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Abstract 

We evaluate the ability of several univariate models to predict inflation in the US and in 

a number of inflation targeting countries at different forecasting horizons. We focus 

on forecasts coming from a family of ten seasonal models that we call the Driftless 

Extended Seasonal ARIMA (DESARIMA) family. Using out-of-sample Root Mean Squared 

Prediction Errors (RMSPE) we compare the forecasting accuracy of the DESARIMA 

family with that of traditional univariate time-series benchmarks available in the litera-

ture. Our results show that DESARIMA-based forecasts display lower RMSPE at short 

horizons for every single country, with the exception of one case. We obtain mixed results 

at longer horizons. In particular, when the family-median forecast is considered, in more 

than half of the countries our DESARIMA-based forecasts outperform the benchmarks 

at long horizons. Remarkably, the forecasting accuracy of our DESARIMA family is high 

in stable-inflation countries, for which the RMSPE is around 100 basis points when 

a prediction is made 24 and even 36 months ahead. 

1. Introduction 

Forecasts of economic and financial variables are important inputs for policy-

makers in the decision-making process. From time to time new forecasting tech-

niques appear in the literature with the hope of providing a better understanding 

of the evolution of key economic variables or with the simpler goal of reducing some 

measure of forecasting error. When evaluating whether a novel forecasting approach 

is useful for prediction, at least three elements are necessary: a measure of accuracy 

or loss function, a good enough benchmark against which to compare the new pre-

dictions, and an adequate test of predictive ability. In this work, we focus exclusively 

on the second point by introducing a family of models for benchmarking inflation 

forecasts. This family, denominated Driftless Extended Seasonal ARIMA (DESARIMA), 

contains ten seasonal univariate time-series models sharing the common feature 

of a unit root.
1
  

These models produce competitive forecasts at short and long horizons 

when compared to traditional univariate benchmarks used in the literature. Besides 

accuracy, our DESARIMA family contains all the desirable features of well-behaved 

univariate time-series models, but also some of their shortcomings. Some of the main 
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their comments. We would also like to thank Nicolás Rivera for his wonderful assistance. The views and 
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advantages of univariate time-series models are their simplicity and tractability. 

Since they rely only on lagged values of the dependent variable, they can be updated 

easily and out-of-sample analyses can be carried out in a short time. Furthermore, 

as Aiolfi, Capistrán and Timmermann (2011) point out, forecasts from time-series 

models can be used in combination with other strategies, including publicly available 

surveys, to greatly enhance forecast accuracy. Pincheira (2012a, 2012b) shows that 

adjusted combinations between univariate time-series models and surveys can sub-

stantially reduce the Root Mean Squared Prediction Error (RMSPE) of surveys. 

Similarly, Pincheira (2009) shows that when some models from the DESARIMA 

family are fed with highly accurate one-step-ahead forecasts, multi-step-ahead 

forecasts resulting from this particular type of combination substantially improve 

the accuracy of medium-term forecasts. This is important, because many big general 

equilibrium macro models could benefit from the higher accuracy of exogenous 

short- and medium-term forecasts.
2
 The shortcomings of univariate time-series 

models are well known. They include the omission of variables that may be relevant 

in the forecasting process and their unsuitability to provide economic explanations 

of the forecasts they produce. 

We evaluate our DESARIMA family in terms of its ability to produce 

accurate forecasts of the Consumer Price Index (CPI) year-on-year (YoY) inflation 

rate for a set of eleven inflation targeting countries plus the US.
3
 We evaluate 

the forecasting performance of the DESARIMA family by comparing its out-of-

sample RMSPE against a set of thirteen benchmark models commonly used in 

the literature. We also analyze the statistical significance of the differences between 

the best model of each family using the Giacomini and White (2006) test.
4
 The largest 

1 We mainly focus on a whole family of models and not on a particular model within this family because 

of the extensive literature pointing out the unstable predictive ability of traditional forecasting methods 

for output and inflation (see, for instance, Rossi, 2013, and Stock and Watson, 1996, 2003). Due to this 

instability, it is hard to think of a particular model performing well in predicting inflation in different 

countries at several forecasting horizons and at different moments in time. In our opinion, it would be less 

surprising to find some stability within a family of models sharing some common features. We do report, 

however, good predictive behavior also of the median forecast, which in our opinion could be considered 

as a final forecast when there is no clear guidance about which single model to use. 
2 For conducting monetary policy at the Central Bank of Chile, for instance, it is fairly usual to use 

exogenous short- and medium-term inflation forecasts as inputs for the big macro general equilibrium 

models. The different macroeconomic implications of a variety of monetary policy decisions are then 

analyzed in light of these models. Accurate short- and medium-term inflation forecasts are, therefore, 

critical for an adequate evaluation of different macroeconomic scenarios. 
3 The countries are Canada, Chile, Colombia, Israel, Mexico, Peru, South Africa, Sweden, Switzerland, 

Turkey, the United Kingdom and the US. 
4 The Giacomini and White (2006) (henceforth GW) and the Diebold and Mariano (1995)-West (1996) 

(henceforth DM-W) frameworks are very different in their fundamentals, though under some conditions 

their numerical calculation is exactly the same. In fact, GW claims that in some environments their test 

statistic “coincides with that proposed by Diebold and Mariano (1995)” (see page 1557 in GW). In 

the context of our paper, we use the t-type statistic suggested by GW, but it is exactly the same as the DM 

t-type statistic when comparing forecasts built for horizons greater than one period. Therefore, the only 

practical difference appears when comparing one-step-ahead forecasts. In this case, we rely on the stronger 

null hypothesis considered by GW, which exploits the simplifying feature of a martingale difference 

sequence in the time structure of the loss differential. This implies that the asymptotic variance can be 

consistently estimated by the sample variance and not only by a HAC estimator. As suggested by GW, we 

prefer to use the simpler calculation of the sample variance because it may increase the power of the test. 
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evaluation sample spans from February 1999 to December 2011 (155 observations)  

and includes forecasts made one, three, six, 12, 24, and 36 months ahead. 

We find that DESARIMA-based forecasts display lower out-of-sample RMSPE 

than forecasts coming from traditional benchmarks at short horizons for every single 

country in our sample, except Colombia. We obtain mixed results at longer horizons. 

In particular, when the median forecast is considered, in more than half of the coun-

tries our DESARIMA-based forecasts outperform the benchmarks at long horizons. 

Remarkably, the forecasting accuracy of our DESARIMA family is surprisingly high 

in stable-inflation countries, for which the RMSPE is around 100 basis points when 

a prediction is made 24 and even 36 months ahead. 

While the most frequent winner model within the DESARIMA family may be 

an adequate candidate for applied forecasters, in this paper we also report a good 

behavior of the median across the set of DESARIMA forecasts, which can be favor-

ably used as a unique forecasting method. 

The rest of the article is organized as follows: in Section 2 we describe our 

econometric setup. In Section 3 we describe the dataset. In Section 4 we present and 

discuss the results of our forecast evaluation. Finally, Section 5 concludes the paper. 

2. Econometric Setup 

We focus on monthly CPI YoY inflation defined as follows: 

                                              
12

100 100
t

t

t

CPI

CPI
π

−

= ⋅ −   

Our choice of YoY inflation as a target variable relies on the fact that, to our 

knowledge, every inflation targeting country in the world defines its target in YoY 

terms. For instance, considering a wider sample of inflation targeters, the Czech 

Republic has a target of 2% for the medium term. The United Kingdom has the same 

target, but it is supposed to be met at all times. In Chile, Thailand and Mexico 

the target is 3%. Some countries, such as Iceland, Norway, Poland, Romania and 

South Korea, have a target of 2.5%. The list is long, but all these countries express 

their targets in YoY terms. Given that the vast majority of the economies in our 

sample are inflation targeting countries, we think that forecasting YoY inflation is 

a reasonable way to proceed.
5 
 

We make use of models for this particular variable 
t

π , or for its first dif-

ferences defined as: 

                                                       
1t t t

π π π
−

∆ = −  

We are interested in h-step-ahead forecasts, where h takes the following 

values: 

                                                  {1,3,6,12,24,36}h∈   

It is important to mention that for horizons longer than one month our fore-

casts are constructed using the iterated method rather than the direct method. In 

the following two subsections we introduce the family of candidate and benchmark 

5 To our knowledge, there are no articles comparing the predictive behavior of a variable based on YoY or 
month-to-month rates. This might be an interesting point to address in future research. 
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Figure 1  United Kingdom CPI – Actual, Trend, and Seasonality 
 

Actual and Stochastic Trend Series 

                
Autocorrelation Function of Detrended Series 

                 
Source: Bank of England and authors’ computations. 

