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Appendix A: Proof of Proposition 2 

    Let us consider ሼܺ௧ାଵሽ௧ୀஶ
ାஶ  following an ݌)ܣܯܫܴܣ, ݀, process, where ௧ܹାଵ (ݍ = (1 −  ௗܺ௧ାଵ represents a(ܤ

stationary and invertible ݌)ܣܯܴܣ, ௝ܼ௧ܤ) a backshift operator ܤ process, with (ݍ = ܼ௧ି௝). Thus, 

 

௧ܹ − ෍ ߶௝ ௧ܹି௝ = ߜ + ௧ߝ − ෍ ,௧ି௜ߝ௜ߠ

௤

௜ୀଵ

௣

௝ୀଵ

 

1)(ܤ)߶ − ௗܺ௧ାଵ(ܤ = ߜ +  .௧ାଵߝ(ܤ)ߠ

 

    Following Box, Jenkins, and Reinsel (2008), let us define the generalized autoregressive operator as: 

 

(ܤ)ܳ ≡ 1)(ܤ)߶ − ௗ(ܤ = ൫1 − ߶ଵܤ − ߶ଶܤଶ − ⋯ − ߶௣ܤ௣൯(1 −  ,ௗ(ܤ

           = ൫1 − ߮ଵܤ − ߮ଶܤଶ − ⋯ − ߮௣ାௗܤ௣ାௗ൯. 

 

    Hence, we could write the process ܺ௧ାଵ as follows: 

 

௧ܺ(ܤ)ܳ = ߜ + ௧ߝ(ܤ)ߠ . 

 

    For every single forecasting horizon ℎ, the optimal forecast satisfies: 

 

ܺ௧
௙(ℎ) =

ە
ۖ
۔

ۖ
ۓ

෍ ߮௜ܺ௧
௙(ℎ − ݅) + ߜ − ෍ ௧ା௛ି௜ߝ௜ߠ

௤

௜ୀ௟

௣ାௗ

௜ୀଵ

,    ݂݅ ℎ ≤ ݍ

෍ ߮௜ܺ௧
௙(ℎ − ݅) + ߜ

௣ାௗ

௜ୀଵ

,                                   ݂݅ ℎ > ݍ

  (1ܣ)       ,

 

    The general solution for the homogeneous difference equation (A1) when ℎ >  :is given by ݍ

 

ܺ௧
௙(ℎ) = ෍ ܿ௜(ݐ)݉௜

௛ + ሾܾ଴(ݐ) + ܾଵ(ݐ)ℎ + ܾଶ(ݐ)ℎଶ + ⋯ + ܾௗିଵ(ݐ)ℎௗିଵሿ

௣

௜ୀଵ

, 

 

where ܿ(ݐ) and ܾ(ݐ) represents adaptive coefficients, that is, coefficients that are stochastic and functions of the 
process at time ݐ, and the terms ݉௜ corresponds to the roots of the following expression: 

 

݉௣ − ߶ଵ݉௣ିଵ − ߶ଶ݉௣ିଶ − ⋯ − ߶௣ = 0. 

 

    Expression (A1) is not homogeneous, so we need to add a particular solution, which is given by: 

 

ܾௗ݈ௗ, 

 

where ܾௗ is a deterministic coefficient. Thus, the eventual or explicit forecast function is given by: 
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ܺ௧
௙(ℎ) = ෍ ܿ௜(ݐ)݉௜

௛

௣

௜ୀଵ

+ (ܾ଴(ݐ) + ܾଵ(ݐ)ℎ + ܾଶ(ݐ)ℎଶ +  (2ܣ)       ⋯

… + ܾௗିଵ(ݐ)ℎௗିଵ) + ॴ(ఋஷ଴)ܾௗℎௗ;        ܽ݊݀ 

ℎ > ݍ − ݌ − ݀. 

 

    The previous expression characterizes long horizon forecasts from ݌)ܣܯܫܴܣ, ݀,  models. It is interesting (ݍ
that the moving average terms only play a role in the determination of the adaptive coefficients. Besides, 
stationary roots of the autoregressive operator will vanish when the forecasting horizon lengthens as they have 
an absolute value less than one. 

