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Abstract
The paper examines the comovement and spillover dynamics between the returns of 
the Czech and some major European stock markets (namely, the Austrian, French, 
German, and UK markets, as well as the Central and Eastern European stock markets 
of Poland, Hungary, and Slovenia). By applying the Dynamic Conditional Correlation 
GARCH model and Granger causality tests on wavelet transformed returns series for 
the period April 1997–May 2010 the following specific questions are answered. Is the co-
movement (correlation) between the Czech and European stock markets time-varying? 
What effect did the financial crises in the period 1997–2010 and the accession of 
the Czech Republic to the European Union have on the comovement between the Czech 
and European stock markets investigated? We also investigate whether there were return 
spillovers between the markets and whether they depended on the horizon over which 
they are calculated (i.e., are they a multiscale phenomenon). We found that comovement 
between the Czech and other stock market returns is time-varying. Furthermore, we 
found significant return spillovers between the Czech and European stock markets in 
the observed period. The wavelet Granger causality tests show that return spillovers were 
a multiscale phenomenon.

1. Introduction

International stock market links are of great importance for the financial 
decisions of international investors. Since the seminal work of Markowitz (1958) and 
the empirical evidence of Grubel (1968) it has been recognized that international 
diversification reduces the total risk of a portfolio. This is due to non-perfect positive 
comovement between the returns on portfolio assets. Increased comovement between 
asset returns can therefore diminish the advantage of internationally diversified invest-
ment portfolios. 

Modeling the comovement of stock market returns, however, is a challenging 
task. The conventional measure of interdependence, known as the Pearson correla-
tion coefficient, is a symmetric, linear dependence metric, suitable for measuring 
dependence in multivariate normal distributions (Embrechts et al., 1999). The cor-
relations, however, may be nonlinear and time-varying (Xiao and Dhesi, 2010; Égert 
and Kočenda, 2010). A better understanding of stock market interdependencies may 
be achieved by applying econometric methods: Vector Autoregressive (VAR) models 
(Gilmore and McManus, 2002; Tudor, 2010), cointegration analysis (Gerrits and 
Yuce, 1999; Patev et al., 2006), GARCH models (Tse and Tsui, 2002; Bae et al., 
2003; Égert and Kočenda, 2010), and regime switching models (Schwender, 2010). 
A more novel approach is based on wavelet analysis (Ranta, 2010; Zhou, 2011). 
The existing empirical literature on the interdependence of the Czech and European 
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stock markets predominantly applies correlation analysis (Serwa and Bohl, 2005; 
Tudor, 2010; Harrison and Moore, 2009), Granger causality tests (Patev et al., 2006; 
Horobet and Lupu, 2009), cointegration analysis (Syllignakis and Kouretas, 2006; 
Patev et al., 2006) and GARCH modeling (Caporale and Spagnolo, 2010; Fedorova 
and Saleem, 2010).

In this paper, two modern techniques—the Dynamic Conditional Correlation 
GARCH (DCC-GARCH) model of Engle and Sheppard (2001) and MODWT Granger 
causality tests—are applied to answer the following questions. First, is the correlation 
(comovement) between the Czech stock market and the developed European stock 
markets of Austria, France, Germany, and the UK and between the stock markets 
of the Czech Republic and other Central and Eastern European (CEE) countries 
(Hungary, Poland, and Slovenia) time-varying? Second, what effect did the financial 
crises in the period 1997–2010 and the accession of the Czech Republic to the Euro-
pean Union have on the comovement between the Czech and European stock markets 
investigated? Third, were there return spillovers between the markets and did they 
depend on the horizon over which they are calculated (i.e., were they a multiscale 
phenomenon)? 

Time-varying correlations between stock markets can be analyzed by multi-
variate GARCH models (Tse and Tsui, 2002; Bae et al., 2003; Égert and Kočenda, 
2010; Xiao and Dhesi, 2010; Égert and Kočenda, 2010). DCC-GARCH models have 
gained popularity in stock market comovement research because they offer both 
the flexibility of univariate GARCH models and the simplicity of parametric corre-
lation in the model and extend the CCC-GARCH (Constant Conditional Correlation 
GARCH) models (Silvennoinen and Teräsvirta, 2009).

Interdependencies between stock markets may not just be changing in time, 
but may also be scale-dependent (i.e., depend on the horizon over which they are 
investigated; see for example, Ranta, 2010, and Zhou, 2011). Candelon et al. (2008) 
argued that stock market comovement analyses should consider the distinction 
between short- and long-term investors. From a portfolio diversification point of 
view, short-term investors are more interested in stock market interdependencies 
over shorter time horizons (that is, at higher frequencies, or short-term movements), 
whereas long-term investors focus on lower-frequency interdependencies. As such, 
one has to resort to scale (frequency) domain analysis to obtain insights into the inter-
national interdependencies of stock markets at the scale level (Gençay et al., 2001a; 
Ranta, 2010). In such a context, given both the time horizon of economic decisions 
and the strength and direction of the economic relationships between the variables, 
which may differ according to the time scale of the analysis, wavelet analysis may be 
a useful analytical tool. 

