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Abstract 

Modern financial and banking systems are very much interconnected. In a setting where 
banks are prone to liquidity risk due to early withdrawals by depositors, this paper analyzes 

the optimal liquidity network relationship that banks will settle. The paper interprets the 
network relationship as the exchange of ’committed credit lines’ contracts between the 

banks. The paper shows that the given liquidity network of Allen and Gale (2000) is one of 
the optimal solutions that may occur and a risk-based pricing takes place in the interbank 

market. Banks dispose of their liquidity risk and reduce the total required cash holdings of 
the banking system to cover early withdrawals by means of this relationship. Additionally, 

the paper considers the case where liquidity shocks of banks become imperfectly negatively 
correlated. The network relationship between banks under imperfectly negatively 

correlated shocks is even robust to the extreme case, in which there is no reduction in the 
total required cash holdings of banks. 

1. Introduction 

In today’s world, financial systems are highly interconnected, as seen during the 

subprime mortgage crisis. This has attracted a lot of attention of researchers, since 
these linkages can lead to the collapse of an entire system through contagious failures. 

Previous research mostly tried to understand whether such a collapse can really occur 

and how stable the system is when such inter-linkages exist between financial 

institutions. This study tries to understand the incentives behind such inter-linkages 

and to determine the network relationship between two financial institutions, say banks 

in separate regions. 

This paper studies a setting where banks are prone to liquidity risk due to early 

withdrawals by depositors. In this setting, the paper determines the optimal liquidity 

network relationship or financial contract that will occur between two banks. This 

network relationship may be understood as ’committed credit lines’ between the banks. 

Thus, banks become insurers of each other against the liquidity shock in hedgeable 

states. By means of this network relationship, they are able to completely get rid of the 
liquidity risk and reduce the total required cash holdings of the whole banking system 

when their liquidity shocks are perfectly negatively correlated. However, it is not 

possible for banks to reduce the variance of the liquidity shock to zero if their shocks 

become imperfectly negatively correlated. Interestingly, the liquidity network 

relationship between banks with imperfectly negatively correlated shocks is even 

robust to the extreme case: the case in which the relationship does not induce any 

reduction in the total required cash holdings of banks to cover early withdrawals. The 

reason is that banks are still able to agree on a price or (net) upfront commitment fee 

for the credit lines contract that leaves both of them indifferent between staying 

independent and settling a network. Yet, the set of feasible prices gets narrowed with 

less negatively correlated shocks. 
As already stated, earlier theoretical literature has focused more on the effects 
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of exogenously given network structures on contagious failures instead of its formation 

and incentives behind its formation. However, there are also some studies looking at 

endogenously determined intermediary (deposit) contracts starting with Briant (1980) 

and Diamond and Dybvig (1983). These papers study inter-temporal models where 

depositors face privately observed preference shocks and time to maturity determines 

returns to investment. With such preference shocks, they show the fact that deposit 

contracts are superior to Walrasian trading solutions to provide insurance for agents. 

Following these two papers, Bhattacharya and Gale (1987) change the setup slightly 
and consider the situation where banks face privately observed shocks that determines 

the proportion of early withdrawals. They show that the optimal mechanism design in 

this case is subject to second-best distortions even when there is no aggregate liquidity 

shock in the system. These second best distortions occur due to the fact that banks have 

an incentive to underinvest in the liquid asset since they can free-ride on the interbank 

market liquidity pool. Taking this setup one step further, Allen and Gale (2000) look 

at whether financial contagion could occur when banks insure themselves against 

liquidity shocks with an interbank market. The authors test this question with 

exogenously selected network structures: complete vs. incomplete. They conclude that 

complete networks in which each region is connected to all the other regions are more 

resilient to contagion than incomplete structures. 

Following Allen and Gale (2000), several theoretical papers considered the 

optimal network design and the threat of contagion as a result of it. Especially, Leitner 

(2005) argues that under such a contagion threat, it may be optimal for some agents to 

bail out the others to prevent the collapse of the whole network. Going one step 

forward, Babus (2013) shows that such a network relationship where banks bail out 
each other comes out as an equilibrium solution in a network formation game. This 

paper also shares a similar idea that is banks may act as insurers of each other by 

exchanging ’committed credit lines’ contracts. 

Several empirical studies have also tried to find evidence of contagious failures 

in different national banking systems. With this aim, these studies have tried to quantify 

the size of contagion by identifying the mutual claims banks have on each other. In 

general, such papers use balance sheet data in order to estimate bilateral credit 

relationships. They test the stability of the whole banking system by simulating failure 

of a single bank like Degryse and Nguyen (2007), Sheldon and Maurer (1998) and 

Elsinger, Lehar and Summer (2006). 

Instead of looking for contagious effects resulting from different types of 

network relationships within banks, this paper tries to endogenously determine the 
optimal liquidity network relationship that banks will settle and to understand the 

characteristics of such a relationship. Within the cited theoretical papers above, this 

paper is closest to Bhattacharya and Gale (1987) and Allen and Gale (2000). The main 

difference of the current paper from Bhattacharya and Gale (1987) is to study an 

interbank coordination problem when the return on the risky asset depends on the early 

liquidation decisions by both banks. Such a return structure represents common 

investments in the asset portfolio of the banks and early liquidation/sale of the asset by 

other banks would affect the price of the asset as it happened during the subprime 

mortgage crisis. In this situation, the paper shows that the problem of underinvestment 

in the liquid asset and free riding by banks which is the main result of Bhattacharya 

and Gale (1987) is resolved. Following Allen and Gale (2000), the model adopts a 
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framework where consumers have random liquidity needs as in Diamond and Dybvig 

(1983), which creates late versus early consumers. Despite having a similar framework 

regarding the consumer preferences, this paper has several differences regarding other 

important elements. First, while in the above papers investment portfolio decisions of 

banks are determined as the solution to a social planner’s problem, here banks decide 

on their investment portfolios to maximize profits. Second, Allen and Gale (2000) 

restrict the network relationship of banks to the case of deposits exchange with the 

assumption that each bank receives the same return as the consumers for the deposits 
transferred in the interbank market. This paper, however, lets the network relationship 

to be more general by interpreting it as the ’committed credit lines’ between the banks 

and determines its parameters in equilibrium. 