    Finally, the influence of unit roots determines the presence of a polynomial of order ݀ in the forecast horizon 
ℎ, in which some of the coefficients are adaptive. If the econometrician mistakenly considers that the ௧ܻ process 
follows an ݌)ܣܯܫܴܣ, 1, ߜ then he or she will compute the forecasts according to (A2). When (ݍ = 0, and for 
large values of ℎ we will have that the MSPE is given by: 

 

(ℎ)ܧܲܵܯ = ॱൣ ௧ܻା௛ − ௧ܻ
௙(ℎ)൧

ଶ
, 

(ℎ)ܧܲܵܯ = ॱ ൥ ௧ܻା௛ − ෍ ܿ௜(ݐ)݉௜
௛ − ܾ଴(ݐ)

௣

௜ୀଵ

൩

ଶ

, 

(ℎ)ܧܲܵܯ = ॽ ൥ ௧ܻା௛ − ෍ ܿ௜(ݐ)݉௜
௛ − ܾ଴(ݐ)

௣

௜ୀଵ

൩ + ൦ॱ ൥ ௧ܻା௛ − ෍ ܿ௜(ݐ)݉௜
௛ − ܾ଴(ݐ)

௣

௜ୀଵ

൩൪

ଶ

, 

(ℎ)ܧܲܵܯ = ॽ ൥ ௧ܻା௛ − ෍ ܿ௜(ݐ)݉௜
௛

௣

௜ୀଵ

൩ + ॽሾܾ଴(ݐ)ሿ − 2ℂ ൥ ௧ܻା௛ − ෍ ܿ௜(ݐ)݉௜
௛, ܾ଴(ݐ)

௣

௜ୀଵ

൩

+ ൦ॱሾ ௧ܻሿ − ෍ ݉௜
௛

௣

௜ୀଵ

ॱൣܿ௜(ݐ) − ॱሾܾ଴(ݐ)ሿ൧൪

ଶ

. 

 

 

    We notice that: 

 

lim
௛→ஶ

൦ॱሾ ௧ܻሿ − ෍ ݉௜
௛

௣

௜ୀଵ

ॱሾܿ௜(ݐ)ሿ − ॱሾܾ଴(ݐ)ሿ൪

ଶ

+ ॽሾܾ଴(ݐ)ሿ 

= ൣॱሾ ௧ܻሿ − ॱሾܾ଴(ݐ)ሿ൧
ଶ

+ ॽሾܾ଴(ݐ)ሿ. 

 

    Therefore we will place attention on the following term: 

 

ॽ ൥ ௧ܻା௛ − ෍ ܿ௜(ݐ)݉௜
௛

௣

௜ୀଵ

൩ − 2ℂ ൥ ௧ܻା௛ − ෍ ܿ௜(ݐ)݉௜
௛

௣

௜ୀଵ

, ܾ଴(ݐ)൩. 

 

    First, notice that: 
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ॽ ൥ ௧ܻା௛ − ෍ ܿ௜(ݐ)݉௜
௛

௣

௜ୀଵ

൩ = ॽሾ ௧ܻା௛ሿ + ॽ ൥෍ ܿ௜(ݐ)

௣

௜ୀଵ

݉௜
௛൩ − 2ℂ ൥ ௧ܻା௛, ෍ ܿ௜(ݐ)݉௜

௛

௣

௜ୀଵ

൩, 

= ॽሾ ௧ܻሿ + ॽ ൥෍ ܿ௜(ݐ)

௣

௜ୀଵ

݉௜
௛൩ − 2ℂ ෍ൣ ௧ܻା௛ , ܿ௜(ݐ)݉௜

௛൧

௣

௜ୀଵ

, 

= ॽሾ ௧ܻሿ + ෍ห݉௜
௛ห

ଶ
ॽሾܿ௜(ݐ)ሿ + ෍ ෍ ℂൣܿ௜(ݐ)݉௜

௛, ௝ܿ(ݐ) ௝݉
௛൧

௣

௝ஷ௜

௣

௜ୀଵ

௣

௜ୀଵ

 

−2 ∑ ℂൣ ௧ܻା௛, ܿ௜(ݐ)݉௜
௛൧௣

௜ୀଵ . 