The Maximal Overlap Discrete Wavelet Transform (MODWT) possesses some 
features that render the tools of this wavelet very suitable for investigating inter-
dependence between financial assets (for use of the MODWT variance, correlation, 
and wavelet cross-correlation tools, see, for example, Gençay et al. 2001a; In and 
Kim, 2006; Kim and In, 2007; Conlon et al., 2009; Ranta, 2010, or Zhou, 2011). 
Wavelet multiresolution analysis (MRA)—another MODWT tool—has been applied 
in Ramsey (1998 a,b), Gençay (2002), and Zhou (2011) to study Granger causal rela-
tionships between economic and financial variables on different time scales. They all 
confirm that Granger causal relationships are scale dependent. As Zhou (2011) 
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argued, this is an argument for investigating return spillovers not just in the time 
domain, but also in the time-frequency domain, on a scale-by-scale basis. 

The present paper provides two contributions to the existing literature. To our 
knowledge, this is the first study to analyze the interdependence of the Czech and 
European stock markets in the time-frequency domain. Also, unlike existing studies, 
the present paper studies the effects of the global financial crisis of 2008–2009 
on the comovement between the Czech and the European stock market returns. 
The paper is organized as follows. The next section describes the methodology. 
Section 3 describes the time series and empirical results, and Section 4 summarizes 
the main findings.

2. Methodology 

2.1 The DCC-GARCH Model

The DCC-GARCH model of Engle and Sheppard (2001) assumes that returns 

from k assets are conditionally multivariate normal with zero expected value ( tr )1

and covariance matrix tH . The returns of the asset (stock indices), given 

the information set available at time 1t  , have the following distribution:2

                                                         
 1 ~ 0,t t tr N H∣ I                                                (1)

and  

                                                              
t t t tH D R D                                                      (2)

where tD is the k k diagonal matrix of time-varying standard deviations from 

univariate GARCH models with ith on the i-th diagonal, and tR is the time-varying 

correlation matrix.

The log-likelihood of this estimator is written as:

                       
      1

1

1 'klog 2 2log log
2 t t t tt
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π H R RL 


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where ~ (0, )t tN R are the residuals standardized by their conditional standard 

deviation. The elements of the matrix tD are given by the univariate GARCH(p,q) 

model (Engle and Sheppard, 2001):

                                               

2
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                                           (4)

1 The asset return series entering the DCC-GARCH model as an explanatory variable have to be filtered so 
that the expected (mean) value of the series is zero. Often, filtering is achieved by estimating a bivariate 
Vector Autoregressive (VAR) model for the return series to remove the potential linear structure between 
the variables of the model. The residuals of the VAR models are then used as inputs to the DCC-GARCH 
model (see Crespo-Cuaresma and Wójcik, 2006, or Égert and Kočenda, 2010). 
2 The description of the DCC-GARCH models is summarized from Engle and Sheppard (2001). We use 
the same notation as the authors.
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where 1, 2, ,i k  (variables), with the usual GARCH restrictions (for non-nega-

tivity and stationarity 
1 1

1
i i

ip iq
p q

P Q

α β
 

   ). 

The dynamic correlation structure is defined by the following equations:
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where M is the length of the innovation term in the DCC estimator, and N is 

the length of the lagged correlation matrices in the DCC estimator ( 0mα  , 0nβ  , 
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m n
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 

   ). Q is the unconditional covariance of the standardized residuals 

resulting from the first stage estimation and *
tQ is a diagonal matrix composed of 

the square root of the diagonal elements of tQ :
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The elements of the matrix tR are:
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q
ρ
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                    (8)

In order to estimate the DCC(m,n)-GARCH(p,q) model, we first pre-filter 
the return time series by estimating a VAR(p)3 model
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    (9)

and then, with the residuals of the VAR model, we estimate a DCC(m,n)-GARCH(p,q)
model. In the first stage the univariate GARCH(p,q) models are estimated for each 
residual series,4 and in the second stage, the residuals, transformed by their standard 
deviation estimated during the first stage, are used to estimate the parameters of 
the dynamic correlation.5

3 The optimal lag (p) in the VAR model is selected by the Schwarz Information Criterion (SIC).
4 We tested among univariate GARCH models (GARCH(1,1), GARCH(1,2), GARCH(2,1), and GARCH(2,2))
and, as proposed by Engle and Sheppard (2001), selected the one with the minimum Akaike information 
criteria. 
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In order to test whether a conditional correlation is time-varying, a test 
proposed by Engle and Sheppard (2001) is used:

                                                      0 : tH R R  t T 

against

               
       u
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     (10)

where H0 and H1 are the null and the alternative hypothesis, and uvech is a modified  
vech which only selects elements above the diagonal. 

