, and thus 

𝑝𝑝(𝑦𝑦𝑡𝑡|ℎ𝑡𝑡, 𝐽𝐽𝑡𝑡 = 0) = 𝜑𝜑(𝑦𝑦𝑡𝑡;𝜇𝜇, σt). (24) 
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If 𝐽𝐽𝑡𝑡 = 1, then 𝑦𝑦𝑡𝑡 is the sum of two independent normally distributed variables 
with distributions 𝑁𝑁(0,𝑉𝑉𝑡𝑡) and 𝑁𝑁(𝜇𝜇𝐽𝐽 ,𝜎𝜎𝐽𝐽2), and so 

𝑝𝑝(𝑦𝑦𝑡𝑡|ℎ𝑡𝑡, 𝐽𝐽𝑡𝑡 = 1) = 𝜑𝜑 �𝑦𝑦𝑡𝑡;𝜇𝜇𝐽𝐽 ,�𝜎𝜎𝐽𝐽2 + 𝑉𝑉𝑡𝑡�. (25) 

Based on the relationship 𝑝𝑝(𝐽𝐽𝑡𝑡|ℎ𝑡𝑡,𝜆𝜆𝑡𝑡 ,𝑦𝑦𝑡𝑡) ∝ 𝑝𝑝(𝑦𝑦𝑡𝑡|ℎ𝑡𝑡 , 𝐽𝐽𝑡𝑡)𝑝𝑝(𝐽𝐽𝑡𝑡|𝜆𝜆𝑡𝑡) we can easily 
compute the normalizing constant, as 𝐽𝐽𝑡𝑡 is only binary. Therefore, 

𝑝𝑝(𝐽𝐽𝑡𝑡|ℎ𝑡𝑡 ,𝜆𝜆𝑡𝑡 ,𝑦𝑦𝑡𝑡)~𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵(𝜆𝜆𝑡𝑡∗), where 

𝜆𝜆𝑡𝑡∗ =
𝜑𝜑 �𝑦𝑦𝑡𝑡;𝜇𝜇𝐽𝐽 ,�𝜎𝜎𝐽𝐽2 + 𝑉𝑉𝑡𝑡� 𝜆𝜆𝑡𝑡

𝜑𝜑 �𝑦𝑦𝑡𝑡;𝜇𝜇𝐽𝐽 ,�𝜎𝜎𝐽𝐽2 + 𝑉𝑉𝑡𝑡�𝜆𝜆𝑡𝑡 + 𝜑𝜑(𝑦𝑦𝑡𝑡; 0,𝜎𝜎𝑡𝑡)(1− 𝜆𝜆𝑡𝑡)
. (26) 

Given 𝐽𝐽𝑡𝑡 = 0 the jump size is Gibbs sampled from 𝑍𝑍𝑡𝑡~𝑁𝑁(𝜇𝜇𝐽𝐽 ,𝜎𝜎𝐽𝐽). If  𝐽𝐽𝑡𝑡 = 1 
then 

𝑝𝑝(𝑍𝑍𝑡𝑡|ℎ𝑡𝑡 ,𝑦𝑦𝑡𝑡 , 𝐽𝐽𝑡𝑡 = 1) ∝ 𝜑𝜑(𝑦𝑦𝑡𝑡;𝑍𝑍𝑡𝑡 ,𝜎𝜎𝑡𝑡)𝜑𝜑�𝑍𝑍𝑡𝑡;𝜇𝜇𝐽𝐽 ,𝜎𝜎𝐽𝐽� (27) 

and so 𝑝𝑝(𝑍𝑍𝑡𝑡|ℎ𝑡𝑡 ,𝑦𝑦𝑡𝑡, 𝐽𝐽𝑡𝑡 = 1)~𝜑𝜑�𝑍𝑍𝑡𝑡;𝜇𝜇𝐽𝐽∗,𝜎𝜎𝐽𝐽∗�, where 𝜇𝜇𝐽𝐽∗ =
𝑑𝑑𝑡𝑡𝜎𝜎𝐽𝐽

2+𝜇𝜇𝐽𝐽𝑉𝑉𝑡𝑡
𝜎𝜎𝐽𝐽
2+𝑉𝑉𝑡𝑡

, 𝜎𝜎𝐽𝐽∗ = 𝜎𝜎𝐽𝐽𝜎𝜎𝑡𝑡

�𝜎𝜎𝐽𝐽
2+𝑉𝑉𝑡𝑡

. 