 

    Therefore, 

 

ॽ ൥ ௧ܻା௛ − ෍ ܿ௜(ݐ)݉௜
௛

௣

௜ୀଵ

൩ ≤ ॽሾ ௧ܻሿ + ෍ห݉௜
௛ห

ଶ
ॽሾܿ௜(ݐ)ሿ

௣

௜ୀଵ

+ 

+2 ෍ ෍หℂൣܿ௜(ݐ)݉௜
௛, ௝ܿ(ݐ) ௝݉

௛൧ห

௣

௝ழ௜

௣

௜ୀଵ

+ 2 ෍หℂൣ ௧ܻା௛, ܿ௜(ݐ)݉௜
௛൧ห

௣

௜ୀଵ

, 

≤ ॽሾ ௧ܻሿ + ෍ห݉௜
௛ห

ଶ
ॽሾܿ௜(ݐ)ሿ

௣

௜ୀଵ

+ 2 ෍ ෍ห݉௜
௛

ఫ݉
௛തതതതหℂൣܿ௜(ݐ), ௝ܿ(ݐ)൧

௣

௝ழ௜

௣

௜ୀଵ

+ 

+2 ෍ห݉ప
௛തതതതห|ℂሾ ௧ܻା௛, ܿ௜(ݐ)ሿ|,

௣

௜ୀଵ

 

≤ ॽሾ ௧ܻሿ + ෍ห݉௜
௛ห

ଶ
ॽሾܿ௜(ݐ)ሿ

௣

௜ୀଵ

+ 2 ෍ ෍ห݉௜
௛หห ௝݉

௛หටॽሾܿ௜(ݐ)ሿॽൣ ௝ܿ(ݐ)൧

௣

௝ழ௜

௣

௜ୀଵ

+ 

+2 ෍ห݉௜
௛หටॽൣܿ௜(ݐ)ॽሾ ௧ܻሿ൧

௣

௜ୀଵ

, 

= ॽሾ ௧ܻሿ + ෍|݉௜|ଶ௛ॽሾܿ௜(ݐ)ሿ

௣

௜ୀଵ

+ 2 ෍ ෍|݉௜|௛ห ௝݉ห
௛

ටॽሾܿ௜(ݐ)ሿॽൣ ௝ܿ(ݐ)൧

௣

௝ழ௜

௣

௜ୀଵ

+ 

+2 ∑ |݉௜|௛ටॽൣܿ௜(ݐ)ॽሾ ௧ܻሿ൧௣
௜ୀଵ . 

 

    So 

 

lim
௛→ஶ

ॽ ൥ ௧ܻା௛ − ෍ ܿ௜(ݐ)݉௜
௛

௣

௜ୀଵ

൩ ≤ ॽሾ ௧ܻሿ, 

 

provided that the absolute value of the stationary roots have absolute value less than one and therefore: 

 

lim
௛→ஶ

|݉௜|௛ = 0., 

 

    Now,  
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อℂ ൥ ௧ܻା௛ − ෍ ܿ௜(ݐ)݉௜
௛

௣

௜ୀଵ

, ܾ଴(ݐ)൩อ = อℂሾ ௧ܻା௛ , ܾ଴(ݐ)ሿ − ℂ ൥෍ ܿ௜(ݐ)݉௜
௛ , ܾ଴(ݐ)

௣

௜ୀଵ

൩อ, 

= อℂሾ ௧ܻା௛, ܾ଴(ݐ)ሿ − ෍ ℂൣܿ௜(ݐ)݉௜
௛ , ܾ଴(ݐ)൧

௣

௜ୀଵ

อ, 

≤ |ℂሾ ௧ܻା௛, ܾ଴(ݐ)ሿ| + ෍หℂൣܿ௜(ݐ)݉௜
௛, ܾ଴(ݐ)൧ห

௣

௜ୀଵ

, 

≤ ඥॽሾ ௧ܻା௛ሿॽሾܾ଴(ݐ)ሿ + ෍ห݉௜
௛หඥॽሾܿ௜(ݐ)ሿॽሾܾ଴(ݐ)ሿ,

௣

௜ୀଵ

 

= ඥॽሾ ௧ܻሿॽሾܾ଴(ݐ)ሿ + ෍|݉௜|௛ඥॽሾܿ௜(ݐ)ሿॽሾܾ଴(ݐ)ሿ

௣

௜ୀଵ

, 

→
௛→ஶ

ඥॽሾ ௧ܻሿॽሾܾ଴(ݐ)ሿ. 