The testing procedure is as follows. First the univariate GARCH processes are 
estimated, and then the residuals are standardized. Then the correlation of the stand-
ardized residuals is estimated, and the vector of univariate standardized residuals is 

jointly standardized by the symmetric square root decomposition of the R . Under 
the null of constant correlation, these residuals should be IID with a variance co-
variance matrix given by Ik. The artificial regressions are a regression of the outer 
products of the residuals on a constant and lagged outer products. The estimated 
vector autoregression is:

                                            1 1t t s t s tY α β Y β Y η                                              (11)

where
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1

12
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
 is a 1k  vector of 

residuals jointly standardized under the null hypothesis. 

Under the null hypothesis the intercept and all of the lag parameters in 

the model should be zero. The test can then be conducted as 
'

2

ˆ ˆ

ˆ
δ δ

δ

'X X
, which is 

asymptotically 2
( 1)sχ  , where δ̂ are the estimated regression parameters and X is 

a matrix consisting of the regressors.

A significant rejection of the constant correlation hypothesis shows that DCC-
GARCH is to be preferred to the constant conditional correlation GARCH model 
(CCC-GARCH) of Bollerslev (1990).

2.2 Maximal Overlap Discrete Wavelet Transform (MODWT)

Similar to Fourier analysis, wavelet analysis involves the projection of the origi-
nal series onto a sequence of basis functions, which are known as wavelets. There are 
two basic wavelet functions: the father wavelet (called also a scaling function),  , 

and the mother wavelet (called also a wavelet function), ψ , which can be scaled and 

translated to form a basis for the Hilbert space 2 ( )L  of square integrable functions. 

5 We estimated a variety of specifications for the DCC model, allowing for more lags in both the news 
term (α) and the decay term (β). More specifically we tested among the DCC(1,1), DCC(1,2), DCC(2,1), 
and DCC(2,2) models. As proposed by Engle and Sheppard (2001), we selected among them based on 
the LR test. In empirical applications, though, normally a bivariate DCC(1,1)-GARCH(1,1) model is esti-
mated, with two financial assets, r1t and r2t (Engle, 2002; Égert and Kočenda, 2010). 
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The father and mother wavelets are defined by the functions:
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                                              (12)
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where 1, ,j J  is the scaling parameter in a J-level decomposition and k is 

a translation parameter ( ,j k  ). The long-term trend of the time series is captured 

by the father wavelet, which integrates to 1, while the mother wavelet, which inte-
grates to 0, describes fluctuations from the trend. The continuous wavelet transform 
of a square integrable time series ( )X t consists of scaling coefficients, ,J k , and 

wavelet coefficients, ,j k (Craigmile and Percival, 2002):

                                                      
 , ,( ) ( )J k J kt t X t                                              (14)

and

                                                       
 , ,( ) ( )j k j kt t X t                                            (15)

It is possible to reconstruct ( )X t from these transform coefficients using:

     , , , , 1, 1, 1, 1,( ) ( )J k J k J k J k J k J k k k

k k k k

X t t t t t                  16)

In practice we observe a time series at a finite number of regularly spaced 
times, so we can make use of the discrete wavelet transform (DWT)6 or the maximal 
overlap discrete wavelet transform (MODWT). The MODWT is a linear filtering 
operation that transforms a series into coefficients related to variations over a set of 
scales. It is similar to the discrete wavelet transform, but it gives up the orthogonality 
property of the DWT to gain other features that render the MODWT more suitable 
for the aims of our study, namely (Percival and Mojfeld, 1997): i) the ability to 
handle any sample size regardless of whether or not the series is dyadic (that is, of 

size 02J , where 0J is a positive integer number); ii) increased resolution at higher 

scales, as the MODWT oversamples the data; iii) translation-invariance, which ensures
that the MODWT wavelet coefficients do not change if the time series is shifted in 
a “circular” fashion; iv) a more asymptotically efficient wavelet variance estimator 
than the DWT.

The MODWT is defined in the following way. Let7 x be an N dimensional 

vector whose elements represent the real-valued time series  : 0, , 1tX t N   . 

For any positive integer, 0J , the level 0J MODWT of x is a transform consisting of 

6 For a presentation of the DWT, please refer to Percival and Walden (2000).
7 Concepts and notations as in Percival and Walden (2000) are used. In the paper only a brief description 
of the MODWT is given. For an elaborate description, refer to Percival and Walden (2000) or Gençay et al. 
(2002).
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the 0 1J  vectors , ,
01 Jw w  and 

0Jv , all of which have dimension N. The vector 

jw contains the MODWT wavelet coefficients associated with changes on a scale of 

12 j
j

 (for 01, ,j J  ), while 
0Jv contains the MODWT scaling coefficients 

associated with averages on a scale of 0

0
2J

J  .8 Based upon the definition of 

the MODWT coefficients we can write (Percival and Walden, 2000):

                                                                  
j jw W x                                                      (17)

and

                                                                
 

0 0J Jv V x                                                   (18)

where jW and 
0JV are NxN matrices. 

By definition, the elements of jw and 
0Jv are outputs obtained by filtering X,

namely:
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and
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
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for 0, , 1t N   , and where ,j lh and ,j lg are the jth-level MODWT wavelet and 

scaling filters defined in terms of the jth-level equivalent wavelet and scaling filters.