 

models that we will use in our empirical application. The third subsection describes 

the framework we use to evaluate our forecasts. 

2.1 Candidate Models: DESARIMA Family 

For the construction of an alternative family of models we use as a starting 

point two stylized facts characterizing the CPI: stochastic trend and seasonality. 

These facts are depicted in Figure 1 by taking the representative case of the United 

Kingdom. 

A general SARIMA specification allowing for stochastic trends and season-

ality in the natural logarithm of the CPI provides our basic forecasting framework:
6
  

               ( ) ( ) ( ) ( )( ) (1 ) 1 ln ( )
D

S d S S

E t E t
L L L L CPI L LΦ Φ δ Θ Θ ε− − = +                 (1) 

where: 

                                    ( )2

1 2
( ) 1 ... p

p
L L L LΦ φ φ φ= − − − −  

6 A recent survey of stationary ARMA models and their variations can be found in Holan, Lund and Davis 
(2010). 
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are the autoregressive (AR) and moving average (MA) lag operators that are supposed 

to be stationary and invertible, respectively. Here, L is a lag operator ( )j

t t jL x x
−

= ,  

S represents the frequency of the series (S = 12 for monthly series), and δ , 
jφ , 

Ejφ , 

jθ , and 
Ejθ  are parameters to be estimated. Finally, 

t
ε  is a white noise process with 

variance 2
σ . 

This specification captures the two aforementioned salient features of the CPI 

with some flexibility by allowing both seasonal and nonseasonal trends, and also 

allowing both AR and MA components. Nevertheless, expression (1) represents 

a nonparsimonious specification (especially with long lag lengths) given the number 

of unknown parameters: one intercept, p non-seasonal autoregressive terms, q non-

seasonal moving average terms, P seasonal autoregressive terms, and Q seasonal 

moving average terms. To alleviate the consequences of parameter uncertainty in our 

forecasts, we favor a parsimonious version of expression (1) by imposing the fol-

lowing restrictions on the lag operators: 

                                                    1p P q Q= = = =  

For simplicity, we also impose 

                                                     1 and 0d D= =  

Therefore, we now have the simpler expression: 

                    ( ) ( ) ( )12 12
(1 ) 1 (1 ) ln (1 ) 1

t E t
L L L CPI L Lρ φ δ θ θ ε− − − = + − −                   (2) 

in which the number of parameters is only five. Following Box and Jenkins (1970), 

Brockwell and Davis (1991), and Harvey (1993), we impose 1φ =  to obtain an even 

more parsimonious expression as follows:
7
  

                     ( ) ( ) ( )12 12(1 ) 1 (1 ) ln (1 ) 1
t E t

L L L CPI L Lρ δ θ θ ε− − − = + − −                      (3) 

This last expression is not only more parsimonious than expression (2), but also 

more convenient because by using the approximation that ( ) ( )12
ln ln

t t t
CPI CPIπ

−

≈ − , 

we can write equation (3) directly in terms of 
t

π : 

                                ( ) ( )12

1
(1 ) (1 ) 1

t t E t
L L Lρ π π δ θ θ ε

−

− − = + − −  

7 Notice that (3) could also be derived directly from (1) by assuming: 

  1 and 0,p q Q D d P= = = = = =  

in the understanding that the seasonal AR operator is defined as follows: 

  
( ) ( )

( )

2

1 2
1 ...  if 0

1 if 0

S S S PS

E E E EP

S

E

L L L L P

L P

Φ φ φ φ

Φ

= − − − − >

= =

 

We thank an anonymous referee for pointing this out. 
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which is equivalent to: 

                    
1 1 1 12 13

(1 )
t t t t t E t E t

Lπ δ ρ π ρπ ε θε θ ε θθ ε
− − − − −

= + − − + − − +  

Notice that this expression can also be written as: 

                     ( )1 1 2 1 12 3 13t t t t t t E t t
π π δ ρ π π ε θε θ ε θ ε

− − − − − −

− = + − + − − +                 (4) 

where 
3 E
θ θθ= . 

Expression (4) corresponds to an ARIMA(1,1,13) process for 
t

π  in which 

several MA coefficients are set to zero. Following Box, Jenkins and Reinsel (2008), 

the eventual or explicit form of the forecast function for (4) is given by: 

                                     |ˆ ,  for 11
1

h

t h t t t
c b h h

δ
π ρ

ρ
+

 
= + + > − 

                               (5) 

where |ˆ
t h t

π
+

 denotes the best linear h-step-ahead forecast of the inflation |t tπ  given 

the information of the process available at time t. Furthermore, 
t
c  and 

t
b  represent 

adaptive coefficients, i.e. coefficients that are stochastic and functions of the process 

at time t.
8
  

From expression (5) we can see that long-horizon forecasts of 
t

π  will be 

divergent unless we impose the additional restriction of no intercept ( 0δ = ).
9
 This 

constraint leads us to the following specification: 

                    ( )1 1 2 1 12 3 13t t t t t t E t t
π π ρ π π ε θε θ ε θ ε

− − − − − −

− = − + − − +                        (6) 

It is interesting to point out that some models commonly used in the literature 

are nested in expression (6). By taking 0ρ =  and 0
E

θ θ= = , we recover the random 

walk (RW) used by Groen, Kapetanios and Price (2009), which is also similar to 

the naive model used by Atkeson and Ohanian (2001) for the US. If we take only 

0ρ = , expression (6) describes the airline model introduced by Box and Jenkins 

(1970), which is considered very useful for forecasting monthly time series with 

seasonal patterns according to Ghysels, Osborn and Rodrigues (2006). Also, by 

taking 0ρ =  and 0
E
θ =  we recover the IMA(1,1) model used, among others, by 

Box, Jenkins and Reinsel (2008) and more recently by Croushore (2010). Finally, by 

taking 0
E
θ =  we recover the ARIMA(1,1,1) model used in Proietti (2011) to com-

pare the direct method versus the multistep iterated forecasting method. 

Expression (6) depends only on three unknown parameters: ρ , θ , and 
E
θ . 

We could define a family of eight models by considering the eight different varia-

tions of (6) in which we either include or exclude the terms multiplied by ρ , θ , and 

E
θ . None of these eight specifications, however, is capable of including two MA terms 

of orders 1 and 12 and simultaneously excluding the MA component of order 13. 

This is because 
3 E
θ θθ= , so setting either 0θ =  or 0

E
θ =  leads necessarily to 

3
0θ = . It might be relevant to add a couple of models allowing for two MA terms 

 

8 These adaptive terms are also function of the unknown parameters of the model. 
9 For a formal derivation and generalization of this result, see Pincheira and Medel (2012a). 
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Table 1  DESARIMA Family 

1 π π ε θε θ ε
− − −

− = − −
1 1 12t t t t E t

  

2 π π ε θε θ ε θθ ε
− − − −

− = − − +
1 1 12 13t t t t E t E t

 

3 ( )π π ρ π π ε θε θ ε
− − − − −

− = − + − −
1 1 2 1 12t t t t t t E t

 

4 ( )π π ρ π π ε θε θ ε θθ ε
− − − − − −

− = − + − − +
1 1 2 1 12 13t t t t t t E t E t

 

5 π π ε θ ε
− −

− = −
1 12t t t E t

 

6 π π ε
−

− =
1t t t

 

7 π π ε θε
− −

− = −
1 1t t t t

 

8 ( )π π ρ π π ε θ ε
− − − −

− = − + −
1 1 2 12t t t t t E t

 

9 ( )π π ρ π π ε
− − −

− = − +
1 1 2t t t t t

 

10 ( )π π ρ π π ε θε
− − − −

− = − + −
1 1 2 1t t t t t t

 

Source: Authors’ elaboration. 