Once the state variables are resampled the weight of the respective particle must 
be updated according to (3), i.e. 

𝑤𝑤𝑡𝑡 =
𝑝𝑝�𝑦𝑦𝑡𝑡|ℎ𝑡𝑡,𝑍𝑍𝑡𝑡, 𝐽𝐽𝑡𝑡�𝑝𝑝(𝑍𝑍𝑡𝑡)𝑝𝑝(𝑍𝑍𝑉𝑉𝑡𝑡)(𝜆𝜆𝑡𝑡)𝐽𝐽𝑡𝑡(1 − 𝜆𝜆𝑡𝑡)1−𝐽𝐽𝑡𝑡�𝜆𝜆𝐽𝐽𝑉𝑉 ,𝑡𝑡�

𝐽𝐽𝑉𝑉𝑡𝑡�1 − 𝜆𝜆𝐽𝐽𝑉𝑉 ,𝑡𝑡�
1−𝐽𝐽𝑉𝑉𝑡𝑡

𝑔𝑔�𝑍𝑍𝑡𝑡|ℎ𝑡𝑡,𝑦𝑦𝑡𝑡, 𝐽𝐽𝑡𝑡�𝑔𝑔(𝑍𝑍𝑉𝑉𝑡𝑡|ℎ𝑡𝑡−1,𝑦𝑦𝑡𝑡)(𝜆𝜆𝑡𝑡∗)𝐽𝐽𝑡𝑡(1 − 𝜆𝜆𝑡𝑡∗)1−𝐽𝐽𝑡𝑡�𝜆𝜆𝐽𝐽𝑉𝑉,𝑡𝑡
∗ �𝐽𝐽𝑉𝑉𝑡𝑡�1 − 𝜆𝜆𝐽𝐽𝑉𝑉 ,𝑡𝑡

∗ �1−𝐽𝐽𝑉𝑉𝑡𝑡
𝑤𝑤�𝑡𝑡−1. (28) 

Prior Distributions 
We are going to use standard parameter conjugate prior distributions 

characterized by their approximate mean and standard deviations given in Table 1. The 
second column shows the initial uniform distributions from which the step zero 
parameter particle values are drawn. The relatively wide intervals correspond to known 
stock returns empirical results where jumps in returns are usually negative while jumps 
in volatility are positive. It is customary to report the long-term volatility parameter 
 𝐿𝐿𝑡𝑡𝑣𝑣 = 𝛼𝛼/(1− 𝛽𝛽) transforming the stochastic volatility equation (13) into the mean-
reverting form: 

ℎ𝑡𝑡 − ℎ𝑡𝑡−1 = (1 − 𝛽𝛽)(𝐿𝐿𝑡𝑡𝑣𝑣 − ℎ𝑡𝑡−1) + 𝛾𝛾𝜀𝜀𝑉𝑉,𝑡𝑡 + 𝑍𝑍𝑉𝑉𝑡𝑡𝐽𝐽𝑉𝑉𝑡𝑡 . (29) 

For example, the annualized long-term volatility around 25% corresponds to 
𝐿𝐿𝑡𝑡𝑣𝑣 = −8.3.  

Besides the initial distribution, we do not use any prior distributions for 𝐿𝐿𝑡𝑡𝑣𝑣,𝛽𝛽, 
and 𝛾𝛾. The intensity of jumps and returns distributions are standard conjugate Beta 
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with parameters corresponding to the mean and standard deviation indicated in Table 
1. The means of sizes of jumps in returns are conjugate normal with parameters 
corresponding to the wide regions where the values are expected.  The variances of the 
jump size conjugate priors are the inverse gamma distributions again with parameters 
corresponding to the mean and standard deviation in the table. Note that we show the 
square roots of the parameters in order to indicate where 𝜎𝜎𝐽𝐽 and 𝜎𝜎𝐽𝐽𝑉𝑉 are expected to lie. 

Table 1 Prior Distributions 
Parameter Initial dist. Prior dist. Mean Standard dev. 