The MODWT treats the series as if it were periodic, whereby the unobserved 
samples of the real-valued time series 1 2, , NX X X   are assigned the observed 

values at 1 2 0, ,N NX X X   . 

The MODWT coefficients are thus given by: 
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and

                                                        

1

, ,

0

N

j t j l t lmodN

l

V g X
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



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for 0, , 1t N   ; ,j lh and ,j lg are periodization of ,j lh and ,j lg to circular filters 

of length N.

This periodic extension of the time series is known as analyzing  tX using 

“circular boundary conditions” (Percival and Walden, 2000; Cornish et al., 2006). 

8 Percival and Walden (2000) denote scales for wavelet coefficient as τ and scales for scaling coefficients 
as λ. We use these notations as well.
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There are Lj – 1 wavelet and scaling coefficients that are influenced by the extension 
(“the boundary coefficients”). Since Lj increases with j, the number of boundary 
coefficients increases with scale. Exclusion of boundary coefficients in the wavelet 
variance, wavelet correlation, and covariance provides unbiased estimates (Cornish et 
al., 2006).

One of the useful characteristics of the MODWT is the additive decom-
position of the signal (time series), as X can be recovered from its MODWT via 
(Percival and Walden, 2000):

                                        

0 0

1 1

J J

j j 

   0 0 0

T T
j j J J j JX w dW V v +s                                  (23)

which defines an MODWT-based multiresolution analysis (MRA) of X in terms 

of jth level MODWT details  T
j J jd W w   (which capture local fluctuations over 

the whole period of a time series on each scale) and the J0 level of the MODWT 

smooths 
0 0 0

T
J J J=V vs   (which provides the “smooth” or overall “trend” of the original

signal). Adding jd to 
0Js , for 0 1 , 2, , j J  , gives an increasingly accurate approxi-

mation of the original signal. Using the “circular boundary condition” the elements of 

jd that are affected by circularity (and have to be excluded to obtain unbiased esti-

mates, based on the MODWT detail and smooth time series) are those with time 
indices satisfying either 0, , 2jt L   or 1, , 1jt N L N     .

3. Empirical Results

3.1 Data

The stock index returns data are calculated as the differences of the loga-

rithmic daily closing values of the indices     1ln lnt tP P , where Pt is the day t 

closing index value). The following indices were considered: PX (for the Czech 
Republic), ATX (for Austria), CAC40 (for France), DAX (for Germany), FTSE100 
(for the UK), BUX (for Hungary), LJSEX (for Slovenia), and WIG20 (for Poland). 
The first day of observation is April 1, 1997, and the last day is May 12, 2010. Days 
of no trading on any of the observed stock markets were removed. The total number 
of observations amounts to 3,060 days. The data sources for the closing unadjusted 
(for dividends) values of the PX, BUX, LJSEX, and WIG20 indices are their respec-
tive stock exchanges, and the data source for the closing unadjusted (for dividends) 
values9 of the ATX, CAC40, DAX, and FTSE100 indices is Yahoo! Finance.10

9 This approach has been used in several studies (e.g. Baumöhl and Výrost, 2010; Ülkü, 2011; Forbes and 
Rigobon, 2002). 
10 There are no major differences in the trading hours of the stock markets investigated. The trading hours 
are the following: 9.15 a.m.–4.20 p.m. on the Prague Stock Exchange, 8.55 a.m.–5.35 p.m. on the Vienna 
Stock Exchange, 9.00 a.m.–5.30 p.m. on the NYSE Euronext Stock Exchange in Paris (CAC40 index), 
9.00 a.m.–5.30 p.m. on the Frankfurt Stock Exchange, 9.00 a.m.–5.30 p.m. on the London Stock 
Exchange, 9.00 a.m.–5.00 p.m. on the Budapest Stock Exchange, 9.00 a.m.–12.50 p.m. on the Ljubljana 
Stock Exchange, and 9.00 a.m.–4.20 p.m. on the Warsaw Stock Exchange.
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Table 1  Descriptive Statistics of Return Series of Stock Market Indices

Min Max Mean
Std. 

deviation
Skewness Kurtosis

PX -0.1990 0.2114 0.0002595 0.01667 -0.29 24.62

ATX -0.1637 0.1304 0.0002515 0.01558 -0.40 14.91

CAC40 -0.0947 0.1059 0.0001206 0.01628 0.09 7.83

DAX -0.0850 0.1080 0.0002071 0.01756 -0.06 6.58

FTSE100 -0.0927 0.1079 0.0000774 0.01361 0.09 9.30

BUX -0.1803 0.2202 0.0004859 0.02021 -0.30 15.90

LJSEX -0.1285 0.0768 0.0003521 0.01062 -0.87 20.19

WIG20 -0.1066 0.1344 0.0001517 0.01967 -0.03 6.53

Table 2 Jarque-Bera, Ljung-Box, and ARCH Effect Tests

Jarque-Bera

statistics

Ljung-Box Q2 statistics 
(Q2(10))

ARCH effect (5)