 

of orders 1 and 12 without the inclusion of a MA term of order 13. This is so because 

in the particular case in which both coefficients θ  or 
E
θ  are small or close to zero, 

the parameter 
3 E
θ θθ=  can be of negligible size. Its estimate could potentially be 

more harmful than useful because our forecasts might be substantially contaminated 

with a noisy estimation. For this reason, we propose the following specification: 

                 ( )1 1 2 1 12 13t t t t t t E t E t
π π ρ π π ε θε θ ε θθ ϒε

− − − − − −

− = − + − − +                      (7) 

in which ϒ  can take the value 1 or 0. When 1ϒ =  we obtain the same family 

of eight models coming from expression (6). When 0ϒ = , however, we allow for 

the inclusion of the following two models: 

                              
( )1 1 2 1 12

1 1 12

1. 

2. 

t t t t t t E t

t t t t E t

π π ρ π π ε θε θ ε

π π ε θε θ ε

− − − − −

− − −

− = − + − −

− = − −

 

Because these two models do not have a direct SARIMA representation, we call 

our family of ten candidate models a Driftless Extended SARIMA family (DESARIMA). 

Table 1 provides the ten specifications belonging to our DESARIMA family. 

Now, suppose that we disregard the seasonal behavior of the CPI. This would 

be an adequate assumption when working with seasonally adjusted data. If we focus 

mostly on modeling monthly variations of inflation rates we could start from the fol-

lowing non-seasonal expression: 

                                    (1 )(1 ) ln( ) (1 )
t t

L L CPI Lβ δ θ ε− − = + −                                  (8) 

which is equivalent to: 

                                              
1(1 ) (1 )
t t

L Lβ π δ θ ε− = + −                                            (9) 

where: 

                                               ( ) ( )1

1
ln ln

t t t
CPI CPIπ

−

≈ −   
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Therefore we have: 

                                              
1 1

1 1t t t t
π δ βπ ε θε

− −

= + + −                                            (10) 

This is a very simple expression characterizing monthly inflation rates, 

in which we have disregarded seasonal patterns. Now notice that: 

       

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

12 1 1 1

12 1 12 13

12 1 13

1

1 ln ln ln ln

ln ln ln ln

t t t t t t t

t t t t

t t

L CPI CPI CPI CPI

CPI CPI CPI CPI

π π π

π π

− − − −

− − −

−

− = − = − − + =

 = − − − = 

= −

 

therefore, using (10) we could derive the corresponding process for YoY inflation as 

follows: 

               
( ) ( ) ( ) ( ) ( )

( )

12 1 12 12 1 12

1 1

1 1 2 1 12 13

1 1 1 1
t t t t

t t t t t t t t

L L L Lπ δ β π ε θε

π π β π π ε θε ε θε

− −

− − − − − −

− = − + − + − −

− = − + − − +

               (11) 

We notice that the moving average component of this last expression has 

the following seasonal representation: 

                                       ( )12

12 12
(1 ) 1  with 1

t
L Lθ θ ε θ− − ≡  

Notice also that (11) is the same model 4 in Table 1 when setting: 

                                                  and 1
E

ρ β θ= =  

Expression (11) shows that the YoY transformation of the data induces a sea-

sonal pattern that otherwise would not be present in the original data.
10

 In other 

words, either because annual differentiation is not able to eliminate non-additive 

seasonality in the original data or because annual differentiation induces a seasonal 

behavior that is not present in the original data, our family of models in Table 1 

offers reasonable candidates to provide a good fit to YoY inflation rates. 

2.2 Benchmark Models 

The use of different univariate time-series models to generate forecasts is 

fairly usual in the forecasting literature in general and in the inflation forecast litera-

ture in particular. For instance, Atkeson and Ohanian (2001) show that a simple 

variation of a RW model for YoY inflation in the US is very competitive when 

predicting inflation 12 months ahead. Giacomini and White (2006) present also for 

the US an empirical application in which several CPI forecasts are compared to those 

generated by a RW with drift and an autoregression in which the lag length is 

selected according to the Bayesian Information Criteria (BIC). 

Another article using simple univariate benchmarks for the US is that of Ang, 

Bekaert and Wei (2007). Among the many methods the authors use, they include 

an ARMA(1,1) model, a RW, and an AR(p) model with lag length selection 

10 We would like to thank a referee for pointing this out. Furthermore, he/she correctly noted that if month-

on-month inflation is generated by a simple data generating process like white noise, AR(1), MA(1), 

ARMA(1,1) or RW, then the corresponding model for the YoY inflation would be the DESARIMA 5, 

DESARIMA 8, DESARIMA 2, DESARIMA 4 and DESARIMA 8, respectively, with 1
E

Θ =  and, in the case

of RW, with 1ρ = . 



10                                      Finance a úvěr-Czech Journal of Economics and Finance, 65, 2015, no. 1 

according to the BIC. Elliot and Timmermann (2008) also explore the ability of 

several simple univariate models to predict inflation in the US including a simple 

AR(p) model and a single exponential smoothing (ES), which generates the same 

forecasts as an IMA(1,1) model, in which some constraints are imposed over the para-

meters. More recently, Croushore (2010) also makes use of an IMA(1,1) model as 

a benchmark when evaluating survey-based inflation forecasts for the US. Finally, 

Marcellino, Stock and Watson (2006) make use of an AR(1) to perform a simulation 

exercise to compare the direct method against the multistep iterated method to fore-

cast a number of macroeconomic series in the US. 

Outside of the US the use of univariate time-series models has also become 

fairly usual. Groen, Kapetanios and Price (2009), for instance, evaluate the accuracy 

of the Bank of England inflation forecasts using several univariate models, including 

an AR(p) and the RW. Similarly, Andersson, Karlsson and Svensson (2007) make 

use of simple time-series models to compare inflation forecasts from the Riksbank. 

In addition, Pincheira and Alvarez (2009) and Pincheira (2010) also consider ARMA 

models to construct forecasts for Chilean inflation and GDP growth respectively. 

Based on this selective review of the literature and our preliminary explora-

tion, we define the family of benchmarks as that containing the following 13 uni-

variate linear models for πt: AR(1), AR(6), AR(12), ARMA(1,1), AR(p) with automatic 

lag selection based on the Akaike Information Criterion (AIC) and also on the BIC.
11

 

For this AR(p) process we consider different specifications, varying p from 1 to 
max

12p = . We also use ARMA(p,q) specifications with automatic lag selection 

according to the AIC and the BIC with max

12p =  and max

6p = . In addition, we include 

the models labeled 3 and 4 in Capistrán, Constandse and Ramos-Francia (2010) that 

include specific regressors for seasonality (henceforth CCR-F).
12

 Finally, we also 

consider a single and double ES, and a Holt-Winters model with additive seasonal 

components.
13

 These benchmark models are summarized in Table 2. 

Models (9) and (10) from CCR-F contain the lag polynomial ( )Lϕ . Its order 

is determined according to the BIC. In Table 2, 
it

D  represents a seasonal dummy 

variable for the i-th month. For models (11) to (13) the initial value of inflation ( )0π  

is determined as the average of the first half of the estimation sample. 

2.3 Forecast Evaluation Framework 

We carry out an out-of-sample evaluation of our benchmark and DESARIMA 

family. To describe this evaluation, let us assume that for a given country we have 
 

11 The BIC is defined as 2( / ) 2( / )BIC T k T= − +ℓ , whereas the AIC is defined as 2( / )AIC T= − +ℓ

( / ) /k k T T+ ⋅ , where ℓ  is the log likelihood function, k the number of unknown parameters, and T

the sample size. Therefore, the only difference in estimating the true order of ARMA model is the penalty 
term imposed on the number of unknown parameters. For more details, see Akaike (1974) and Schwarz 

(1978). An out-of-sample comparison between forecasts coming from models based on these criteria can 

be found in Granger and Jeon (2004). 
12 One of the models in Capistrán, Constandse and Ramos-Francia (2010) is defined in terms of π (model 3),

while the other (model 4) is defined in terms of Δπ . 