𝐿𝐿𝑡𝑡𝑣𝑣 = 𝛼𝛼/(1− 𝛽𝛽) U[-10, -6] - - - 
𝛽𝛽 U[0.8, 0.995] - - - 
𝛾𝛾 U[0.1, 0.3] Non-informative - - 
𝜆𝜆 U[0.001, 0.1] Beta 5% 2.2% 
𝜇𝜇𝐽𝐽 U[-0.1, 0.02] Normal -5% 10% 
𝜎𝜎𝐽𝐽 U[0.05, 0.1] Inverse Gamma 10% 8% 
𝜆𝜆𝐽𝐽𝑉𝑉 U[0.001, 0.1] Beta 5% 2.2% 
𝜇𝜇𝐽𝐽𝑉𝑉 U[0.5, 1.5] Normal 1 0.5 
𝜎𝜎𝐽𝐽𝑉𝑉 U[0.2, 0.8] Inverse Gamma 1 0.85 

3. Simulated Dataset Results 
In order to test the sequential Gibbs PF algorithm described above we have 

simulated a return process following (13) and given the (true) parameters shown in 
Table 2 over 4000 (daily) periods. We have run the particle filter with the estimates 
and Bayesian 95% confidence intervals that are reported in Table 2. Figure 1 
demonstrates the estimated latent log-variance (mean values from the first run) fitting 
very well the true log-variance. The size of the parameter particles was set to 𝑀𝑀 =
200, the size of latent state particles to 𝑁𝑁 = 200, and the effective sample size 
threshold to 𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇ℎ𝑟𝑟 = 100. The first parameter recalculation is allowed after 10 steps 
in order to avoid possible issues with matrix inversion during the Gibbs resampling. 
The number of periods 𝑇𝑇 = 4000 corresponds to the length of the real world dataset 
we are going to analyze in Section 4 and the relatively small number of particles was 
set at 200 × 200 with respect to memory capacity and computational time limitations. 
Note that the algorithm still works with several very large latent state matrices of the 
size 40 000 × 4 000. 2  

The results shown in Table 2 are satisfactory since the true parameters do fall 
into the estimated 95% Bayes confidence intervals in all cases. The estimated mean 
values are based on the last 2000 periods (i.e., the first 2000 days are considered as a 
burnout period). It should be noted that the quantiles are obtained from the mixed 
estimated particle densities also over the last 2000 periods. For some parameters such 
as 𝛾𝛾 and the jump intensities the wide confidence intervals indicate uncertainty of the 
parameter inference. Since, in the simulation, we know the true latent variables, we 
can estimate directly the sample parameters that may differ slightly from the true data 
generating parameters and should be, in fact, estimated by the algorithm in an ideal 

 
2 The algorithm has been implemented in Matlab and run in parallel on 16 Core i7-5960X 4.3 GHz CPUs/ 
64GB RAM desktop computer. One run with 200x200 particles and 4 000 steps took around 40 minutes.  
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situation. Again, in all cases the parameters inferred from the sampled log-variances 
and returns belong to the estimated confidence intervals. 

Table 2 True, Sampled and Estimated Parameters (SGPF, 200x200 particles) 
Parameter True value Sampled value Estimated value 95% confidence intervals 

𝜇𝜇𝐽𝐽 -0.08 -0.0754 -0.0766 -0.1072 -0.0457 
𝜎𝜎𝐽𝐽 0.04 0.0369 0.0435 0.0306 0.0610 
𝐿𝐿𝑡𝑡𝑣𝑣 -8 -7.8043 -7.9794 -10.6834 -5.1749 
𝛽𝛽 0.98 0.9795 0.9742 0.9574 0.9895 
𝛾𝛾 0.2 0.1999 0.1811 0.1370 0.3054 
𝜆𝜆 0.06 0.0513 0.0529 0.0267 0.0834 
𝜇𝜇𝐽𝐽𝑉𝑉 1 1.0142 0.7865 -0.2074 1.4259 
𝜎𝜎𝐽𝐽𝑉𝑉 0.4 0.3880 0.4341 0.2914 0.7398 
𝜆𝜆𝐽𝐽𝑉𝑉 0.04 0.0375 0.0611 0.0251 0.1044 