With this setup, the paper shows that the liquidity network of Allen and Gale 

(2000) is one of the optimal solutions that may occur. The network relationship of this 

paper becomes equivalent to the one in Allen and Gale (2000) if the credit lines 

between the banks are set to be symmetric or if the holdings are set to be symmetric 

across banks, to better say it in the original paper’s terms. However, symmetry of the 

credit lines or the holdings is not a must, since the (net) upfront commitment fee will 

adjust accordingly depending on the credit lines contract, either symmetric or non-

symmetric. Although it is beyond the scope of this paper, since the symmetry of 

holdings is an important determinant of contagious effects as it is stated in Allen and 
Gale (2000), non-symmetric holdings may lead to different results from the viewpoint 

of contagion in the system. In any case, the banks perfectly insure themselves against 

liquidity shocks with this network relationship as in Allen and Gale (2000). Moreover, 

the characteristics of the optimal network relationship illustrate that there is risk-based 

pricing in the interbank market which is supported by recent empirical evidence despite 

the traditional view of single pricing in the interbank market (King, 2008, Ho and 

Saunders, 1985). It is seen that the (net) upfront commitment fee or the price of the 

credit lines contract adjusts with respect to the idiosyncratic risks of the banks. In the 

final section, the paper checks the robustness of this liquidity network relationship by 

considering alternatively the case of imperfectly negatively correlated liquidity shocks. 

Interestingly, the network relationship between banks is found to be robust even when 
they face an aggregate liquidity shock in one of the states. 

This paper is organized as follows. Section 2 introduces the model with 

perfectly negatively correlated liquidity shocks. Section 3 includes the solution of the 

model which determines investment portfolio decisions of banks and the optimal 

network relationship. Section 4 considers the case of imperfectly negatively correlated 

shocks. Finally, Section 5 concludes. 

2. Model Description 

This section describes a model to capture the idea that banks confronted with 

negatively correlated liquidity shocks may prefer to enter a financial relationship with 

each other. The model has three time periods  𝑡0, 𝑡1, 𝑡2
  and two separate regions. In 

each region, there is one bank. Thus, one may perceive banks and regions as 

equivalent. At 𝑡0 each bank obtains one unit of deposits from consumers. All 

consumers are identical as of 𝑡0. At 𝑡0, each consumer may face a privately observed 

liquidity shock that creates a necessity for the consumer to withdraw the deposit 
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immediately. The two regions differ with respect to the ratio of this type of consumers 

that will be referred to as ‘early consumers’ throughout  

the paper. The proportion of early consumers may be either 𝑎𝐻or 𝑎𝐿in each region 

where  𝑎𝐿 <  𝑎𝐻. Accordingly, there exist two different states (𝜔 𝜖{1,2}) with respect 

to the proportion of early consumers in each region. In state 𝜔 = 1, which occurs with 

probability 𝑝1, the proportion of early consumers is 𝑎𝐻  in region 1 (𝑅1) and  𝑎𝐿 in 

region 2 (𝑅2). On the other hand, in state 𝜔 = 2, which realizes with probability 𝑝2 =
1 − 𝑝1, the proportion of early consumers becomes  𝑎𝐿 and  𝑎𝐻  in region 1 (𝑅1) and 

region 2 (𝑅2), respectively. This may be represented as follows: 

a inR ,a inR withpH L1 2 1Theproportionofearlyconsumers =:
a inR ,a inR withpL H1 2 2

  
 
  

 (1) 

This negative correlation among early consumers creates an incentive for banks 

to initiate a financial network. Early consumers, who withdraw at 𝑡1, obtain a return of 

𝑐1 > 1 from their deposits. The remaining consumers, who wait and do not withdraw 

until 𝑡2, obtain a higher return 𝑐2 from their deposits such that 𝑐2 > 𝑐1. Here the 

variables 𝑐𝑖  are assumed to be exogenous in order to focus on the optimal network 

relationship between banks. 

On the asset side, banks may invest in a common project and a riskless asset. 

The riskless asset has a return of 1 and may be considered as cash. From now on, the 

riskless asset will be referred to as cash in the paper. Into the common project both 

banks invest an amount of their choice. The return on the common project 𝑟𝜖{ �̃�, 𝑟, 𝑟} 

is dependent upon whether the banks liquidate their shares in the project at 𝑡1 or not. 

The return on this project is �̅� > 1 if both banks keep their shares in the project until 

the economy resolves at 𝑡2. Due to early withdrawals, it could be that banks need to 

liquidate their share in the project at 𝑡1. The bank that liquidates its share in the project 

obtains a return of �̃� < 1 and pays back all consumers at 𝑡1. However, in the case of 

liquidation at 𝑡1 with a return of �̃� < 1, the bank goes into bankruptcy and obtains zero 

payoff due to its limited liability. In such a situation, the other bank that did not 

liquidate its share is also affected by this liquidation and obtains a lower return 𝑟, where 

�̃� < 1 < 𝑟 < 𝑟. In the case of liquidation by both banks, both of their returns on the 

project are �̃� and they both declare bankruptcy. This return structure aims to capture 

the idea of a bank run on the asset side due to the common bad performing investments 

as observed in the subprime mortgage market. 

This paper looks at what kind of liquidity network relationship (or financial 
contract) is optimal between banks in such a scenario. Banks face a tradeoff: On the 

one hand, they would like to invest as much as possible of the deposits in the common 

project. On the other hand, they need to keep enough cash at hand in order to cover the 

withdrawals that occur at 𝑡1 due to early consumers. It will be seen that banks prefer 

to insure each other in order to optimize cash holdings and prevent the losses associated 

with early liquidation. 

The aim is to determine the optimal network relationship or the optimal 

financial contract that takes place between banks. This relationship may be interpreted 

as the exchange of ’committed credit lines’ contracts between banks to bilaterally 

insure themselves against the liquidity risk that they face at 𝑡1. The credit amounts 
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exchanged by banks resulting from the contract at 𝑡1 are denoted by 𝑧= (𝑧(1), 𝑧(2)). 
Thus the net credit amount they exchange is 𝑧(1) in state 𝜔 = 1 and 𝑧(2) in state 𝜔 =
2. 