PX 59,654.93*** 1,695.84*** 677.47***

ATX 18,153.48*** 2,713.71*** 747.94***

CAC40 2,982.52*** 1,499.74*** 448.72***

DAX 1,635.47*** 1,509,54*** 447.35***

FTSE100 5,069.61*** 1,922.94*** 561.27***

BUX 21,260.91*** 927.74*** 329.46***

LJSEX 38,073.93*** 1,377.33*** 544.36***

WIG20 1,584.98*** 840.27*** 306.21***

Notes: Jarque-Bera statistics: *** (**) indicates that the null hypothesis (of normal distribution) is rejected at 
the 1% (5%) significance level. Ljung-Box Q

2
statistics (Q

2
(10)) report the values of the statistics at 

the 10
th

lag: *** indicates that the null hypothesis of no serial correlation can be rejected at the 1% 
significance level for up to the 10

th
lag. Engle´s ARCH test reports the values of the LM test statistics at 

the 5 lags included: *** indicates that the null hypothesis of no ARCH effects can be rejected at the 1% 
significance level for up to the 5

th
lag.

Table 1 presents some descriptive statistics of the data. We observe a higher 
spread between the maximum and minimum daily returns in the PX and BUX indices 
than with the other ones. The standard deviation of the daily returns is the smallest 
with the LJSEX index. 

Table 2 shows that the Jarque-Bera test rejects the hypothesis of normally 
distributed observed time series; all indices are asymmetrically (left) distributed 
around the sample mean, and kurtosis is greater than for normally distributed time 
series. The Ljung-Box Q-statistics reject the null hypothesis of no serial correlation 
in the squared residuals (of the VAR models) of the stock index returns for all 
the stock indices. Because we use the GARCH process to model the variance in 
the asset returns, we also tested for the presence of the ARCH effect. The null hypo-
thesis of no ARCH effects is rejected at the 1% significance level.

The stationarity of the stock index return time series was tested using a combi-
nation of the Augmented Dickey-Fuller (ADF), Phillips-Peron (PP), and Kwiatkowski-
Philips-Schmidt-Shin (KPSS) tests.11 The results12 show that all of the time series are 
stationary. 

11 It must be noted that Dickey-Fuller tests tend to over-reject the null hypothesis in the presence of 
GARCH errors (Kim and Schmidt, 1993), especially when the condition α + β < 1 is not fulfilled. For 
the KPSS test, Carrasco and Chen (2002) proved that the limit distribution of the KPSS statistic under 
stable GARCH(1,1) errors remains valid.
12 The results are not presented here, but can be obtained from the author.
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Table 3  Results of Bivariate VAR Models for Stock Index Returns

PX-ATX PX-CAC40 PX-DAX
PX-

FTSE100
PX-BUX PX-LJSEX PX-WIG20

A constant
0.00026
(0.85)

0.00026
(0.87)

0.00026
(0.85)

0.00027
(0.89)

0.00024
(0.81)

0.00029
(0.95)

0.00026
(0.87)

PX (lag1)
-0.02905
(-1.29)

-0.04373**
(-2.08)

-0.03832*
(-1.88)

-0.05441**
(-2.57)

0.05837***
(3.27)

0.02106
(1.11)

-0.03249
(-1.49)

Other 
index in 
pair (lag1)

0.06008**
(2.49)

0.09570***
(4.44)

0.08667***
(4.47)

0.13688***
(5.28)

-0.03457
(-1.60)

-0.08498***’
(-2.85)

0.05630***
(3.06)

ATX-PX CAC40-PX DAX-PX
FTSE100-

PX
BUX-PX LJSEX-PX WIG20-PX

A constant
0.00025
(0.88)

0.00014
(0.49)

0.00022
(0.69)

0.00010
(0.39)

0.00048 
(1.30)

0.00026
(1.41)

0.00016
(-1.46)

PX (lag1)
-0.02167
(-1.03)

-0.06460***
(-3.14)

-0.03586*
(-1.66)

-0.07281***
(-4.20)

0.01559
(0.72)

0.04968***
(4.22)

-0.03753
(0.29)

Other 
index in 
pair (lag1)

0.04421
(1.96)**

0.00003
(0.00)

-0.02694
(-1.32)

0.00476
(0.22)

0.00497
(0.00)

0.20015***
(10.84)

0.00630
(0.44)

Notes: In parenthesis under the parameter estimation, t-statistics are given. *** (**/*) denote rejection of 
the null hypothesis that parameter is equal zero at 1% (5%/10%) significance level. The first index 
(for example PX in PX-ATX pair) in the indices pairs represents dependent variable in a bivariate VAR 
model regression equation.

3.2 DCC-GARCH Time-Varying Conditional Correlation Analysis Results

Initially, a bivariate Vector Autoregressive (VAR) model with one lag13 of 
the returns was used to remove the potential linear structure between the pairs 
of stock index returns. Then the residuals of the VAR model were used as inputs for 
the DCC-GARCH model. 