Next, Figure 2 shows posterior (estimated) jump probabilities and mean sizes. 
The true values are plotted above the x-axis (light grey) and the estimated values below 
the x-axis (dark grey) with artificially set negative signs for the sake of a visual 
comparison. The algorithm appears to estimate jumps in returns quite well. In order to 
calculate the estimated probability and mean of jumps in volatility we have used 15 
days lag perspective. As the algorithm can recognize a (positive) jump in volatility 
only after a period of sustained relatively higher realized volatility, it had difficulties 
in identifying jumps in volatility at the exact time of their occurrence, as shown in the 
last two plots in Figure 2. Nevertheless, a closer inspection reveals that true jumps in 
volatility are usually followed by several days with higher estimated jump probability, 
i.e. the algorithm recognizes the increased volatility level but is not able to identify 
exactly the day when it happened. In spite of that the filter has estimated the jump size 
in volatility distribution parameters according to Table 2 relatively well. 

In order to test stability of the sequential algorithm (SGPF) and compare it to 
the Fulop-Li algorithm, both versions of the algorithm have been run independently 
ten-times for 𝑀𝑀 = 100,  𝑁𝑁 = 100 and 𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇ℎ𝑟𝑟 = 50, with convergence results shown 
in Figure 3 and in Table 4. The relatively large dispersion of the estimated values in 
the different runs (for both algorithms), e.g. for 𝐿𝐿𝑡𝑡𝑣𝑣 or 𝛾𝛾, corresponds well to the wide 
confidence intervals shown in Table 2. In terms of the deviations of the estimated 
parameters with respect to the true values, the two approaches provide comparable 
results. The efficiency and precision of the algorithms is comprehensively compared 
in Table 3 showing R2 of the (log)volatility estimates and the discrimination power of 
the jumps in returns and jumps in volatility estimates (Bayesian probabilities) 
measured by the Accuracy Ratio (AR). SGPF gives better results compared to Fulop-
Li in terms of volatility R2 and jumps in volatility AR, and comparable performance 
in terms of jumps in returns AR. Most importantly, SGPF significantly outperforms 
the Fulop-Li algorithm in terms of computational efficiency (SGPF using only 46% of 
time needed by Fulop-Li). The inefficiency of the Fulop-Li algorithm is caused mainly 
by the decreasing probability of acceptance and increasing number of runs in the 
accept-reject step of the algorithm as shown in Figure 4.  

To compare the computational efficiency over longer time horizons, we have 
run the SGPF and Fulop-Li algorithms on a simulated 8000-day time series. Figure 5 
shows that the computational time of the Fulop-Li relative to the SGPF algorithm 
increases exponentially as the acceptance probability gradually approaches zero. The 
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two algorithms still provide comparable results with SGPF slightly outperforming 
Fulop-Li in terms of R2 and AR, but the computational time needed by Fulop-Li is 
more than 33-times the time required by SGPF over the 8000-day time horizon (Table 
5). It is apparent that the Fulop-Li algorithm computational cost becomes prohibitive 
for longer time series while SGPF is still able to provide feasible results. 

Figure 1 Simulated (light grey) and Estimated (dark grey) Latent Log-Variance 𝒉𝒉𝒕𝒕 (left) 
and Variance 𝑽𝑽𝒕𝒕 (right) 

  

Figure 2 Simulated (light grey) Versus Estimated Jumps (dark grey) in Returns and 
Volatility in Terms of Probability and Estimated Size 
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Figure 3 Parameters Estimated by the Particle Filter Run Ten-Times (the horizontal 
black indicate the true values of the estimated parameters) (SGPF vs. Fulop-
Li, 100x100 particles) 
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Table 3 Average Performance Metrics of the Filtered Latent States by SGPF and Fulop-
Li Algorithms (10 runs with 100x100 particles) 

Measure (average) SGPF FulopLi Ratio (SGPF/FulopLi) 
Computational time 878.76 s 1906.22 s 0.4610 
R2 (log-variance) 0.7818 0.7822 0.9995 
R2 (variance) 0.4695 0.4796 0.9789 
AR (jumps in ret.) 0.6581 0.6565 1.0025 
AR (jumps in vol.) 0.1980 0.2186 0.9057 