The (net) upfront commitment fee or the price of this ‘committed credit lines’ 

contract at 𝑡0
  is denoted by 𝑧(0). Such upfront commitment fees are common for 

‘committed credit lines’ contracts and also formalized by earlier theoretical literature 

(Boot, Thakor and Udel (1987)). 

Alternatively, if the network relationship between banks is interpreted as a 

bilateral insurance contract, one may perceive the price 𝑧(0) as the net of insurance 

premia settled at 𝑡0 and the payoff vector 𝑧 as the insurance payments taking place at 

𝑡1
 . Then, the task is to determine the optimal 𝑧(0)and 𝑧. 

After banks specify the optimal contract (𝑧(0) and 𝑧) and 𝑧(0) clears between 

banks, they also determine their investment decisions at 𝑡0: how much to invest into 

the common project and how much in the riskless asset. Accordingly, 𝑥𝑖 denotes bank 

𝑖’s investment in the riskless asset and 𝑦𝑖 denotes bank 𝑖’s investment in the common 

project where 𝑖 𝜖 {1,2}. Then, the bank which has a long position (buyer of the 

‘committed credit’ lines contract) owns an amount of 1 − 𝑧(0) for investment purposes 

at 𝑡0. The other bank, having a short position (seller of the contract), has an amount of 

1 + 𝑧(0) to invest in cash and the common project. It does not actually matter which 

one of the banks longs or shorts the asset since the price of the contract 𝑧(0) is solely 

determined in equilibrium so that both banks are at least as good as with the financial 

relationship compared to the situation where they are stand-alone. Suppose that bank 

1 buys and bank 2 sells the contract for the rest of the paper. Then, the following budget 

equations hold for bank 1 and bank 2, respectively: 𝑥1 + 𝑦1 + 𝑧(0) = 1 and 𝑥2 + 𝑦2 −
𝑧(0) = 1. To summarize, Figure 1 below provides a timeline for the game. 

Figure 1 Timeline of Events 

 

Notes: This figure depicts how the sum of banks’ expected payoffs changes with respect to the difference of net 

credit amounts exchanged by banks (or the difference of insurance payments in states 1 and 2). The 
payoff function strictly increases under ‘Case 1’ that occurs when z(1)-z(2) is smaller than (a

H
c
1 

– 

a
L
c
1
) and after that point it starts to decrease when z(1)-z(2) is bigger than (a

H
c
1 

– a
L
c
1
). Thus the 

optimal point for the total payoff function occurs at z(1)-z(2)= (a
H

c
1 

– a
L
c
1
) where ‘Case 1’ and ‘Case 

2’ overlaps. In other words, banks match the necessary cash amounts of the two states to prevent early 
liquidation with the committed credit lines. 

This game is a game where banks play against the Nature with simultaneous 

moves. We will apply here the solution method of ‘Backwards Induction’. In other 

words, we will first deal with the investment portfolios of banks and then go back in 

time and determine the optimal network relationship between banks. 

Throughout the paper, we will assume that banks are infinitely loss-averse. 
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Thus, the banks have the following utility function: 

U (Π ) = Πi i,t i,t
2 2

 (2) 

where 𝛱𝑖,
𝑡2

  

is the realized profit of each bank at 𝑡2. Additionally, we 

disregard discounting between time periods. 

The source of the liquidity risk in the model is clearly the early withdrawals at 

𝑡1. In each state, banks face a different level of early withdrawals. That means the 

required cash amount to prevent an early liquidation and so bankruptcy also varies 

between states. The required cash amounts or the threshold cash levels to prevent a 

bankruptcy depend on the payoff vector 𝑧. Payoff vector 𝑧 settles between banks at 𝑡1 
just before the early withdrawals occur. While the payoff vector enters into bank 1’s 

account with a positive sign (long position), it enters into bank 2’s account with a 

negative sign (short position). Then, bank 1 needs a cash amount equal to early 

withdrawals minus the payoff from the contract in that state not to bankrupt: 

Accordingly, threshold cash levels for bank 1 in states 𝜔 = 1 and 𝜔 = 2 are  𝑎𝐻𝑐1 −
𝑧(1) (i) and  𝑎𝐿𝑐1 − 𝑧(2) (ii), respectively. Which one of the threshold cash levels of 

banks is larger depends on the payoff vector 𝑧. Realize that (i) ≥(ii) and (iv) ≥(iii) 
when 𝑧(1) − 𝑧(2) ≤  𝑎𝐻𝑐1 −  𝑎𝐿𝑐1 (case 1) but it becomes (ii) ≥(i) and (iii) ≥(iv) 

when 𝑧(1) − 𝑧(2) ≥  𝑎𝐻𝑐1 −  𝑎𝐿𝑐1 (case 2). This observation implies that there are 

two cases to be evaluated throughout the solution in the next section. 

With these threshold cash levels, banks need to make up their minds whether to 

liquidate (bankrupt) or to continue in each state and determine their optimal cash 

levels, 𝑥𝑖. On the other hand, a social planner will determine the optimal network 
between banks by solving the following optimization problem: 

* *max Π (r(x ,x ))i i i 3-iz(0), z(1),z(2)
  

* * * *Π (r(x ,x ))| ³Π (r(x ,x ))|i i i i3-i 3-i 0,0,0z(0),z(1),z(2)   
     

 

(3) 

Here, the constraint in the optimization problem are the participation constraints 

of the banks that make sure that banks are better off with the network relationship 
compared to the case without it. The solution in the next section will compare the 

outcome with and without the network relationship and underline the efficiency 

resulting from this relationship. 

3. Model Solution 

3.1 Investment Portfolio Decisions 

This section investigates the investment portfolio decisions of banks. As 

already briefly mentioned in the previous section, banks will evaluate their alternative 

payoffs in order to decide about their optimal cash levels.  

Different levels of cash holdings and in return banks’ liquidation versus 

continuation decisions in each state affect their payoffs via the return (r) of the project. 