The results of the VAR model (Table 3) show that the lagged returns of ATX, 
CAC40, DAX, FTSE100, LJSEX, and WIG20 are statistically significant, meaning 
that they influence the PX returns. The lagged PX returns also significantly (at least 
at the 5% significance level) explain the CAC40, FTSE100, and LJSEX returns. It 
follows that return innovations in ATX and DAX spill-over to the PX returns, 
whereas return spillovers are bi-directional between PX and CAC40, between PX 
and FTSE100, and between PX and LJSEX. 

The null hypothesis of constant correlation was rejected for all stock index pairs 
(Table 4). We thus proceeded with selecting the appropriate DCC(m,n)-GARCH(p,q) 
specification. Based on the Akaike information criteria for the different GARCH(p,q) 
( 2, 2p q  ) models, the GARCH(1,1) specification was chosen. The lag structure 

of the DCC (m,n) parameters was selected by the LR (likelihood ratio) test.14 DCC(1,1) 
(the restricted model in the LR test) was not rejected in favor of the DCC models 
with a higher lag structure for stock index pairs PX-ATX, PX-CAC40, PX-DAX, 
PX-FTSE100, and PX-WIG20. The correlation between PX and these stock indices 
was thus estimated by the DCC(1,1)-GARCH(1,1) model. For the pairs PX-BUX and

13 We used the SIC (Schwarz Information Criterion) criteria to select the optimal lag length of the VAR 
model because Ashgar and Abdi (2007) showed that it performs better than other information criteria in 
this task. The results are not presented here, but can be obtained from the author.
14

The results of the Akaike information criteria and the LR test are not presented here, but can be obtained 
from the author.
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Table 4  Constant Correlation Test for Stock Indices Paired with PX

Parameter PX-ATX PX-CAC40 PX-DAX
PX-

FTSE100
PX-BUX PX-LJSEX PX-WIG

χ2 121.4063 38.1977 47.2672 55.9997 59.2594 33.7127 75.4326

p-value 0.0000*** 0.0000*** 0.0000*** 0.0000** 0.0000**** 0.0004*** 0.0078***

Notes: A constant correlation model test of Engle and Sheppard (2001) with 10 lags is estimated. The test 
statistic is χ2 with 10 +1 degrees of freedom. *** denote rejection of the null hypothesis of constant 
correlation at 1% significance (**at 5% significance, and * at 10% significance) level.

Table 5 Results of a DCC(1,1)-GARCH (1,1) Model for Indices in Pair with PX

Parameter PX-ATX PX-CAC40 PX-DAX PX-FTSE100 PX-WIG

ω PX–other 
index

7.36469e-06 ***
(4.2997)

7.58322e-06 ***
(4.32)

7.83881e-06***
(4.33)

7.79969e-06***
(4.38)

7.49563e-06***
(4.33)

α PX—other 
index

0.13570***
(8.51)

0.13418***
(8.36)

0.13212***
(8.37)

0.13418***
(8.59)

0.13407***
(8.47)

β PX—other 
index

0.84025***
(58.94)

0.84046***
(57.42)

0.84094***
(57.20)

0.83931***
(58.02)

0.84075***
(58.03)

Ljung-Box 
Q

2
(10) statistics

9.20 10.63 13.09* 11.85* 8.67

ω other index—
PX

3.49478e-06 ***
(3.76)

2.30619e-06***
(2.73)

3.26284e-06 ***
(3.02)

1.28874e-06***
(3.15)

5.02609e-06***
(2.42)

α other index—
PX

0.11833***
(5.82)

0.09035***
(6.84)

0.11332***
(6.51)

0.09321***
(8.28)

0.06170***
(5.56)

β ther index—
PX

0.86824***
(43.52)

0.90493***
(67.35)

0.88120***
(53.11)

0.90341***
(82.0)

0.92639***
(65.04)

Ljung-Box 
Q

2
(10) statistics

11.66 7.75 10.40 11.10 6.44454

α
0.01546 ***

(2.37)
0.02345***

(4.24)
0.02440***

(4.16)
0.02381***

(4.21)
0.02458***

(2.73)

β
0.98226 ***

(127.05)
0.96756***
(123.37)

0.96396***
(99.77)

0.96581*** 
(110.98)

0.96453***
(60.77)

Notes: ω PX–other index, α PX—other index, β PX—other index are estimated parameters of a univariate
GARCH (1,1) model, with input that are residuals of the estimated bivariate Vector Autoregressive 
(VAR) model with PX returns as a dependent variable and the other index return series in the bivariate 
VAR as an explanatory variable. ω other index—PX, α other index—PX, β ther index—PX are 
the estimated parameters of a univariate GARCH (1,1) model, with residuals input from the estimated 
bivariate Vector Autoregressive (VAR) model with PX returns as an explanatory variable and the other 
index return series in the bivariate VAR as a dependent variable. In parentheses under the parameter 
estimation, t-statistics are given: *** (**/*) denote rejection of the null hypothesis that parameter is zero 
at a 1% (5%/10%) significance level. Ljung-Box Q2(10) statistics reports the value of the statistics at 
lag 10: ***(**/*) indicate that the null hypothesis of no serial correlation in squared residuals of 
estimated GARCH model can be rejected at 1% (5%/10%) significance level for lags up to 10.