Table 4 Average Values and Standard Deviations of the Estimated Parameters by 
SGPF and Fulop-Li Algorithms (10 runs with 100x100 particles) 

Parameter True 
value 

Sampled 
value avg(SGPF) avg(FulopLi) std(SGPF) std(FulopLi) 

𝜇𝜇𝐽𝐽 -0.08 -0.0754 -0.0725 -0.0572 0.0078 0.0079 
𝜎𝜎𝐽𝐽 0.04 0.0369 0.0463 0.0569 0.0033 0.0074 
𝐿𝐿𝑡𝑡𝑣𝑣 -8 -7.8043 -7.7754 -7.7051 0.4537 0.4635 
𝛽𝛽 0.98 0.9795 0.9744 0.9767 0.0023 0.0031 
𝛾𝛾 0.2 0.1999 0.1860 0.2209 0.0460 0.0184 
𝜆𝜆 0.06 0.0513 0.0554 0.0524 0.0089 0.0072 
𝜇𝜇𝐽𝐽𝑉𝑉 1 1.0142 0.8500 0.9203 0.2080 0.1542 
𝜎𝜎𝐽𝐽𝑉𝑉 0.4 0.3880 0.5244 0.4317 0.0518 0.1760 
𝜆𝜆𝐽𝐽𝑉𝑉 0.04 0.0375 0.0565 0.0474 0.0107 0.0091 
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Figure 4 Fulop-Li algorithm Accept-Reject Step Acceptance Rates and Numbers of 
Runs until 50% Acceptance in One Run of the Algorithm 

  

 

Table 5 Performance Metrics of the Filtered Latent States by SGPF and Fulop-Li 
Algorithms (single run with 100x100 particles on a simulated time series of 8 
000 days) 

Measure SGPF FulopLi Ratio (SGPF/FulopLi) 
Computation time 2948.38 s 99723.89 s 0.0296 
R2(log-variance) 0.7842 0.7864 0.9972 
R2(variance) 0.6546 0.6807 0.9616 
AR(jumps) 0.6974 0.7107 0.9813 
AR(vol.jumps) 0.3069 0.3185 0.9635 

Figure 5 Performance of the Fulop-Li Algorithm on an 8000-Days Long Simulated Time 
Series  
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4. Prague PX Index Empirical Study 
We have applied the SGPF algorithm to the Prague stock exchange index PF 

daily returns over the period 4.1.2002 – 25.04.2018, i.e. on a dataset with 4075 
observations shown in Figure 6. We can notice the global financial crisis and the 
Eurozone crisis periods with increased volatility levels. The same figure shows the 
estimated daily volatilities obtained from the mean estimate latent log-variance ℎ𝑡𝑡 . The 
Sequential Gibbs PF algorithm was run with 𝑀𝑀 = 200 and 𝑁𝑁 = 200 particles, and 
with 𝐸𝐸𝐸𝐸𝐸𝐸𝑇𝑇ℎ𝑟𝑟 = 100. The estimated mean parameters and the posterior confidence 
intervals are reported in Table 6. Since the parameter levels appear to stabilize after 
around 2000 steps of the algorithm (see Figure 7) we have set the first 2 000 days as 
the burnout periods and calculated the means and confidence interval based on the 
remaining 2075 estimates (Table 6). In order to verify robustness of the estimates we 
have also run the algorithm independently ten times with 100 × 100 particles as in the 
previous section. The results shown in Figure 9 are again consistent with the estimates 
given in Table 6.  