In other words, r changes with respect to banks’ strategies. Strategies are denoted by 
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𝑠𝑖
𝜔𝜖 {𝐿, 𝐶} for each bank 𝑖 ∈ {1,2} and each state 𝜔 ∈ {1,2}, where L denotes 

liquidation at  𝑡1 and C denotes continuation until the final date 𝑡2
. As outlined before, 

the liquidation return �̃� is independent from the other bank’s liquidation versus 

continuation decision, meaning that 𝑟𝑖
𝜔(𝑠𝑖

𝜔 = 𝐿, 𝑠3−𝑖
𝜔 𝜖{𝐿, 𝐶}) = �̃�. To repeat, the bank 

that does not hold enough cash for early consumers and so liquidates at 𝑡1declares 

bankruptcy since �̃� < 1. However, if the bank does not liquidate, its return depends on 

the other bank’s decision. That is to say, the banks that does not liquidate obtains 𝑟 

from the project at 𝑡2 if the other bank liquidates in that state: 𝑟𝑖
𝜔(𝑠𝑖

𝜔 = 𝐶, 𝑠3−𝑖
𝜔 = 𝐿) =

𝑟. Finally, the return of the non-liquidating bank jumps to 𝑟 from the project at 𝑡2 if the 

other bank also does not liquidate in that state: 𝑟𝑖
𝜔(𝑠𝑖

𝜔 = 𝐶, 𝑠3−𝑖
𝜔 = 𝐶) = 𝑟. 

Denote the payoff of bank i in state 𝜔 that realizes at 𝑡2 as Π𝑖
𝜔(𝑟𝑖

𝜔(. , . )). 

Accordingly, there are three alternative payoffs for bank i in state 𝜔 depending on 

the combined (liquidation/continuation) decisions of the two banks: 

 

 ω ω ω ω ωΠ (r (s = L, s Î L,C )) = Π (r) = 0i i i i3-i  (4) 

  

ω ω ω ω ωΠ (r (s = C,s = L)) = Π (r)i i i i3-i
= y r + x ±z(ω)- EC (ω)- LC (ω)i i i i

 (5) 

  

ω ω ω ω ωΠ (r (s = C,s = C)) = Π (r)i i i i3-i
= y r + x ±z(ω)- EC (ω)- LC (ω)i i i i

 (6) 

 

Where 𝐸𝐶𝑖(𝜔) and 𝐿𝐶𝑖(𝜔) are payments made to early and late consumers, 

respectively: For state 1, 𝐸𝐶1(𝜔 = 1) =  𝑎𝐻𝑐1 ; 𝐿𝐶1(𝜔 = 1) = (1 −  𝑎𝐻)𝑐2
and , 

𝐸𝐶2(𝜔 = 1) =  𝑎𝐿𝑐1
, 𝐿𝐶2(𝜔 = 1) = (1 −  𝑎𝐿)𝑐2

. Similarly, for state 2, 𝐸𝐶1(𝜔 =

2) =  𝑎𝐿𝑐1 and 𝐿𝐶1(𝜔 = 2) = (1 −  𝑎𝐿)𝑐2
; 𝐸𝐶2(𝜔 = 2) =  𝑎𝐻𝑐1 and 𝐿𝐶2(𝜔 = 2) =

(1 −  𝑎𝐻)𝑐2
. 

The expected payoff of bank 𝑖 is denoted by Π𝑖(Π𝑖
𝜔=1(. ), Π𝑖

𝜔=2(. )) =
𝑝1Π𝑖

𝜔=1(. ) + 𝑝2Π𝑖
𝜔=2(. ). This expected payoff function is decreasing in the cash 

amount  𝑥𝑖 since the coefficient of  𝑥𝑖 is negative due to the fact that both of the 

possible return values 𝑟 and �̅� are bigger than one. This implies that the banks will 

optimally hold the minimum cash amount that is just enough to cover the early 

withdrawals in each state to prevent the early liquidation with zero payoffs. In other 

words, the banks will always keep the maximum of the threshold cash levels of the 

two possible cases that are introduced above. This intuition leads us to the following 

proposition. 
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Proposition 1. Banks will invest in cash amount of  𝑥1 = max (𝑎𝐻𝑐1 −
𝑧(1), 𝑎𝐿𝑐1 − 𝑧(2) and  𝑥2 = max (𝑎𝐿𝑐1 + 𝑧(1), 𝑎𝐻𝑐1 + 𝑧(2)). 

Proof. The expected payoffs of banks  

Π𝑖(Π𝑖
𝜔=1(. ), Π𝑖

𝜔=2(. )) = 𝑝1Π𝑖
𝜔=1(. ) +   𝑝2Π𝑖

𝜔=2(. ) is decreasing in 𝑥𝑖. This 

could be easily understood if one inserts the value of 𝑦𝑖 = 1 − 𝑥𝑖 ± 𝑧(0)  into the 

payoff function by using the budget equations of the banks. In this way, one realizes 

that the coefficient of  𝑥𝑖   is either 1 − 𝑟 or  1 − 𝑟 depending on the realized payoff 

function that is determined by the continuation/liquidation decisions of banks as 

represented in equations (5) and (6). In both cases, the coefficient of 𝑥𝑖
 
 will be always 

negative in the payoff functions since 1 < 𝑟 < 𝑟. 

That is the banks will not hold optimally more than the threshold levels that is 

just enough to prevent early liquidation in each state. If the banks hold the minimum 

of these two thresholds values, they would have to liquidate in one of the states. This 

is not optimal since min(Π𝑖
𝜔( 𝑟 ), Π𝑖

𝜔(𝑟)) > Π𝑖
𝜔(𝑟)̃ = 0 . 

3.2 The Optimal Network Relationship (Financial Contract) 

This section determines the optimal network relationship that occurs between 

banks. The aim is to determine first 𝑧, which may be interpreted as either the payoff 

vector stemming from the ‘committed credit lines’ contract between the banks or the 

insurance payment of a bilateral insurance contract. Second, it is to determine the (net) 

upfront commitment fee of the contract or the net of insurance premia 𝑧(0). While 

determining this contract, we will apply the social welfare approach. This means that 

we will consider the un-weighted sum of expected utilities of the two banks. 