13 See Hyndman et al. (2008) for details. 
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T+1 observations of πt. We generate a sequence of P(h) h-step-ahead forecasts 
estimating the models in rolling windows of fixed size R. For instance, to generate 
the first h-step-ahead forecasts, we estimate our models with the first R observations 
of our sample. Then these forecasts are built with information available only at time 
R and are compared to the realization 

R h
π

+
. Next, we estimate our models with 

the second rolling window of size R that includes observations through R+1. These 
h-step-ahead forecasts are compared with the realization 

1R h
π

+ +
. We iterate until 

the last forecasts are built using the last R available observations for estimation. 
These forecasts are compared with the realization 

1T
π

+
. We generate a total of P(h) 

forecasts, with P(h) satisfying ( )( ) 1 1R P h h T+ − + = + . Thus: 

                                                 ( ) 2P h T h R= + − −  

Forecast accuracy is measured in terms of RMSPE. Because this is a popula-

tion moment, we estimate it using the following sample analog: 

                                  � ( )

1
1 22

|

1
ˆ

( )

T h

h t h t h t

t R

RMSPE
P h

π π

+ −

+ +

=

 
= − 
 

∑  

where 
|

ˆ
t h t

π
+

 represents the forecast of 
t h

π
+

 made with information known up until 

time t. We carry out inference about predictive ability by considering pairwise com-

parisons between the models with the best performance within each family. By doing 

this, we acknowledge that our inference approach does not control for a familywise 

false discovery rate.
14

 Methods of correctly controlling for a familywise type-I error 

between two families of models are the subject of current research, and some 

unpublished papers are making progress in this direction (see for instance Calhoun, 
2011, and Pincheira, 2013). 

Inference is carried out within the framework developed by Giacomini and 

White (2006) (GW). We focus on the unconditional version of the t-type statistic 

proposed by GW. This test has the distinctive feature of allowing comparisons 

between two competing forecast methods instead of two competing models. This is 

desirable for our purpose, which is purely focused on the forecasts that different 
time-series models estimated with rolling windows of fixed size can provide. 

Once the best forecasting models within each family are chosen, we test 

the following null hypothesis: 

                                                      ( )0
0

h
H dΕ= ≤  

against the alternative: 

                                                       ( ): E 0
A h

H d >  

where: 

                             ( ) ( )
2 2

|t |t
ˆ ˆ( )
Benchmark DESARIMA

t t h t h t h t h
d h π π π π

+ + + +
= − − −  

We test the null hypothesis of superior predictive ability in favor of the family 

of traditional benchmarks. Accordingly, we use a one-sided version of the t-type test 

statistic proposed by GW. 

14 For a formal definition and exposition of the problems that arise from the familywise error rate, see 
Corradi and Distaso (2011). 
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Table 3  Unit Root Testing—Full Sample 

 
Level ( )π

t
 First differences ( )π π

−

−
1t t

 

 
ADF DFGLS PP KPSS ADF DFGLS PP KPSS 

Canada -3.903** -1.389 -3.680** 0.133* -8.350*** -0.962 -14.337*** 0.063 

Chile -2.328 -0.586 -2.104 0.405*** -5.069*** -2.102 -12.083*** 0.400* 

Colombia -1.913 -2.002 -1.570 0.396*** -9.782*** -7.939*** -9.648*** 0.134 

Israel -3.118 -2.916 -2.488 0.362*** -9.045*** -1.750 -8.783*** 0.067 

Mexico -3.816** -3.819*** -2.692 0.097 -4.451*** -3.910*** -5.095*** 0.037 

Peru -1.930 -0.469 -2.156 0.340*** -6.368*** -1.609 -9.895*** 0.295 

South Africa -2.139 -1.581 -2.894 0.231*** -7.030*** -4.762*** -10.974*** 0.051 

Sweden -4.219*** -0.746 -2.760 0.292*** -7.985*** -4.084*** -15.384*** 0.197 

Switzerland -2.127 -1.855 -2.522 0.311*** -9.701*** -1.465 -15.167*** 0.058 

Turkey -2.392 -1.171 -2.764 0.241*** -7.678*** -0.724 -16.425*** 0.106 

U. Kingdom -1.678 -0.908 -1.857 0.399*** -14.347*** -1.459 -14.402*** 0.270 

USA -3.523** -1.825 -3.683** 0.112 -9.672*** -1.703 -10.488*** 0.041 

Notes: * p<10%, ** p<5%, *** p<1%. ADF denotes the Augmented Dickey-Fuller test, DFGLS the GLS 
detrended Dickey-Fuller test (Elliot, Rothenberg and Stock), PP the Phillips-Perron test, and KPSS the 
Kwiatkowski, Phillips, Schmidt and Shin test. The null hypothesis for ADF, DFGLS and PP tests is the 
series has a unit root. For KPSS test the null hypothesis is the series is stationary. 

Source: Authors’ elaboration. 
 

3. Our Dataset 

We use monthly CPI inflation data for Canada, Chile, Colombia, Israel, 

Mexico, Peru, South Africa, Sweden, Switzerland, Turkey, the United Kingdom and 

the US, covering the period from October 1990 to December 2011.
15

 This is a sub-

sample of inflation targeting countries plus the US. We select this sample by making 

sure that they all have data at a monthly frequency and they all have sufficiently long 

series to carry out an out-of-sample analysis covering the same sample period. 

The sources of the dataset are national central banks. This implies that, despite 

changes to the CPI market basket implemented by certain countries during the sample 

period, we use the same official inflation observations used by policymakers. 

The target variable corresponds to YoY CPI. Descriptive statistics of all the series for 

different samples are shown in Appendix A of the working paper version of this 

article (Pincheira and Medel, 2012b).  

Table 3 shows the results of traditional unit root tests for our target variables 

for the sample period from October 1990 to December 2011. For most of the coun-

tries, the null hypothesis of a unit root cannot be rejected at the usual significance 

levels. Some exceptions are Canada, Mexico, Sweden and the US. The evidence 

for the first difference in inflation is, however, quite robust. In this case, the null 

hypothesis of a unit root is always rejected. 

Note that some of the countries in our sample have converged to a seemingly 

stationary inflation process after experiencing a relatively long period of declining 

inflation. This mixture of regimes represents a special challenge to any method aimed 
 

15 We emphasize that we make use of non-seasonally adjusted data. 
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Figure 2  Inflation of CPI 
 
A: Low-Inflation Countries 

              
 

B: High-Inflation Countries 

              
 

Notes: Vertical line = Evaluation sample start point (February 1999).  
Source: National central banks. 

 

at forecasting inflation during this sample period. Besides that, we have considered 

a relatively heterogeneous set of countries. This is clearly shown in Figure 2, in which 

we plot countries with low and high inflation separately. We will see in future sec-

tions that our DESARIMA family works well despite this heterogeneity. 

We estimate the models with a rolling window of fixed length R. Because 

the exact choice of the rolling window size may play an important role in the accu-

racy of our forecasts, we generate predictions for two different values of R: 40 and 

100 observations.
16

 It is important to point out that our inference approach considers 

the size of the rolling window as given and not as a choice variable, as proposed by 

Hansen and Timmermann (2012). Our first estimation window of 40 observations 

covers the period from October 1995 to January 1999. When R = 100, the first 
 

16 We emphasize that, when selecting R = 40 and R = 100, our focus is on exploring the possible dif-

ferences in the predictive behavior of our models when they are estimated with a small and moderate 

number of observations. Our analysis is mainly descriptive. The implementation of formal tests that are 

robust to windows size choice, such as those proposed by Rossi and Inoue (2011), may be an interesting 

extension for future research. 
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Table 4  Multi-Horizon RMSPE Estimates of the Best Model, Across R 

 
 

h = 1 h = 3 h = 6 h = 12 h = 24 h = 36 
C

a
n

a
d

a
 

Best benchmark   ARMA(1,1)   ARMA(1,1)   ARMA(1,1)       AR(6)      AR[BIC]       AR(12) 

RMSPE 0.482 0.836 1.044 1.140 1.087 1.047 

Best DESARIMA         [5]          [5]          [5]         [5]         [1]          [2] 

RMSPE 0.366*** 0.658** 0.890 1.105 1.068 0.957** 

C
h

il
e

 

Best benchmark      AR[AIC]      AR(6)        AR(6)        AR(6)        AR(6)       AR(6) 

RMSPE 0.466 1.083 1.800 2.731 2.608 2.589 

Best DESARIMA         [4]         [8]         [8]         [8]          [4]         [2] 

RMSPE 0.392*** 0.931** 1.695** 2.730 2.931 2.942 

C
o

lo
m

b
ia

 Best benchmark   ARMA(1,1)   ARMA(1,1)   ARMA(1,1)   ARMA(1,1)        AR(6)     AR[AIC] 