Regarding the results, the long-term log-variance parameter 𝐿𝐿𝑡𝑡𝑣𝑣 ≅ −9.9 
corresponds to the annualized long-term volatility level around 11.2%. The volatility 
persistence parameter 𝛽𝛽 ≅ 0.97  corresponds well other studies (e.g. Eraker et al., 2003 
or Witzany, 2013), while the estimated volatility of volatility parameter 𝛾𝛾 ≅ 0.15 
appears slightly lower probably due to the jump in volatility component. What comes 
as a rather surprising result is a very low estimate of the intensity of jump in returns 
parameter 𝜆𝜆 ≅ 1.2% with the posterior 95% confidence interval (0.36%, 2.6%). In 
addition the mean size of the jumps of returns has been estimated at 𝜇𝜇𝐽𝐽 ≅ −1.35% not 
significantly different from zero (while jumps in stock returns are expected to be 
negative) and the standard deviation 𝜎𝜎𝐽𝐽 ≅ 3.3% around five times the average daily 
volatility 0.74%. Our conclusion is that the jump in return component is quite weak 
just slightly symmetrically fattening the normal distribution tails. On the other hand, 
the jump in volatility component appears to be rather strong with the jump intensity  
𝜆𝜆𝐽𝐽𝑉𝑉 ≅ 2.9%, relatively large and significant mean jumps size 𝜇𝜇𝐽𝐽𝑉𝑉 ≅ 0.98, and its 
standard deviation 𝜎𝜎𝐽𝐽𝑉𝑉 ≅ 0.56. It is also worth noting (Figure 8) that the jumps in 
returns are identified rather in the normal volatility periods while the jumps in volatility 
tend to appear at the beginning of crisis periods. In this case, we cannot show the true 
jump indicators as in Figure 2 but we do show the return series and the estimated log-
variance series to visually locate possible jumps in returns and volatility. 
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Figure 6 PX Index Daily Returns (light grey bars, 4.1.2002 – 25.04.2018) and the 
Volatility Estimated by the Particle Filter Algorithm, i.e. 𝝈𝝈𝒕𝒕 = 𝐞𝐞𝐞𝐞𝐞𝐞(𝒉𝒉𝒕𝒕 𝟐𝟐⁄ ). 

 
Table 6 The Stochastic Volatility Model (13) Parameters Estimated for the PX Index 

Daily Returns Data  
Parameter Estimated value 95% confidence intervals 

𝜇𝜇𝐽𝐽 -0.0135 -0.0433 0.0079 
𝜎𝜎𝐽𝐽 0.0332 0.0220 0.0559 
𝐿𝐿𝑡𝑡𝑣𝑣 -9.9328 -11.1375 -9.1716 
𝛽𝛽 0.9661 0.9407 0.9876 
𝛾𝛾 0.1545 0.1344 0.1791 
𝜆𝜆 0.0122 0.0036 0.0260 
𝜇𝜇𝐽𝐽𝑉𝑉 0.9677 0.4806 1.5373 
𝜎𝜎𝐽𝐽𝑉𝑉 0.4979 0.3147 0.8204 
𝜆𝜆𝐽𝐽𝑉𝑉 0.0291 0.0113 0.0555 

Figure 7 Convergence of the Model Parameters and the 95% Confidence Intervals 
Estimated by the Particle Filter Where the Horizontal Black Lines Indicated 
the Estimated Mean Values 
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Figure 8 The Posterior Jumps in Returns and Volatility Probabilities and Sized 

  

  

  

Figure 9 Convergence of the Model Parameters Estimated by Ten Independent Runs 
of the Particle Filter (SGPF, 100x100 particles) Where the Black Lines 
Indicate the Mean Estimated Values 
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5. Conclusions 
We have proposed a new Sequential Gibbs Particle Filter algorithm allowing to 

estimate complicated latent state models with unknown parameters. The general 
framework has been applied to the stochastic volatility model with independent jumps 
in returns and in volatility. In order to make the algorithm more efficient in terms 
convergence we have designed adapted resampling steps whenever possible. The 
algorithm has been tested several times on an artificially generated datasets based on 
known true parameter with good results. The SGPF algorithm has been shown to 
outperform significantly the Fulop-Li algorithm in terms of computational efficiency. 
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Finally, we have applied the algorithm to a more than 16 years long time series of the 
Prague stock exchange index daily returns with some interesting results. Namely, 
identifying a very weak presence of jumps in returns while a strong presence of jumps 
in volatility taking place at the beginning of crisis periods. 

Identification and timing of jumps in volatility seems to be the most serious 
weakness of the algorithm. In our opinion, this is caused rather by the fact that we are 
using only daily data and that it is impossible to identify a jump in volatility based just 
on one or a few observed daily returns with a higher magnitude. Therefore, we believe 
that, as a subject of further research performance, the algorithm can be improved by 
incorporating high frequency realized volatility data and possibly the leverage effect 
(in terms of both diffusion and jump components). 
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