The previous section showed that the banks will hold the maximum of the 

threshold cash levels; i.e.  𝑥1 = max (𝑎𝐻𝑐1 − 𝑧(1), 𝑎𝐿𝑐1 − 𝑧(2) and  𝑥2 =
max (𝑎𝐿𝑐1 + 𝑧(1), 𝑎𝐻𝑐1 + 𝑧(2)). As it was introduced in the section of the model 

introduction, the magnitude of these two threshold levels depends on the payoff vector 

𝑧 = (𝑧(1), 𝑧(2)). Specifically, it depends on whether 𝑧(1) − 𝑧(2) ≤ 𝑎𝐻𝑐1 − 𝑎𝐿𝑐1 
(case 1) or 𝑧(1) − 𝑧(2) ≥ 𝑎𝐻𝑐1 − 𝑎𝐿𝑐1 (case 2). The next pages will study these two 

separate cases in order to determine the optimal contract between the banks. 

3.2.1 Case 1 

Under case 1, bank 1 and bank 2 hold  𝑥1 = 𝑎𝐻𝑐1 − 𝑧(1) and 𝑥2 = 𝑎𝐻𝑐1 +
𝑧(2) which are the sufficient cash amounts to cover the early withdrawals. Expected 
payoffs of banks with these specified cash holdings are denoted as follows: 

ω=1 1 1 1 ω=2 2 2 2
p Π (r (s = C, s = C)) + p Π (r (s = C, s = C))i i i i i i1 3-i 2 3-i

ω=1 ω=2
= p Π (r) + p Π (r)i i1 2

 (7) 

Since neither of the banks liquidates in any of the states, they obtain the higher 

return 𝑟 from the common project at 𝑡2 in equation (6). 

The sum of their expected payoffs, 
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ω=1 ω=2p Π (r) +p Π (r)i i1 2i i

   
       

 (8) 

at the optimal cash levels  𝑥1 = 𝑎𝐻𝑐1 − 𝑧(1) and 𝑥2 = 𝑎𝐻𝑐1 + 𝑧(2) is 

calculated by inserting the values of Π𝑖
𝜔(𝑟) as represented in equation (6). This sum 

is equal to: 

(r -1) z(1)- z(2) +2r(1- a c )H 1
+a c - a c -(2- a - a )cH L H L1 1 2

    (9) 

The sum of banks’ expected payoffs in equation (9) is independent from the 

(net) upfront commitment fee, 𝑧(0) and is strictly increasing in 𝑧(1) − 𝑧(2) since 𝑟 >
1 under ‘case 1’ which occurs when 𝑧(1) − 𝑧(2) ≤ 𝑎𝐻𝑐1 − 𝑎𝐿𝑐1. 

3.2.2 Case 2 

When it comes to ‘case 2’, bank 1 and bank 2 hold cash amounts of 

 𝑥1 = 𝑎𝐿𝑐1 − 𝑧(2) and 𝑥2 = 𝑎𝐿𝑐1 + 𝑧(1). In a similar way, one may calculate the sum 

of banks’ expected payoffs at the optimal cash levels  𝑥1 = 𝑎𝐿𝑐1 − 𝑧(2) and 

𝑥2 = 𝑎𝐿𝑐1 + 𝑧(1), which is equal to: 

 (1- r) z(1)- z(2) +2r(1- a c )L 1

+a c - a c -(2- a - a )cL H H L1 1 2

 (10) 

The sum of banks’ expected payoffs in equation (10) is again independent from 

z(0) but is strictly decreasing in 𝑧(1) − 𝑧(2) since 𝑟 > 1 under ‘case 2’ which occurs 

when 𝑧(1) − 𝑧(2) ≥ 𝑎𝐻𝑐1 − 𝑎𝐿𝑐1. 

To summarize, the sum of banks’ expected payoffs (equation (9)) is strictly 

increasing in (𝑧(1) − 𝑧(2)) when 𝑧(1) − 𝑧(2) ≤ 𝑎𝐻𝑐1 − 𝑎𝐿𝑐1. and it is (equation 

(10)) strictly decreasing with the same slope when 𝑧(1) − 𝑧(2) ≥ 𝑎𝐻𝑐1 − 𝑎𝐿𝑐1. And, 

it is clear that the sum of expected payoffs under ‘case 1’ and ‘case 2’ (equations (9) 

and (10)) are equal at the point 𝑧(1) − 𝑧(2) = 𝑎𝐻𝑐1 − 𝑎𝐿𝑐1. This is illustrated with 

Figure 2. 

Accordingly, banks set optimally the difference of insurance payments (𝑧(1) −
𝑧(2)) to the difference of early withdrawals between the two states that is (𝑎𝐻𝑐1 −
𝑎𝐿𝑐1) since the sum of their expected payoffs is increasing until this point but after that 

it starts to decrease. It means that ‘case 1’ and ‘case 2’ overlap at the optimum. In other 

words, if banks do not want to liquidate (go bankrupt) due to early withdrawals in any 
of the states and hold always enough cash for this purpose in equilibrium, they match 

the necessary cash amounts (threshold cash levels) of the two states with a liquidity 

network relationship. Banks zero out the variance of the liquidity shock due to early 

withdrawals by setting 𝑧(1) − 𝑧(2) = 𝑎𝐻𝑐1 − 𝑎𝐿𝑐1with this relationship. In other 

words, they are able to get rid of the liquidity risk. 
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Figure 2 Sum of Expected Payoffs 

 
Notes: This figure depicts how the sum of banks’ expected payoffs changes with respect to the difference of net 

credit amounts exchanged by banks (or the difference of insurance payments in states 1 and 2). The 
payoff function strictly increases under ‘Case 1’ that occurs when z(1)-z(2) is smaller than (a

H
c
1 

– a
L
c
1
) 

and after that point it starts to decrease when z(1)-z(2) is bigger than (a
H

c
1 

– a
L
c
1
). Thus the optimal 

point for the total payoff function occurs at z(1)-z(2)= (a
H

c
1 

– a
L
c
1
) where ‘Case 1’ and ‘Case 2’ overlaps. 