RMSPE 0.404 1.018 1.407 1.930 2.360 2.669 

Best DESARIMA         [8]          [8]         [8]         [7]         [7]         [9] 

RMSPE 0.333** 0.860* 1.417 1.988 2.559 2.715 

Is
ra

e
l 

Best benchmark      AR(12)      AR(12)   ARMA(1,1)   ARMA(1,1)     AR[BIC]      AR(12) 

RMSPE 0.552 1.376 2.230 3.043 3.159 2.329 

Best DESARIMA         [8]         [8]         [8]         [1]         [1]         [1] 

RMSPE 0.436*** 1.133*** 1.891** 3.007 2.979 2.312 

M
e

x
ic

o
 

Best benchmark   ARMA(1,1)   ARMA(1,1)   ARMA(1,1)  CCR-F | M3  ES[Sgl]-RW  ES[Sgl]-RW 

RMSPE 0.348 0.872 1.461 2.115 3.640 4.305 

Best DESARIMA         [1]          [1]          [9]         [9]         [9]         [9] 

RMSPE 0.315** 0.818* 1.357 2.380 3.115* 3.813* 

P
e

ru
 

Best benchmark       AR(6)       AR(6)        AR(6)      AR[AIC]      AR[AIC]     AR[AIC] 

RMSPE 0.415 0.921 1.503 2.267 2.619 2.339 

Best DESARIMA         [4]         [8]          [8]         [8]         [3]         [6] 

RMSPE 0.325*** 0.791** 1.329* 2.276 2.698 2.417 

S
o

u
th

 A
fr

ic
a

 Best benchmark        AR(6)      AR(12)       AR(12)     AR[BIC]     AR[AIC]     AR[AIC] 

RMSPE 0.605 1.379 2.378 3.625 3.334 3.380 

Best DESARIMA         [4]         [4]          [4]         [4]         [8]         [5] 

RMSPE 0.434*** 0.985*** 1.768** 3.170* 3.508 3.674 

S
w

e
d

e
n

 

Best benchmark       AR(1)    ARMA(1,1)        AR(6)       AR(6)      AR(12)       AR(6) 

RMSPE 0.398 0.754 1.110 1.499 1.342 1.265 

Best DESARIMA         [5]          [3]         [3]         [1]         [5]         [5] 

RMSPE 0.318*** 0.569*** 0.868*** 1.292 1.347 1.315 

S
w

it
z
e

rl
a

n
d

 Best benchmark   ARMA[AIC]   ARMA[AIC]   ARMA[AIC]    ARMA(1,1)      AR[AIC]     AR[BIC] 

RMSPE 0.330 0.612 0.840 0.959 0.866 0.892 

Best DESARIMA          [3]         [1]          [4]         [4]         [3]         [1] 

RMSPE 0.295** 0.531*** 0.700** 0.878* 0.846 0.927 
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T
u

rk
e
y

 
Best benchmark     AR[AIC]  CCR-F | M3   ES[Single]  ES[Sgl]-RW   ES[Single]  ES[Sgl]-RW 

RMSPE 1.945 5.590 9.442 14.319 18.092 24.270 

Best DESARIMA         [8]         [8]         [8]          [7]         [9]         [9] 

RMSPE 1.449*** 4.237** 7.919** 14.271 17.867 21.149 

U
. 

K
in

g
d

o
m

 Best benchmark ES[Sgl]-RW   ES[Single]     AR[AIC]     AR[AIC]     AR[AIC] ES[Sgl]-RW 

RMSPE 0.303 0.576 0.822 0.942 0.978 0.995 

Best DESARIMA         [2]         [2]          [2]         [1]         [1]         [6] 

RMSPE 0.259*** 0.485** 0.711** 0.944 1.030 0.995 

U
S

A
 

Best benchmark   ARMA[AIC]   ARMA[AIC]   ARMA(1,1)    ARMA(1,1)      AR[BIC]  ARMA(1,1) 

RMSPE 0.442 1.003 1.350 1.490 1.438 1.492 

Best DESARIMA         [4]          [4]          [4]         [5]         [4]         [3] 

RMSPE 0.331*** 0.751** 1.099** 1.495 1.471 1.487 

Notes: We acknowledge that when making inference between the best individual forecasts from each family, 
we are not controlling for the familywise false discovery rate. Thus, these test results represent only 
auxiliary information which might not be precise enough. See Tables 1 and 2 for DESARIMA and 
benchmark and specifications. GW test: * p<10%, ** p<5%, *** p<1%.  

Source: Authors' elaboration. 
 

estimation window covers the period from October 1990 to January 1999. The rest 

of the sample is used to compute forecast errors. We focus on one-, three-, six-, 12-, 

24- and 36-months-ahead forecasts. Accordingly, we have a total of 155 observations 

for one-step-ahead forecast errors, 153 observations for three-steps-ahead forecast 

errors, 150 for six-steps-ahead forecast errors, 144 for 12-steps-ahead forecast errors, 

132 for 24-steps-ahead forecast errors, and 120 observations for 36-steps-ahead fore-
casts errors. 

4. Empirical Results 

In a huge empirical exercise like the one we have carried out in this paper, 

there are a number of interesting findings that deserve mentioning. We will organize 

our discussion around four major topics: short-horizon accuracy, long-horizon accu-

racy, robustness check, and the role of the estimation window size. Most of our 

remarks focus on Table 4 in which we report the RMSPE of the best-performing 

models in each family and the GW core statistic and its respective t-statistic when 

comparing the best models within each family.
17

 Besides that, in Appendix B of 

the working paper version (Pincheira and Medel, 2012b), we show the RMSPE 

estimates for all the models and countries under evaluation. 

4.1 Short-Horizon Accuracy 

In Table 4 we show sample RMSPE results for the best models within each 

family. These RMSPE are also depicted in Figure 3 displayed below. Notice that for 

the construction of this figure and table, the DESARIMA family includes forecasts 

coming from 20 forecasting methods. These forecasting methods correspond to each 
 

17 We acknowledge that when making inference between the best individual forecasts from each family, 

we are not controlling for the familywise false discovery rate. Thus, these test results represent only 
auxiliary information which might not be precise enough. 
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Figure 3  Multi-horizon RMSPE Estimates of the Best Model, Across R 

 

 

 

  
Source: Authors’ elaboration. 

 

DESARIMA model estimated with either R = 40 or R = 100 observations. Similarly, 
the benchmark family contains 26 forecasting methods coming from the 13 bench-
mark models estimated with either R = 40 or R = 100 observations. From Table 4 we 
see that the best DESARIMA method always outperforms the best benchmark 
method when forecasting one and three months ahead. A similar result holds true 
six months ahead, with Colombia being the only exception. In summary, the best 
DESARIMA forecasts are almost always more accurate than the best benchmark 
forecast at short horizons. It is also interesting to note that the most frequent winners 
at short horizons (one, three and six months ahead) within the DESARIMA family 
are the models labeled DESARIMA 4 and 8, which are different from the more 
traditional IMA(1,1), RW and airline models, which correspond to those labeled as 
DESARIMA 7, 6 and 2, respectively. 

4.2 Long-Horizon Accuracy 

Table 4 depicts a different scenario when forecasting at the longer horizons 

of 12, 24, and 36 months ahead. Results are mixed and no clear winner between 

the two families under consideration arises from this table. In fact, we see that in seven 

countries the best one-year-ahead forecasting methods belong to the DESARIMA 
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Table 5  Average Ranking within the DESARIMA Family 

 
R = 40 

 
h = 1 h = 3 h = 6 h = 12 h = 24 h = 36 

Average RW rank 10 10 9 7 7 6 

Average rank of models with MA(12)   4   4 4 5 5 5 

Average rank of models without MA(12)   9   8 8 8 8 7 

 
R = 100 

 
h = 1 h = 3 h = 6 h = 12 h = 24 h = 36 

Average RW rank 10 9 9 6 6 4 

Average rank of models with MA(12)   4 4 5 6 6 6 

Average rank of models without MA(12)   8 8 8 6 6 4 

Source: Authors' elaboration. 

 

family. Regarding two- and three-years-ahead forecasts, Table 4 shows that only in 

four countries the lowest RMSPE is achieved by the DESARIMA family. It is impor-

tant to mention that in some cases the RMSPE achieved at long horizons is remark-

ably low. For instance, for the cases of Canada, Switzerland and the United Kingdom, 

the RMSPE of the best models is lower than 100 basis points when forecasting three 

years ahead. Finally, we see that the most frequent winners at long horizons within 

the DESARIMA family are the models labeled DESARIMA 1 and 9. 