PX-LJSEX the DCC(2,2)-GARCH(1,1) model was chosen, as the LR showed that 
the restricted models (i.e., those with parameters 2 m  and 2n  ) can be rejected in 
favor of the unrestricted DCC(2,2)-GARCH(1,1) model.

The results of the DCC(1,1)-GARCH(1,1) model are presented in Table 5 and 
the results of the DCC(2,2)-GARCH(1,1) model in Table 6. The DCC parameters α
and β are significant for all stock index pairs and β > α for all pairs, so the current 
variances of the returns are more affected by the magnitude of past variances than by 
past return innovations. A high persistence is observed in the series of correlations Rt

(as β is close to 1). The sum of the DCC parameters (α + β) is very close to 1 in all 
cases, indicating that the conditional variances are highly persistent and only slowly 
mean-reverting. The results of the Ljung-Box statistics do not reject the null hypo-
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Table 6 Results of a DCC(2,2)-GARCH (1,1) Model for Indices in Pair with PX

Parameter PX-BUX PX-LJSEX

ω PX–other index
7.36470e-06***

(4.30)
7.54622e-06***

(4.39)

α PX—other index
0.13570***

(8.62)
0.13885***

(8.64)

β PX—other index
0.84025***

(59.36)
0.83667***

(57.58)

Ljung-Box Q
2
(10) statistics 9.37 11.77*

ω other index—PX
1.56495e-05

(2.12)
4.36966e-06***

(3.44)

α other index—PX
0.15924***

(2.74)
0.35710***

(6.08)

β ther index—PX
0.80785***

(12.58)
0.64290***

(12.24)

Ljung-Box Q
2
(10) statistics 4.90 12.68

α1
0.01379
(0.77)

0.04902***
(2.41)

α2
0.06246***

(3.59)
2.000000e-06

(0.00)

β1
0.06351
(0.81)

0.15822
(0.61)

β2
0.79890***

(9.83)
0.67585***

(3.73)

Notes: See notes for Table 5.

thesis of no serial correlation in the squared residuals of the estimated models, sug-
gesting that the models are appropriately specified. 

As can be seen in Figures 1a and 1b (and also Table 7 in continuation), the PX 
returns correlate most with the ATX, WIG20, and CAC40 returns and are least cor-
related with the LJSEX returns. For investors already present in the Czech stock 
market, the greatest diversification benefits are thus achievable by investing in 
LJSEX-indexed instruments. It is of great interest to international investors to deter-
mine if comovement increases in the short or long term. The long-term comovement 
dynamics can be observed from the trend analysis. In Figures 1a and 1b, we observe 
a rising trend of pair-wise correlations between the returns of the Czech and other 
European stock markets. The rising correlation trend is more evident for some stock 
index pairs (namely, between PX and ATX and CAC40 and FTSE100) and less 
evident—but still rising—for others (namely, between PX and LJSEX), suggesting 
that comovement between stock markets increased in the observed period. This 
confirms the empirical evidence in the existing literature (for example, Serwa and 
Bohl, 2005; Tudor, 2010; Harrison and Moore, 2009) of rising comovement between 
the Czech and other European stock markets in the last decade.15

15 In the empirical literature on stock market comovements, more factors have been determined to in-
fluence the level of long-term comovement of stock markets. Forbes and Chinn (2004) found that direct 
trade flows have a positive effect on cross-country stock market correlations, while competition in third 
markets tends to have a negative effect. Quinn and Voth (2008) provide evidence that more open countries 
face higher stock market correlations with those abroad relative to closed economies. On investigating 
factors of international stock market comovement during the recent global financial crisis, Didier et al. (2011) 
found evidence that stock market liquidity can also significantly explain stock market comovements.
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Figure 1a  Pair-Wise Conditional Correlation between PX and Other Stock Indices Returns
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Notes: On the time axis the financial crises are denoted: RFC = Russian financial crisis (outbreak on August 13, 1998), DCC = Dot-Com crisis (the date, March 24, 2000, is 
taken, when the peak of S&P500 was reached, before the dot-com crisis began), WTC = attack on WTC in New York (September 11, 2001), EU = the date when 
Czech Republic joined the European Union (May 1, 2004), GFC = Global financial crisis (September 16, 2008). The vertical dotted lines indicate these events. 
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Figure 1b  Pair-Wise Conditional Correlation between PX and Other Stock Indices Returns
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The rising trend of the DCC-GARCH conditional correlation is especially 
noticeable after 2002. Real and financial integration in the European Union had 
already taken place before de facto accession to the European Union. There is plenty 
of evidence in the empirical literature that European integration has increased inter-
dependence among financial markets.16

Clearly, stock return comovement is time-varying. This finding is in accord-
ance with the recent literature on the measurement of different stock market co-
movements (Forbes and Rigobon, 2002; Syriopoulos, 2007; Gilmore et al., 2008; 
Kizys and Pierdzioch, 2009). As Malkiel (2003) and Zhou (2011) argued, shorter-
term links between markets are to a great extent influenced by sporadic events, 
market sentiment, and psychological factors, which can cause short-term changes in 
market behavior. Financial crises are events that can disrupt the links in international 
financial markets in the short or long term.