In other words, banks match the necessary cash amounts of the two states to prevent early liquidation 
with the committed credit lines 

At this point, it is interesting to point out that if the payoff vector 𝑧 is set to be 

symmetric, meaning that 𝑧(1) and 𝑧(2) are equal in absolute terms, the solution 

becomes equivalent to the one in Allen and Gale (2000). Banks hold as cash an amount 

of 
𝑎𝐻𝑐1+𝑎𝐿𝑐1

2
 and the bank that has a high demand for liquidity obtains an amount of 

𝑎𝐻𝑐1−𝑎𝐿𝑐1

2
 from the other bank with the low liquidity shock. However, this is just a 

special case of the optimal network relationship in which the payoff vector 𝑧 is 

symmetric. The next step is to determine the net of upfront commitment fee or the 

price of the contract, 𝑧(0). This network relationship could take place only if both 

banks are willing to enter into it. In other words, they would prefer to enter into this 

relationship if they do at least as well as without this relationship. Thus, the (net) 

upfront commitment fee 𝑧(0) should lie within a specific range in order to satisfy the 

participation constraints of both banks.  

By employing these ideas, the next proposition presents the characteristics of 

the liquidity network relationship that takes place between the two banks. 

Proposition 2. It is optimal for banks to set 𝑧(1) − 𝑧(2)to 𝑎𝐻𝑐1 − 𝑎𝐿𝑐1 and 

𝑧(0) lies in  𝑧(1) −
(𝑎𝐻𝑐1−𝑎𝐿𝑐1)(𝑟−𝑝1)

𝑟
≤ 𝑧(0) ≤ 𝑧(1) −

(𝑎𝐻𝑐1−𝑎𝐿𝑐1)𝑝2

𝑟
. 

Proof. The condition regarding the payoff vector 𝑧 is explained in the text. Here, 

the feasible range of 𝑧(0) will be determined from the participation constraints of 

banks. In order that banks enter into a network relationship by which they dispose of 

the liquidity risk as described, they should not be worse off than they would be had 
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they not constructed such a financial relationship. So, one should compare banks’ 

equilibrium payoffs with the liquidity network relationship to the payoff they would 

have had if they had not settled such a relationship but again prevented early 

liquidation by holding a cash amount equal to 𝑎𝐻𝑐1. Accordingly, for bank 1 it should 

hold that its payoff with the network relationship, 

𝑝1Π1
𝜔=1(𝑟1

1(𝑠1
1 = 𝐶, 𝑠2

1 = 𝐶)) + 𝑝2Π1
𝜔=2(𝑟1

2(𝑠1
2 = 𝐶, 𝑠2

2 = 𝐶))

= 𝑝1Π1
𝜔=1( 𝑟 ) + 𝑝2Π1

𝜔=2( 𝑟 ) 

at the optimal cash level  𝑥1 = 𝑎𝐻𝑐1 − 𝑧(1) =  𝑎𝐿𝑐1 − 𝑧(2)  is bigger or equal 

than the payoff it would have had if it were independent and held a cash amount of 

𝑥1 = 𝑎𝐻𝑐1. By writing down this idea in mathematical terms, we get the following: 

(1 -z(0) -𝑎𝐻𝑐1+ z(1)) 𝑟  + 𝑎𝐻𝑐1 -z(1) + 𝑝1z(1) + 𝑝2z(2) -𝑝1𝑎𝐻𝑐1 -𝑝1 
(1 −  𝑎𝐻)𝑐2 -𝑝2𝑎𝐿𝑐1-𝑝2(1 − 𝑎𝐿)𝑐2 ≥(1 -𝑎𝐻𝑐1) 𝑟 + 𝑎𝐻𝑐1  -𝑝1𝑎𝐻𝑐1 -𝑝1 (1 −  𝑎𝐻)𝑐2 -
𝑝2𝑎𝐿𝑐1–𝑝2(1 − 𝑎𝐿)𝑐2 

This inequality yields 𝑧(0) ≤ 𝑧(1) −
(aHc1−aLc1)p2

r
 after substituting the 

equilibrium condition that is z(1) -z(2) =𝑎𝐻𝑐1 − 𝑎𝐿𝑐1 . 
By following analogous steps, one may obtain the participation constraint of 

bank 2, which reads as follows: 

(1+z(0) -𝑎𝐻𝑐1- z(2)) 𝑟  + 𝑎𝐻𝑐1+z(2)-𝑝1z(1)-𝑝2z(2) -𝑝1𝑎𝐿𝑐1 -𝑝1 (1 −  𝑎𝐿)𝑐2 
-𝑝2𝑎𝐻𝑐1-𝑝2(1 − 𝑎𝐻)𝑐2 ≥(1 -𝑎𝐻𝑐1) 𝑟 + 𝑎𝐻𝑐1-𝑝1𝑎𝐿𝑐1 -𝑝1 (1 −  𝑎𝐿)𝑐2 -𝑝2𝑎𝐻𝑐1–
𝑝2(1 − 𝑎𝐻)𝑐2 

From this inequality, one obtains 𝑧(0) ≥  𝑧(1) −  
(𝑎𝐻𝑐1−𝑎𝐿𝑐1)(𝑟−𝑝1)

𝑟
.  

Proposition 2 shows that the (net) upfront commitment fee or the price of the 

contract is dependent on idiosyncratic risks of the banks. The range which includes the 

feasible values of 𝑧(0) shifts rightward as bank 1 gets riskier, i.e. the probability that 

bank 1 is hit by a high liquidity shock (𝑝1) gets bigger. Put differently, the upfront 

commitment fee 𝑧(0) increases as bank 1 (2) gets riskier (more secure) meaning that 

𝑝1 increases (𝑝2 decreases). To get the intuition behind this result, remember that 𝑧(0) 
is the price of the ‘committed credit line’ contract that bank 1 pays to bank 2 as the 

buyer of the contract. Hence, bank 1 faces a higher price if it is riskier. From the 

viewpoint of bank 2, it is compensated by collecting a higher fee if it is less risky. This 
result is in accordance with relatively new literature, which shows that risk-based 

pricing takes place in the interbank market. Compared to the more traditional view, 

which presumes there is a single rate in the interbank market for all borrowers, this 

strand of literature has been able to empirically demonstrate that high-risk banks have 

consistently paid more than safer banks. (King, 2008, Furfine, 2001). 