It is important to emphasize that the good predictive performance of 

the DESARIMA family is closely related to the presence of seasonal MA compo-

nents. We can see this in Table 5. In the first row of each panel of Table 5 we display 

the average ranking across different countries of the RW within the ten different 

DESARIMA models. A ranking of 10 indicates that a given model X is the worst 

forecasting model within the DESARIMA family. A ranking of 1 would indicate that 

this model X is the best performing model. According to this table, when forecasting 

at short horizons (one, three and six months ahead), the RW is always the worst 

or the second worst performing model. At longer horizons the relative performance 

of the RW is better, with a best ranking of 4 and a worst ranking of 7. Each panel 

of the table also has two more rows indicating the average ranking (across countries 

and models) of the subfamily of models including a MA term of order 12, and 

the subfamily of models excluding this term. In general, models including a MA(12) 

term fare much better than models without this term. This is especially noticeable in 

the first panel and also in the second panel at short forecasting horizons. At longer 

horizons, however, the second panel shows either ties or an advantage for models 

without this MA(12) term. In summary, the RW does not explain the good per-

formance of the DESARIMA family in the short run. This good performance is 

seemingly driven by models with an explicit seasonal MA(12) term. In particular, 

the most frequent winners within the DESARIMA family are the seasonal models 4 

and 8 described in Table 1. As far as the family of benchmark models is concerned, 

and in line with the results reported by Makridakis et al. (1982), the ARMA(1,1), 

AR(6) and single ES models are the most frequent winners within the benchmark 

family. 
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Table 6  Multi-Horizon RMSPE Estimates of the Median Forecast, Across R 

 
h = 1 h = 3 h = 6 h = 12 h = 24 h = 36 

Canada 
      

RMSPE benchmark 0.493 0.852 1.088 1.307 1.185 1.107 

RMSPE DESARIMA 0.399*** 0.716** 0.973 1.209** 1.144 1.002** 

Chile 
      

RMSPE benchmark 0.469 1.099 1.951 3.393 3.944 3.757 

RMSPE DESARIMA 0.408*** 1.003* 1.760* 2.828* 3.014** 2.924** 

Colombia 
      

RMSPE benchmark 0.410 1.046 1.506 2.105 2.575 2.717 

RMSPE DESARIMA 0.356*** 0.942* 1.474 2.524 3.412 3.881 

Israel 
      

RMSPE benchmark 0.553 1.379 2.242 3.396 3.386 2.418 

RMSPE DESARIMA 0.463*** 1.154*** 1.976*** 3.313 3.269 2.646 

Mexico 
      

RMSPE benchmark 0.344 0.864 1.478 2.584 3.675 4.427 

RMSPE DESARIMA 0.305*** 0.825* 1.510 2.720 3.899 4.609 

Peru 
      

RMSPE benchmark 0.424 0.973 1.601 2.617 3.079 2.757 

RMSPE DESARIMA 0.352*** 0.825*** 1.393*** 2.240** 2.604* 2.414 

South Africa 
      

RMSPE benchmark 0.613 1.411 2.476 3.910 4.613 5.297 

RMSPE DESARIMA 0.496*** 1.163*** 2.099*** 3.421** 3.721*** 4.161*** 

Sweden 
      

RMSPE benchmark 0.406 0.787 1.203 1.786 2.089 1.863 

RMSPE DESARIMA 0.334*** 0.608*** 0.932** 1.392** 1.572*** 1.489*** 

Switzerland 
      

RMSPE benchmark 0.340 0.634 0.914 1.166 1.028 1.083 

RMSPE DESARIMA 0.302*** 0.550*** 0.748*** 1.017* 0.895** 0.977* 

Turkey 
      

RMSPE benchmark 1.999 5.570 9.699 15.869 20.024 27.982 

RMSPE DESARIMA 1.718*** 5.016** 8.979** 16.396 22.263 28.969 

United Kingdom 
     

RMSPE benchmark 0.308 0.604 0.881 1.142 1.132 1.118 

RMSPE DESARIMA 0.259*** 0.497*** 0.735*** 1.013 1.071 1.118 

United States 
     

RMSPE benchmark 0.471 1.055 1.454 1.771 1.757 1.722 

RMSPE DESARIMA 0.380*** 0.844*** 1.212** 1.682** 1.570* 1.574** 

Notes: See Tables 1 and 2 for DESARIMA and benchmark and specifications. GW test: * p<10%, ** p<5%, 
*** p<1%.  

Source: Authors' elaboration. 
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Figure 4  Multi-horizon RMSPE Estimates of the Median Forecast, Across R 

 

 

 

 
Source: Authors’ elaboration. 

 
4.3 Robustness Check 

Our previous analysis is focused on finding the best forecasting model within 

a set of forecasting methods. This task may be hard or, even worse, not very useful, 

as nothing ensures that the best model in a given sample will still be the best model 

in the future. Furthermore, our previous results may be questioned on the grounds 

of the method we have used to carry out inference about predictive ability. As we have 

not implemented methods to adequately control for the familywise type-I error rate, 

our inference may not be precise enough. To overcome these shortcomings, we 

also analyze the behavior of the median forecast coming from the 20 DESARIMA 

methods and from the 26 benchmark methods.
18

 In Table 6 and Figure 4 we report 

the RMSPE of these forecasts. From Table 6 we see that the median forecasts from 

the DESARIMA family always outperform the median benchmark forecasts at one 

and three months ahead. A similar result holds true six months ahead, with Mexico 

being the only exception. At longer horizons, Table 6 shows that in only five coun-

tries there are cases in favor of the benchmark methods: Colombia, Israel, Turkey, 

Mexico and the United Kingdom. Therefore, at these horizons results are again 

18 Stock and Watson (2007) point out that the median acts as a good point estimator of a forecasting pool 
when errors are non-Gaussian. 
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Table 7  RMSPE of the Best-Performing Model of the Benchmark Family 

 

Pre and post-crisis analysis 

  
h = 1 h = 3 h = 6 h = 12 h = 24 h = 36 

Canada Pre-crisis 0.465 0.769 0.934 1.035 0.900 0.914 

 
Post-crisis 0.499 0.967 1.269 1.377 1.368 1.226 

Chile Pre-crisis 0.401 0.928 1.511 2.301 2.290 2.546 

 
Post-crisis 0.543 1.338 2.322 3.644 3.069 2.674 

Colombia Pre-crisis 0.425 1.065 1.359 1.685 2.098 2.580 

 
Post-crisis 0.310 0.850 1.538 2.422 2.743 2.200 

Israel Pre-crisis 0.599 1.503 2.468 3.485 3.574 2.675 

 
Post-crisis 0.369 0.808 1.002 1.223 1.478 1.306 

Mexico Pre-crisis 0.348 0.908 1.561 2.182 4.010 5.087 

 
Post-crisis 0.319 0.640 0.792 1.182 1.177 1.040 

Peru Pre-crisis 0.438 0.970 1.526 2.284 2.476 2.128 

 
Post-crisis 0.333 0.737 1.250 1.918 1.724 1.717 

South Africa Pre-crisis 0.663 1.507 2.634 3.974 3.672 3.753 

 
Post-crisis 0.369 0.857 1.336 2.013 2.277 2.232 

Sweden Pre-crisis 0.323 0.557 0.762 1.059 1.246 1.285 

 
Post-crisis 0.538 1.104 1.737 2.101 1.437 1.215 

Switzerland Pre-crisis 0.281 0.487 0.562 0.786 0.762 0.750 

 
Post-crisis 0.395 0.806 1.222 1.287 1.042 1.088 

Turkey Pre-crisis 2.170 6.326 10.77 16.59 21.00 28.51 

 
Post-crisis 0.952 1.745 2.231 2.348 2.641 2.641 

U. Kingdom Pre-crisis 0.260 0.463 0.648 0.764 0.786 0.944 

 
Post-crisis 0.402 0.802 1.135 1.278 1.221 0.923 

US Pre-crisis 0.357 0.665 0.895 1.127 1.023 1.132 

 
Post-crisis 0.610 1.559 2.154 2.032 2.121 2.016 

Source: Authors' elaboration. 