 

    Finally, 

 

lim
௛→ஶ

(ℎ)ܧܲܵܯ ≤ ॽሾ ௧ܻሿ + ඥॽሾ ௧ܻሿॽሾܾ଴(ݐ)ሿ + ൣॱሾ ௧ܻሿ − ॱሾܾ଴(ݐ)ሿ൧
ଶ

+ ॽሾܾ଴(ݐ)ሿ, 

 

    implying that the ܧܲܵܯ(ℎ) is a bounded sequence as the terms on the right hand side do not depend on ℎ. 

 

Appendix B: Proof of Proposition 3 

    Let ௧ܻ be a stationary process as in Proposition 1. Let us also consider a white noise process ሼߝ௧ାଵሽ௧ୀିஶ
ାஶ  with 

variance ߪఌ
ଶ. Suppose that the econometrician mistakenly thinks that ௧ܻ follows a driftless ݌)ܣܯܫܴܣ, 1,  (ݍ

process 

 

1)(ܤ)߶ − (ܤ ௧ܻ = ௧ߝ(ܤ)ߠ , 

 

where 

 

(ܤ)߶ = 1 − ෍ ߶௜ܤ௜ ,

௣

௜ୀଵ

 

(ܤ)ߠ = 1 − ෍ ௜ܤ௜ߠ ,

௤

௜ୀଵ

 

௜ܺ௧ܤ = ܺ௧ି௜ . 

 

    This process can also be written as:  

 

(ܤ)ܳ ௧ܻ = ௧ߝ(ܤ)ߠ , 

(ܤ)ܳ ≡ 1)(ܤ)߶ − (ܤ = ൫1 − ߮ଵܤ − ߮ଶܤଶ − ⋯ − ߮௣ାଵܤ௣ାଵ൯. 

 

    In other words, the econometrician thinks that:  
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௧ܻା௛ = ෍ ߮௜ ௧ܻା௛ି௜ + ௧ା௛ߝ − ෍ ௧ା௛ି௜ߝ௜ߠ ,

௤

௜ୀଵ

௣ାଵ

௜ୀଵ

 

 

it follows that:  

 

ܳ(1) ≡ ߶(1)(1 − 1) = 0 = ൫1 − ߮ଵ − ߮ଶ−. . . −߮௣ାଵ൯, 

 

thus: 

 

෍ ߮௜ = 1.

௣ାଵ

௜ୀଵ

 

 

    According to his or her belief, the optimal linear ℎ-step-ahead forecast ௧ܻ
௙(ℎ) is given by: 

 

௧ܻ
௙(ℎ) = ෍ ߮௜ ௧ܻ

௙(ℎ − ݅) + ௧ߝ
௙(ℎ) − ෍ ௧ߝ௜ߠ

௙(ℎ − ݅),

௤

௜ୀଵ

௣ାଵ

௜ୀଵ

 

 

where: 

 

௧ܻ
௙(ℎ) = ௧ܻା௛   ݂݅   ℎ ≤ 0, 

௧ߝ
௙(ℎ) = ൜

0         ݂݅   ℎ > 0
௧ା௛ߝ    ݂݅   ℎ ≤ 0.

  

 

    We notice that: 

 

ॱൣߝ௧
௙(ℎ)൧ =  ,ℎ ݈݈ܽ ݎ݋݂   0

 

therefore,  

 

ॱൣ ௧ܻ
௙(ℎ)൧ = ෍ ߮௜ॱൣ ௧ܻ

௙(ℎ − ݅)൧.

௣ାଵ

௜ୀଵ

 

 

    Let us consider the following notation: 

 

௛ߤ ≡ ॱൣ ௧ܻ
௙(ℎ)൧. 

 

    With this notation we face the problem of solving the following equation in differences: 

 

௛ߤ = ෍ ߮௜ߤ௛ି௜ ,

௣ାଵ

௜ୀଵ
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௛ߤ = ߤ ≡ ॱሾ ௧ܻሿ   ݂݅   ℎ ≤ 0. 

 

    Let us use mathematical induction for the vector:  

 

ܵ(ℎ) ≡ ሼߤଵ, ,ଶߤ ,ଷߤ … , ௛ሽଵ×௛ߤ . 

 

    We wish to prove the following statement:  

 

ܵ(ℎ) ≡ ሼߤ, … , ℎ ݈݈ܽ ݎ݋݂   ሽଵ×௛ߤ ≥ 1, 

 

 

for ℎ = 1  we need to prove that 

 

ܵ(1) ≡ ሼߤଵሽ = ሼߤሽ. 