To conclude, this section has shown that banks dispose of their liquidity risk by 

equating the necessary cash amounts for the two states. Moreover, the two banks need 

to hold in total less cash for early consumers compared to the situation where they do 

not establish such a network but stay independent. More precisely, with this network 

the two banks hold in total ∑ 𝑥𝑖𝑖 = 2𝑎𝐻𝑐1 + 𝑧(2) − 𝑧(1) = 2𝑎𝐿𝑐1 + 𝑧(1) − 𝑧(2) =
𝑎𝐻𝑐1 + 𝑎𝐿𝑐1. However, the two banks in total would need to hold 2𝑎𝐻𝑐1 for early 

consumers if they had stayed independent. That is to say, the total required cash 

holdings of the whole banking system decreases by means of this network relationship. 
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4. The Case of Imperfectly Negatively Correlated Liquidity Shocks 

Previous sections focused on the liquidity network relationship that the two 

banks establish when they face perfectly negatively correlated liquidity shocks. It is 

shown that banks eliminate their liquidity risk by equating the necessary cash amounts 

to prevent an early liquidation for each state with such a financial relationship. 

However, it would not be possible for banks to reduce the variance of the liquidity 

shock to zero if they faced imperfectly correlated liquidity shocks. Then, it is 

interesting to ask whether banks would prefer to enter into a similar network 

relationship even with imperfectly negatively correlated liquidity shocks under which 

they cannot eliminate the liquidity risk. 
Accordingly, consider again two banks in two separate regions as before. All of 

the model specifications remain the same, except that there exists a third state where 

both banks face a high proportion of early consumers. Then, the proportions of early 

consumers with respect to two regions and three states are as follows: 

a inR ,a inR withpH L1 2 1
Theproportionofearlyconsumers =: a inR ,a inR withpL H1 2 2

a inR ,a inR withpH H1 2 3

 
 
 
 
 
 
 
 
 

 (11) 

where ∑ 𝑝𝑖 = 1𝑖 . 
It is clear that banks cannot be insurers of each other in the third state since they 

both realize a high liquidity shock. Thus, they are never able to completely get rid of 

the liquidity risk as they are with the perfectly negatively correlated two states. 

The result of the previous section shows us that banks will prefer to match the 

threshold cash levels of the states 𝜔 = 1 and 𝜔 = 2 that are required to prevent an 

early liquidation (bankruptcy) if they enter into a network relationship. In this respect, 

banks’ liquidation versus continuation decisions with imperfectly negatively correlated 

three states are as follows: I) the bank liquidates in all three states if it prefers to hold 

a cash amount that is less than the necessary amount to be able to cover the early 

withdrawals of the states 𝜔 = 1 and 𝜔 = 2, II) the bank liquidates only in the third 

state 𝜔 = 3 if it prefers to hold a cash amount that is enough to cover the early 

withdrawals of the states 𝜔 = 1 and ω = 2 but not sufficient to cover the early 

withdrawals in state ω = 3 that is 𝑎𝐻𝑐1 and III) the bank does not liquidate in any of 

the states if it prefers to hold a cash amount of 𝑎𝐻𝑐1 that is enough to cover early 

withdrawals in any state. 

By following the same logic presented in proposition 1 that is 

min[Π𝑖
𝜔( 𝑟 ), Π𝑖

𝜔( 𝑟 )] > Π𝑖
𝜔( �̃� ) = 0, the banks will hold 𝑥1 = max[𝑎𝐻𝑐1 − 𝑧(1) =

𝑎𝐿𝑐1 − 𝑧(2), 𝑎𝐻𝑐1] = 𝑎𝐻𝑐1 and 𝑥2 = max[𝑎𝐿𝑐1 + 𝑧(1) = 𝑎𝐻𝑐1 + 𝑧(2), 𝑎𝐻𝑐1] =
𝑎𝐻𝑐1. In other words, banks will set their cash amounts optimally to 𝑥1 = 𝑥2 = 𝑎𝐻𝑐1 

under the case of imperfectly negatively correlated shocks. 

In this situation, realize that if banks hold optimally the maximum of the 

necessary amounts to prevent an early liquidation in each state, i.e. 𝑥𝑖 = 𝑎𝐻𝑐1 as cash, 
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the liquidity network relationship does not provide any gain from the social efficiency 

point of view, considering the fact that there is no reduction in the total cash amount 

required to prevent early liquidation. The banks could have stayed independent and 

they would have still prevented early liquidation by holding the same amount of cash 

i.e., 𝑥𝑖 = 𝑎𝐻𝑐1. While the liquidity network relationship is beneficial and induces a 

reduction in the total required cash holdings of the whole banking system when banks 

are confronted with perfectly negatively correlated liquidity shocks, this is not the case 
with imperfectly negatively correlated liquidity shocks. However, the next proposition 

shows that there still exists a certain value of the (net) upfront commitment fee (price) 

𝑧(0) that makes banks indifferent between staying independent and forming a network 

relationship. That means even if there is no efficiency gain of the network relationship, 

the banks may still form one that leaves them indifferent. This is an interesting result, 

giving an idea why the modern financial system is too much inter-connected, which 

may cause contagion effects in the occurrence of sudden shocks. Basically, the 

interconnection between banks is even robust to the extreme case in which there is no 

direct gain from such a financial relationship. Despite the fact that there is still a price 

for the committed credit lines contract that the banks can mutually agree on, the set of 

feasible prices shrinks when the shocks of banks get less negatively correlated. Put 
differently, the interbank market gets narrowed when banks experience common 

shocks like in a crisis situation. This is similar to what has been observed during the 

financial crisis of 2007-2009, when the interbank market lived through a freeze due to 

the common ‘precautionary’ demand for liquidity by banks. (Acharya and Skeie, 2011) 

As already discussed above, whether banks with optimal cash amounts of 𝑥𝑖 =

𝑎𝐻𝑐1 will settle a network relationship in which they equate the threshold values that 

are required to continue the project in 𝑡2 for states  ω = 1 and ω = 2, depends on the 

value of the upfront commitment fee, 𝑧(0). Proposition 3 shows that the interval that 

happens to contain the feasible values of 𝑧(0), which make the banks prefer the 

network relationship over staying independent, shrinks to a single value under the case 

of imperfectly negatively correlated liquidity shocks. Thus, the banks set the value of 

the upfront commitment fee 𝑧(0) to this certain value which is determined below. This 

network relationship makes them as good as staying independent. However, existence 

of a single value for the upfront commitment fee should not create a concern whether 

it might be an unstable solution. Since the banks are indifferent between staying 

independent and forming a network, it would imply that each outcome is realized fifty 

percent of the time. 