 

mixed but lean in favor of the DESARIMA forecasts, as in seven out of 12 countries 
the median DESARIMA forecast outperforms the median benchmark forecast 
at every single horizon. We see then that at short horizons the median forecast seems 
to be a very good alternative in terms of accuracy. The same happens at longer 
horizons for more than half of our sample of countries. 

4.3.1 Pre- and Post-Crisis Analysis 

The forecasts for the sample from February 1999 to December 2011 are 

evaluated as a whole. This sample includes a part of the Great Moderation and also 

the recent financial crisis and the Great Recession. So it is not impossible that this 

period includes structural breaks that affect the relative performance of the fore-

casting models. To check this, we carry out a separate analysis for the period before 

and after the Lehman default (September 2008). Tables 7 and 8 show the RMSPE for 

both the pre- and post-crisis period. In Table 7 we show the lowest RMSPE achieved 
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Table 8  RMSPE of the Best-Performing Model of the DESARIMA Family 

 

Pre and post-crisis analysis 

  
h = 1 h = 3 h = 6 h = 12 h = 24 h = 36 

Canada Pre-crisis 0.361 0.635 0.818 0.953 0.899 0.819 

 
Post-crisis 0.377 0.707 1.061 1.429 1.389 1.195 

Chile Pre-crisis 0.349 0.810 1.370 2.279 2.290 2.773 

 
Post-crisis 0.462 1.030 1.905 3.049 3.112 2.654 

Colombia Pre-crisis 0.355 0.922 1.353 1.649 2.183 2.517 

 
Post-crisis 0.255 0.643 1.126 1.964 2.467 2.444 

Israel Pre-crisis 0.468 1.226 2.078 3.449 3.375 2.559 

 
Post-crisis 0.310 0.646 1.037 1.144 1.529 1.332 

Mexico Pre-crisis 0.328 0.868 1.477 2.625 3.523 4.455 

 
Post-crisis 0.263 0.540 0.704 0.975 1.124 1.245 

Peru Pre-crisis 0.349 0.827 1.337 2.283 2.476 2.454 

 
Post-crisis 0.245 0.598 1.152 2.012 2.072 1.547 

South Africa Pre-crisis 0.457 1.060 1.922 3.516 3.816 4.098 

 
Post-crisis 0.322 0.588 1.020 1.922 2.460 2.382 

Sweden Pre-crisis 0.291 0.502 0.723 1.133 1.285 1.360 

 
Post-crisis 0.386 0.730 1.184 1.618 1.483 1.181 

Switzerland Pre-crisis 0.282 0.466 0.539 0.766 0.733 0.722 

 
Post-crisis 0.320 0.634 0.989 1.125 1.042 1.139 

Turkey Pre-crisis 1.598 4.809 9.105 16.497 21.209 29.25 

 
Post-crisis 0.852 1.651 2.238 2.955 2.441 3.824 

U. Kingdom Pre-crisis 0.224 0.389 0.592 0.749 0.785 0.941 

 
Post-crisis 0.302 0.627 0.969 1.287 1.321 1.092 

US Pre-crisis 0.301 0.567 0.708 1.051 1.024 1.082 

 
Post-crisis 0.403 1.113 1.785 2.295 2.142 2.041 

Source: Authors' elaboration. 

 

by the benchmark models. In Table 8, we show the lowest RMSPE achieved 

by the DESARIMA family. In this last table we have colored the cells in which 

the DESARIMA family outperforms the benchmark family. 

The results from Tables 7 and 8 are robust in the short run. When one-step-

ahead forecasts are considered, the DESARIMA family outperforms the benchmark 

family in all our countries with the only exception of Switzerland during the pre-

crisis period. A similar situation occurs when considering three-months-ahead fore-

casts. In this case, Turkey is the only exception to the superiority of the DESARIMA 

family during the post-crisis period. Six months ahead, we have Turkey and Israel 

as exceptions during the post-crisis period. At longer horizons, the results are  

mixed when considering the best model in each family. We also constructed tables 
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analyzing the median and average RMSPE of both families during the pre- and post-

crisis. These tables, available upon request, are even more consistent in providing 

evidence in favor of the DESARIMA family when splitting the sample into the pre- 

and post-crisis periods. In summary, our results during the pre- and post-crisis 

periods are consistent with our overall results in terms of favoring the behavior 

of the DESARIMA family when forecasting at short horizons, i.e. up to six months. 

Results are again mixed when considering longer forecasting horizons. 

4.3.2 The Average Forecast 

As a robustness check, we also explore the behavior of the average forecast 

of both families of models. We first consider a weighted average using AIC-based 

weights according to Wagenmakers and Farrel (2004) and, second, the simple aver-

age of the forecasts, which imposes equal weights. Notice that when considering 

AIC-based weights, some shortcomings arise: first, the calculation of an AIC weight 

is not straightforward for all our benchmark methods. In the case of the subfamily 

of ES methods, there is no formal econometric model producing the forecasts. There-

fore, the definition of the AIC weights in these cases is not obvious. Second, the bench-

mark family contains a model (CCR-F | Model 4) with a dependent variable that is 

transformed with a different operator than in the rest of the benchmark family. This 

difference may lead to an unfair comparison. Accordingly, when using AIC weights 

we consider only the average of the benchmark methods excluding the ES, double ES 

and Holt-Winters methods, for which an AIC weight is not obvious. For the sake 

of brevity, we do not show tables with our results (but they are available upon 

request). In general, when taking averages we obtain results that are very consistent 

with the previous results using the median forecast and the best model from each 

family. In the short run (one, three and six-month horizons) there is overwhelming 

superiority of the forecast combinations coming from the DESARIMA family, as 

DESARIMA-based combinations display a lower RMSPE than benchmark based 

combinations in all countries and for both estimation windows sizes; the only excep-

tion is Colombia when forecasting six months ahead. At longer horizons, the evidence is 

mixed, sometimes favoring the DESARIMA family and at other times the benchmark 

family. Therefore, the main conclusions remain the same when considering these 

types of forecast combinations. 

4.3.3 Another Loss Function: The Hit Rate 

Differing from traditional RMSPE comparisons, a researcher may also be 

interested in the ability that different forecasting methods may have to correctly 

predict if inflation rates are going up or down. We evaluate this dimension of our 

forecasting methods by computing the hit rate, i.e. the rate of correctly forecasting 

the direction of change in inflation rates. Table 9 displays the average hit rate across 

models and estimation window sizes (R) within the two competing families: 

DESARIMA and benchmark. Shaded or colored cells indicate superiority of 

the DESARIMA family. The results are consistent with those obtained in terms 

of RMSPE: at short horizons the DESARIMA family is more effective when fore-

casting the direction of change of inflation rates. At longer horizons, however, results 

are again mixed. 
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Table 9  Average Hit Rate Across Models and R (in %) 

 
h = 1 h = 3 h = 6 h = 12 h = 24 h = 36 

Canada Benchmark 48 52 56 57 58 52 

 
DESARIMA 60 62 63 61 53 56 

Chile Benchmark 57 57 57 59 56 52 

 
DESARIMA 66 63 62 62 55 55 

Colombia Benchmark 48 50 51 52 61 64 

 
DESARIMA 57 53 52 45 43 39 

Israel Benchmark 50 51 54 57 53 57 

 
DESARIMA 60 60 64 62 55 56 

Mexico Benchmark 50 47 49 48 51 52 

 
DESARIMA 56 53 54 48 44 43 

Peru Benchmark 50 51 50 54 61 58 

 
DESARIMA 60 60 60 59 58 50 

South Africa Benchmark 53 56 56 55 52 55 

 
DESARIMA 61 64 66 61 63 65 

Sweden Benchmark 42 44 46 49 52 52 

 
DESARIMA 51 53 55 56 67 71 

Switzerland Benchmark 43 46 49 57 54 55 

 
DESARIMA 52 55 59 64 58 59 

Turkey Benchmark 56 54 55 52 47 49 

 
DESARIMA 60 57 56 46 44 38 

U. Kingdom Benchmark 45 45 45 48 49 46 

 
DESARIMA 54 54 54 52 53 47 

US Benchmark 47 51 51 58 56 55 

 
DESARIMA 64 63 62 64 62 59 

Source: Authors' elaboration. 
 