 

    So, we simply need to prove that:  

 

ଵߤ =  .ߤ

 

    To that end we write: 

 

ଵߤ = ෍ ߮௜ߤଵି௜ = ሾ߮ଵߤ଴ሿ

௣ାଵ

௜ୀଵ

+ ⋯ + ൣ߮௣ߤଵି௣൧ + ൣ߮௣ାଵିߤ௣൧ = ߤ ෍ ߮௜ =

௣ାଵ

௜ୀଵ

 .ߤ

 

    We could also prove the proposition for ℎ = 2. In this case we simply need to prove that:  

 

ܵ(2) ≡ ሼߤଵ, ଶሽߤ = ሼߤ,  ,ሽߤ

 

which is equivalent to prove that:  

 

ଵߤ = ଶߤ   ݀݊ܽ   ߤ =  .ߤ

 

    It turns out that we already know that ߤଵ = ଶߤ Therefore, we only need to prove that .ߤ =  To that end .ߤ
consider: 

 

ଶߤ = ෍ ߮௜ߤଶି௜ = ሾ߮ଵߤଵሿ

௣ାଵ

௜ୀଵ

+ ෍ ߮௜ߤଶି௜

௣ାଵ

௜ୀଶ

, 

ଶߤ = ሾ߮ଵߤଵሿ + ሾ߮ଶߤ଴ሿ + ⋯ + ൣ߮௣ߤଶି௣൧ + ൣ߮௣ାଵߤଵି௣൧, 

ଶߤ = ߤ ෍ ߮௜ = ߤ

௣ାଵ

௜ୀଵ

. 
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    Using the mathematical induction principle, let us assume now that for ℎത > 0 we know that: 

 

ܵ൫ℎത൯ = ሼߤ, … ,  .ሽଵ×௛ഥߤ

 

    We will prove then that: 

 

ܵ൫ℎത + 1൯ = ሼߤ, … ,  .ሽଵ×(ଵା௛)തതതߤ

௛ഥାଵߤ = ෍ ߮௜ߤ௛ഥାଵି௜ = ሾ߮ଵߤ௛ഥሿ

௣ାଵ

௜ୀଵ

+ ⋯ + ൣ߮௣ߤ௛ഥାଵି௣൧ + ൣ߮௣ାଵߤ௛ഥି௣൧. 

 

    Nevertheless, under the induction hypothesis we know that: 

 

௝ߤ = ݆ ݈݈ܽ ݎ݋݂ ߤ ≤ ℎ.ഥ  

 

    Therefore, 

 

௛ഥାଵߤ = ෍ ߮௜ߤ௛ഥାଵି௜ = ሾ߮ଵߤ௛ഥሿ

௣ାଵ

௜ୀଵ

+ ሾ߮ଶߤ௛ഥିଵሿ + ⋯ + ൣ߮௣ߤ௛ഥାଵି௣൧ + ൣ߮௣ାଵߤ௛ഥି௣൧, 

= ߤ ෍ ߮௜ = ߤ

௣ାଵ

௜ୀଵ

. 

 

    In other words, we have proved that: 

 

௝ߤ = ݆ ݈݈ܽ ݎ݋݂ ߤ ∈ ℤ. 

 

    This means that forecasts coming from the incorrect ݌)ܣܯܫܴܣ, 1,  :specification are unbiased because (ݍ

 

ॱൣ ௧ܻା௛ − ௧ܻ
௙(ℎ)൧ = ߤ − ௛ߤ = ߤ − ߤ = 0, 

 

and the proof is complete. 
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Appendix C: Descriptive statistics of the series 

 

Table C1: Descriptive statistics - three samples (*) 

  Mean St. dev. Max. Min. Sample 

  Longest estimation sample 

Canada 2,00 1,70 6,90 -0,20 1999.10-1999.1 

Sweden 3,00 3,40 12,60 -1,20 1999.10-1999.1 

Switzerland 2,28 2,08 6,60 -0,20 1999.10-1999.1 

United Kingdom 3,27 2,14 8,50 1,30 1999.10-1999.1 

United States 2,90 1,10 6,40 1,40 1999.10-1999.1 

  Evaluation sample 

Canada 2,10 0,90 4,70 -0,91 1999.2-2011.12 

Sweden 1,50 1,20 4,40 -1,60 1999.2-2011.12 

Switzerland 0,87 0,78 3,10 -1,20 1999.2-2011.12 

United Kingdom 2,12 1,13 5,20 0,50 1999.2-2011.12 

United States 2,50 1,30 5,50 -2,00 1999.2-2011.12 

  Full sample 

Canada 2,10 1,30 6,90 -0,90 1990.10-2011.12 

Sweden 2,10 2,40 12,60 -1,60 1990.10-2011.12 

Switzerland 1,42 1,59 6,60 -1,20 1990.10-2011.12 

United Kingdom 2,57 1,70 2,10 0,50 1990.10-2011.12 

United States 2,70 1,20 6,40 -2,00 1990.10-2011.12 

(*) Source: Authors' elaboration. 