Proposition 3. The (net) upfront commitment fee 𝑧(0) takes a single value, i.e. 

𝑧(0) =
(1−𝑝3)𝑧(1)−(𝑎𝐻𝑐1−𝑎𝐿𝑐1)𝑝2

r
 for the existence of a liquidity network relationship 

between banks. 

Proof. The feasible value of 𝑧(0) is determined from the participation 

constraints of banks: They should be satisfied in order to have a network relationship 

between banks in which the threshold cash levels of the states 𝜔 = 1 and 𝜔 = 2 that 

are required to prevent an early liquidation are equal, i.e.  

 𝑧(1) − 𝑧(2) = 𝑎𝐻𝑐1 − 𝑎𝐿𝑐1
 . In other words, banks should not be worse off than they 

would be had they not constructed such a financial relationship. Thus, the task is to 

compare banks’ equilibrium payoffs with the network relationship to the payoff they 
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would have had if they stayed independent but again prevented early liquidation with 

a cash amount of 𝑥𝑖 = 𝑎𝐻𝑐1. 

Accordingly, for bank 1 it should hold that its payoff with the network 

relationship, 

∑ 𝑝𝜔Π1
𝜔(𝑟1

𝜔(𝑠1
𝜔 = 𝐶, 𝑠2

𝜔 = 𝐶))
𝜔

 

at the optimal cash level 𝑥1 = 𝑎𝐻𝑐1 summed over the two states is bigger than or equal 

to than the payoff it would have had if it stayed independent and held again a cash 

amount of 𝑥1 = 𝑎𝐻𝑐1: 

 (1 -z(0) -𝑎𝐻𝑐1) 𝑟  + 𝑎𝐻𝑐1+ 𝑝1z(1) + 𝑝2z(2) –(1 − 𝑝2)𝑎𝐻𝑐1 –(1 − 𝑝2) (1 −  𝑎𝐻)𝑐2 
-𝑝2𝑎𝐿𝑐1-𝑝2(1 − 𝑎𝐿)𝑐2≥(1 -𝑎𝐻𝑐1) 𝑟 + 𝑎𝐻𝑐1-(1 − 𝑝2)𝑎𝐻𝑐1-(1-𝑝2) (1 −  𝑎𝐻)𝑐2 -
𝑝2𝑎𝐿𝑐1–𝑝2(1 − 𝑎𝐿)𝑐2 

This inequality yields  𝑧(0) ≤
(1−𝑝3)𝑧(1)−(𝑎𝐻𝑐1−𝑎𝐿𝑐1)𝑝2

r
  when the equilibrium 

condition,  𝑧(1) − 𝑧(2) = 𝑎𝐻𝑐1 − 𝑎𝐿𝑐1 is substituted. 

Similarly, the participation constraint of bank 2 is presented with the next 

inequality: 

(1+z(0) -𝑎𝐻𝑐1) 𝑟  + 𝑎𝐻𝑐1- 𝑝1z(1) - 𝑝2z(2) –𝑝1𝑎𝐿𝑐1 –𝑝1 (1 −  𝑎𝐿)𝑐2 –(1−𝑝1)𝑎𝐻𝑐1-
(1 − 𝑝1)(1 − 𝑎𝐻)𝑐2≥(1 -𝑎𝐻𝑐1) 𝑟 + 𝑎𝐻𝑐1-𝑝1𝑎𝐿𝑐1-𝑝1(1 −  𝑎𝐿)𝑐2  –(1 − 𝑝1)𝑎𝐻𝑐1–
(1 − 𝑝1)(1 − 𝑎𝐻)𝑐2 

From this inequality, one obtains 𝑧(0) ≥
(1−𝑝3)𝑧(1)−(𝑎𝐻𝑐1−𝑎𝐿𝑐1)𝑝2

r
  by substituting the 

equilibrium condition, 𝑧(1) − 𝑧(2) = 𝑎𝐻𝑐1 − 𝑎𝐿𝑐1. 

5. Conclusion 

Banks or financial institutions that operate in separate regions and thus are 

likely to face different liquidity shocks may enter into a network relationship. Different 

than the previous literature, this paper perceives this network relationship as 

’committed credit lines’ contract in the market created by banks without any additional 
restrictions. Then, the price and the payoff vector of this contract, which perfectly 

insures banks against liquidity shocks, is determined optimally in equilibrium. It is 

seen that the price or the upfront commitment fee depends on the idiosyncratic shocks 

of the banks, which is consistent with some recent empirical evidence of a risk-based 

pricing in the interbank market. Banks are also able to decrease the total required cash 

holdings of the banking system for the liquidity needs of the early consumers. 

Subsequently, the paper looks at the case where banks have imperfectly 

negatively correlated liquidity shocks. It is not possible anymore for banks to zero out 

the variance of the liquidity shock. Despite the fact that banks cannot eliminate the 

liquidity risk completely, they may still establish a liquidity network relationship with 

which banks insure each other in hedgeable states. This is true even when there is no 

direct efficiency gain from this relationship in terms of the total required cash holdings 
to prevent early liquidation. The reason for that is that there still exists an agreeable 

price for the contract, which leaves both banks indifferent between staying independent 

and entering into this relationship. But this also means that the set of feasible prices 

shrinks to a single value when banks face common shocks. 
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