We also compare the highest hit rates achieved by models within the com-
peting families. The results of this exercise, not reported for the sake of brevity, 
confirm those in the previous table: the superiority of the DESARIMA family in 
the short run and mixed results in the rest of the horizons. The only exception in this 
exercise is Colombia, for which the DESARIMA family fares better than the bench-
mark family only at the first forecasting horizon. 

4.4 The Role of the Estimation Window Size (R) 

We investigate the role that the size of the estimation window R may have in 

the accuracy of our forecasts. In stationary environments, we should expect a higher 

predictive performance of the methods estimated with longer samples. Nevertheless, 

an environment in which parameters are time-varying might be better handled by 

shorter estimation windows. Table 10 shows how frequently each model produces 
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Table 10  Percentage of Times that a Model is Better when R = 40 vs R = 100  (in %) 

 
h = 1 h = 3 h = 6 h = 12 h = 24 h = 36 

  1. AR(1) 25 25 25 17 17 17 

  2. AR(6) 17 8 25 25 42 33 

  3. AR(12) 17 17 8 25 25 17 

  4. ARMA(1,1) 17 25 25 25 25 17 

  5. AR(12) AIC 33 17 17 25 33 42 

  6. AR(12) BIC 33 25 17 25 33 33 

  7. ARMA(12,6) AIC 8 17 8 25 33 17 

  8. ARMA(12,6) BIC 0 17 8 33 17 33 

  9. CCR-F | Model 3 0 0 8 8 17 25 

10. CCR-F | Model 4 8 8 8 8 8 8 

11. Single ES 17 25 42 42 42 58 

12. Double ES 17 67 50 42 42 42 

13. Holt-Winters 0 0 8 17 17 17 

  1. DESARIMA 1 8 33 33 33 50 33 

  2. DESARIMA 2 50 58 58 58 67 67 

  3. DESARIMA 3 50 58 58 58 67 67 

  4. DESARIMA 4 33 50 58 50 42 33 

  5. DESARIMA 5 58 58 58 58 67 67 

  6. DESARIMA 6 - - - - - - 

  7. DESARIMA 7 33 50 67 58 58 67 

  8. DESARIMA 8 50 58 58 58 67 67 

  9. DESARIMA 9 50 67 67 17 17 33 

10. DESARIMA 10 33 58 25 17 8 25 

Notes: See Table 1 and 2 for DESARIMA and benchmark and specifications.  

Source: Authors' elaboration. 

 
better forecasts when estimated with rolling windows of 40 observations. For most 

of the benchmark models these rates are lower than 50%, and sometimes much lower, 

indicating that in general they produce better forecasts when they are estimated with 

rolling windows of 100 observations. The only exceptions are the single and double 

ES, for which at a few forecasting horizons we find a better performance when 

estimating with only 40 observations. 

The results from the DESARIMA family are different. In fact, the models 

labeled DESARIMA 2, 3, 5 and 8 show frequency rates greater than or equal to 50% 

at every horizon. For the rest of the models within the DESARIMA family, rates are 

not that high but in general are higher than in the benchmark family. In fact, 

the average rate of the DESARIMA family is 49%. This is in sharp contrast to the aver-

age rate of the benchmark family, which is only 22%. 

Frequency rates offer only a partial view of the relative performance of 

the models estimated with rolling windows of 40 and 100 observations. This is 

because they are invariant to the size of RMSPE gains. For instance, a 1% RMSPE 
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Table 11  MSPE Ratios of the Model Estimated with R = 40 vs R = 100 Observations 

Average across families and horizons 

 
Benchmark 

family 
DESARIMA 

family 
Median 

benchmark 
Median 

DESARIMA 

Canada 1.125 1.057 1.082 1.086 

Chile 1.249 0.954 1.178 1.023 

Colombia 2.248 0.858 1.174 0.880 

Israel 1.286 0.930 1.026 0.954 

Mexico 0.822 0.879 0.867 0.900 

Peru 1.158 0.951 1.128 1.014 

South Africa 1.578 1.282 1.320 1.099 

Sweden 1.822 2.199 1.285 1.118 

Switzerland 1.291 1.494 1.167 1.029 

Turkey 1.097 0.892 0.880 0.863 

United Kingdom 1.434 0.962 0.946 0.928 

US 1.234 1.057 1.124 1.091 

Overall 1.362 1.126 1.098 0.999 

Notes: A number greater than 1 indicates that the MSPE of the models estimated with R=40 is higher than 
when estimated with R = 100. 

Source: Authors’ elaboration. 
 

reduction is equivalent to a 50% RMSPE reduction when we only pay attention to 

frequency rates. Consequently, we need a more detailed analysis in terms of RMSPE 

gains. Table 11 is useful for this purpose. The first two columns of Table 11 show 

the average of the RMSPE ratio between the forecasts generated with 40 and 100 obser-

vations across horizons and models within a given family. The last two columns in 

the same table indicate the average of the RMSPE ratio between the median forecasts 

generated with 40 and 100 observations across horizons. A number greater than 1 

indicates that the RMSPE of the forecasts generated with R = 40 is higher than when 

generated with R = 100. 

According to the first column of Table 11, forecasts coming from the bench-

mark family display an average reduction of more than 25% in terms of RMSPE 

when these models are estimated with 100 observations. A reduction in RMSPE is 

achieved in every country except Mexico. The results are different for the DESARIMA 

family. While the RMSPE of the forecasts generated with 100 observations is lower 

on average, this result is not uniform across countries. Actually, in seven out of 

12 countries it is better to generate the forecasts in the DESARIMA family using 

only 40 observations. With some variations, columns 3 and 4 in Table 11 provide 
the same general picture when the median forecast within each family is considered. 

A final word regarding one additional interesting feature of the median 

forecast is worth mentioning. From the first two columns in Table 11, we see that 

for some countries the choice of the estimation window size is very relevant for 

the construction of forecasts. In the case of Sweden, for instance, forecasts coming 

from the DESARIMA family estimated with only 40 observations display a RMSPE 



Finance a úvěr-Czech Journal of Economics and Finance, 65, 2015, no. 1                                      27 

that more than doubles the RMSPE of the forecasts generated with 100 observations. 

Nevertheless, when we look at the fourth column in Table 11, we see, on average, 

only a minor edge in favor of the forecasts generated with 100 observations. 

According to Table 11, this is not an exception, as in most cases big ratios in the first 

two columns are associated with modest ratios in the third and fourth columns, 

suggesting that the median forecast seems to be a strategy that is relatively robust to 

the choice of the estimation window size. 

5. Concluding Remarks 

In this paper we introduce a family of univariate forecasting models that is 

shown to produce competitive inflation forecasts both at short and long horizons. 

This family of models is called Driftless Extended Seasonal ARIMA (DESARIMA) 

and contains ten seasonal driftless univariate time-series models sharing the common 

feature of a unit root. 

Using out-of-sample Root Mean Squared Prediction Errors (RMSPE) we 

compare the forecasting accuracy of the DESARIMA family with that of traditional 

univariate time-series benchmarks for a sample of eleven inflation targeting countries 

plus the US. Our results show that DESARIMA-based forecasts display lower RMSPE 

at short horizons for every single country, with the exception of one case. We obtain 

mixed results at longer horizons. In particular, when the median forecast is con-

sidered, in more than half of the countries our DESARIMA-based forecasts outper-

form the benchmarks at long horizons and they are always superior at short horizons. 

This indicates that the median forecast of the DESARIMA family is an interesting 

and accurate forecast that should be seriously considered by applied forecasters. 

Finally, we analyze the impact of the estimation window size on the accuracy 

of our forecasts. We do this by estimating all the models with two different sample 

sizes of 40 and 100 observations. While the traditional benchmarks tend to benefit 

from an increasing number of observations, this is less clear cut in the case of our 

DESARIMA-based forecasts. Interestingly, the median forecast seems to be a strategy 

that is relatively robust to the choice of the estimation window size. 

A horse race between our DESARIMA family and more complex benchmarks 

seems to be an interesting issue to explore in subsequent research. For instance, we 

could either look at the class of Self-Exciting Threshold AR (SETAR) and Smooth 

Transition AR (STAR) non-linear models or exploit the cross-country angle of the data 

set by estimating a panel. Likewise, the construction of a multivariate DESARIMA 

family might also be of interest for future investigation. 
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