 

Appendix D: A decision rule 

    As mentioned in the main body of the paper, Tables 1, 4, and 5 show, for different DGPs, a linkage between 
sample size, persistence, forecasting horizon and the relative accuracy of driftless unit-root-based forecasts. 
These tables suggest that given a DGP, a sample size ܴ and a forecasting horizon ℎ, there is an invertible 
function between the persistence of the process ߩ and the relative performance of driftless unit-root-based 
forecasts against forecasts coming from the true DGP with estimated parameters. 

    We can approximate this function via simulations to find the level of persistence ߩ(ܴ, ℎ)തതതതതതതതത above which driftless 
unit-root-based forecasts display higher accuracy than forecasts coming from the true DGP.1 Table D1 shows 
these persistence thresholds calculated using 5000 replications of the process defined by (4). In this case we 
compute the thresholds considering that driftless unit-root-based forecasts are constructed as linear optimal 
forecasts from model (5). 

    In a real life application, however, the true parameter ߩ is unobservable and therefore we cannot design a 

decision rule based on ߩ(ܴ, ℎ)തതതതതതതതത. Fortunately, our simulations also suggest the existence of an invertible function 
between the average estimated level of persistence ߩො and the relative performance of driftless unit-root-based 
forecasts against forecasts coming from the true DGP with estimated parameters.2 Therefore, it is also possible 
via simulations to find two observable thresholds coming from the average and median of the estimates of the 
persistence parameter.  

                                                        
1 Turner (2004) proceeds with simulations as well, in a different context, to find unobservable persistence thresholds for 
 .processes (݌)ܴܣ
2 A similar relationship seems to hold true between the median of the estimated level of persistence ߩො and the relative 
performance of driftless unit-root based forecasts against forecasts coming from the true DGP with estimated parameters. 
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    We denote these observable thresholds by (ߩ(ܴ, ℎ)෣തതതതതതതതത) and (ߩ(ܴ, ℎ)෣തതതതതതതതത
௠) respectively. In Table D1 we also report 

these observable thresholds. 

 

Table D1: Persistence threshold above which unit-root-based forecasts display lower MSPE. 

SARIMA Specification (*) 

  Unobservable threshold ρ   Observable threshold ρ   Observable threshold ρ 

R: 50 100 200   50 100 200   50 100 200 

h=1 0,73 0,90 0,96   0,66 0,85 0,93   0,68 0,86 0,93 

h=2 0,77 0,91 0,96   0,69 0,86 0,93   0,71 0,87 0,93 

h=3 0,79 0,91 0,96   0,71 0,86 0,93   0,73 0,87 0,93 

h=4 0,80 0,92 0,96   0,72 0,86 0,93   0,74 0,87 0,93 

h=5 0,81 0,92 0,97   0,72 0,86 0,94   0,74 0,87 0,94 

h=6 0,82 0,93 0,97   0,74 0,87 0,94   0,76 0,88 0,94 

h=12 0,83 0,94 0,97   0,75 0,88 0,94   0,77 0,89 0,94 

h=24 0,74 0,93 0,98   0,67 0,87 0,94   0,69 0,88 0,95 

h=36 0,70 0,93 0,97   0,64 0,87 0,94   0,66 0,88 0,94 

(*) Source: Authors' elaboration. 

 

    From Table D1 we clearly see that our thresholds are increasing with the sample size ܴ. They also look very 
stable across horizons when the sample size is larger (ܴ = 200, for instance).  

    Using one of these observable thresholds we can define the following simple operational rule. Given a sample 
size ܴ ∈{50;100;200} we can estimate the model in (4), get an estimate of the persistence parameter ߩො and 
generate a ℎ-step ahead forecast according to the following rule: 

 

ோܻ
௙(ℎ) = ൝ ௎ܻோ,ோ

௙ (ℎ)  ݂݅   ߩො > ,ܴ)ߩ ℎ)෣തതതതതതതതത
௠

ௌܻ,ோ
௙ (ℎ)                ݐ݋ℎ݁݁ݏ݅ݓݎ

.  

 

where ோܻ
௙(ℎ) represents the forecast for ோܻା௛ made with information known until time ݐ = ܴ, ௌܻ,ோ

௙ (ℎ) represents 

the optimal linear ℎ-step ahead forecast based on model (4) and ௎ܻோ,ோ
௙ (ℎ) represents the optimal linear ℎ-step 

ahead forecast based on model (5). 

    To evaluate the effectiveness of our rule, we generate again 5000 independent replications of size ܶ = 136 of 
the process (4) for different values of the persistence parameter ߩ. Then, in each replication of size ܶ = 136, we 
considered the first ܴ = 100 observations to construct three different ℎ-step ahead forecasts with ℎ ∈{1-
6;12;24;36}: the optimal linear forecast assuming the data is generated by process (4), the optimal linear forecast 
assuming the model is generated according to model (5) and the forecast constructed according to our rule in 
(10). 

    Table D2 shows the ratio of MSPE between forecasts generated according to our rule, and forecasts generated 
assuming stationarity (under the columns labelled with “S” from stationary) and the ratio of MSPE between 
forecasts generated according our rule and forecasts generated assuming the existence of a unit root (under the 
columns labelled with “UR” standing for unit root).  
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Table D2: Ratio of MSPE between the rule in (10) and forecasts assuming either 

stationarity of the presence of a unit root (*) 

  S UR S UR S UR S UR S UR S UR S UR 

ρ: 0,50 0,75 0,80 0,85 0,90 0,95 0,99 

  R=100 

h=1 1,00 0,81 1,00 0,94 1,01 0,97 1,02 0,99 1,00 1,00 0,99 1,02 0,97 1,02 

h=2 1,00 0,68 1,00 0,87 1,01 0,92 1,02 0,97 1,01 1,01 0,97 1,03 0,95 1,04 

h=3 1,00 0,60 1,01 0,81 1,02 0,89 1,03 0,94 1,03 1,01 0,96 1,03 0,92 1,05 

h=4 1,00 0,57 1,01 0,76 1,02 0,85 1,04 0,92 1,03 1,01 0,96 1,04 0,90 1,06 

h=5 1,00 0,55 1,01 0,72 1,02 0,81 1,06 0,89 1,04 1,00 0,96 1,04 0,88 1,06 

h=6 1,00 0,54 1,00 0,70 1,02 0,77 1,04 0,86 1,04 0,99 0,97 1,05 0,88 1,07 

h=12 1,00 0,49 1,00 0,59 1,02 0,67 1,06 0,76 1,06 0,92 0,94 1,03 0,81 1,07 

h=24 1,00 0,96 1,00 0,97 1,01 0,96 1,01 0,96 1,02 0,97 0,93 0,99 0,76 1,01 

h=36 1,00 0,97 1,00 0,97 1,00 0,96 1,00 0,97 1,01 0,99 0,92 1,00 0,63 1,01 

(*) Figures below unity favor the rule (10). "S" stands for stationarity and "UR" stand for unit root. 

Source: Authors' elaboration. 

 

    Results in Table D2 are interesting because they indicate that our extremely simple rule does a fairly good job 
in the detection of the forecast that should be used. For instance, when the process displays low persistence 
ߩ) ≤ 0.975) the rule generates forecasts with barely the same MSPE than the rule that assumes stationarity 
permanently. Furthermore, it also outperforms driftless unit-root-based forecasts by far. When the DGP displays 
high persistence (ߩ ≥ 0.95) our simple rule outperforms the “stationarity rule” but it is beaten if the forecasts are 
built under the assumption of a unit-root in the DGP. 

        It is important to point out that even when our rule is beaten, it is not outperformed by far. Table D2 
indicates that in the worst case our simple rule is outperformed by a 7%. However, in the best scenario, our rule 
outperforms its competitors by reductions in MSPE of more than 50%. Even when the DGP is persistent, gains 
up to 37% are reported. Overall, taking the average over the whole Table D2, our rule outperforms the fixed 
rules by 6%. Let us recall that we have introduced one of the simplest rules that can be designed. It might be 
interesting to analyze in further research refinements in this direction. 

 