The existing literature (Longin and Solnik, 1995; Ang and Bekaert, 2002; 
Baele, 2005) presents evidence that correlations among international markets tend to 
increase when stock returns fall precipitously. The main financial market disruptions 
during the period April 1997–May 2010 (the Russian financial crisis, the attack on 
the World Trade Center in New York, the dot-com crisis, and the global financial 
market crisis) are indicated in Figures 1a and 1b. These events, as evident from 
Figures 1a and 1b, led to an increase in correlation that lasted from 100 to 400 days. 
The global financial crisis, with the collapse of Lehman Brothers on 16 September 
2008 taken as the major event that spread the financial crisis from the U.S. to world 
financial markets, had a similar impact on the Czech stock market’s comovement 
with European stock markets as the earlier financial crises noted.

To examine statistically the effect of European Union integration and the global 
financial crisis of 2008–2009 on the comovement between the Czech and European 
stock markets investigated, we split the total period covered in the present study into 
three sub-periods and examined the regression model:17

                           
2

, , , ,

1 1

P

ij t ij p ij t p k k t ij t

p k

a DV e

 

                                   (24)

where ij is a regression constant, ,ij t is the pair-wise correlation between the PX 

(i = PX) and the other stock index returns (j = ATX, CAC40, DAX, FTSE100, BUX, 
LJSEX, WIG20), obtained from the DCC-GARCH model estimated above, , k tD is 

the dummy variable for the second and the third sub-periods (treated as an exogenous 
variable in the VAR model), and ,ij te is the error term. The optimal lag length (p) is 

determined by the SIC criteria. The three sub-periods are:

1.  April 1, 1997–April 30, 2004 (i.e., from the start of the sample observation until 
EU enlargement).

16 Empirical studies of the effects of European integration on the interdependence of the developed Euro-
pean stock markets which confirm this assumption include, for example, Longin and Solnik (1995), and 
Bessler and Yang (2003). For the CEE stock markets, this assumption was confirmed by the studies of 
Syllignakis and Kouretas (2006), Harrison and Moore (2009), and Caporale and Spagnolo (2010).
17 The regression model is very similar to the one suggested by Chiang et al. (2007).
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Table 7 Results of the Tests in Changes of Correlation 
During the Three Sub-Periods

Pair-wise 
correlations

Average 
(mean) 

correlation 
in sub-

period 1

Average 
(mean) 

correlation 
in sub-
period 2

Average 
(mean) 

correlation 
in sub-

period 3

μij ρij, t-1

Dummy 
variable for 
the second 
sub-period

Dummy 
variable for 

the third 
sub-period

PX and ATX 0.2975 0.5851 0.6897
0.00212***

(3.00)
0.99246***
(446.49)

0.00248***
(2.83)

0.00325***
(2.73)

PX and 
CAC40

0.3846 0.4810 0.5898
0.00601***

(4.52)
0.98410***
(308.70)

0.00188**
(2.11)

0.00379***
(2.86)

PX and DAX 0.3709 0.4656 0.5567
0.00759***

(5.20)
0.97933***
(268.55)

0.00222**
(2.33)

0.00429***
(3.06)

PX and 
FTSE100

0.3891 0.5032 0.5705
0.00756***

(5.17)
0.98023***
(277.86)

0.00270***
(2.97)

0.00402***
(3.10)

PX and BUX 0.4424 0.5109 0.5706
0.09963***

(18.54)
0.77460***

(67.68)
0.01542***

(5.08)
0.02934***

(6.80)

PX and LJSEX 0.1588 0.1751 0.2242
0.05228***

(19.51)
0.67047***

(49.89)
0.00499*

(1.89)
0.02239***

(5.97)

PX and WIG20 0.4386 0.5330 0.6689
0.00903***

(5.42)
0.97936***
(270.15)

0.00180**
(2.06)

0.00526***
(3.74)

Notes: In the Table 6 the regression estimates of the equation (24) are given. Average correlation is calculated 
as the arithmetic average of correlation in the sub-period. The optimal lag for all pair-wise correlation 
time series as determined by SIC criteria is 1. ***, **, and * indicate the significance level of 
the t-statistics. The results are robust across the sub-samples.

2.  May 1, 2004–September 16, 2008 (i.e., after Czech Republic entered the Euro-
pean Union until the start of the global financial crisis).

3.  September 17, 2008–May 12, 2010 (i.e., from the start of the global financial 
crisis until the end of the entire observation period).

Significance of the estimated coefficients of the dummy variables would indi-
cate structural changes in the pair-wise correlation coefficients in the second and 
the third sub-periods. The results are presented in Table 7.

The dummy variable for the third sub-period is positive and highly significant 
for all pair-wise correlation time series, whereas for the second sub-period the dummy
variable is not significantly different from zero (at least at the 5% significance level) 
for the pair of PX and LJSEX returns. Based on this evidence, we can argue that EU 
integration led to more correlated movements in all stock markets in Europe except 
Slovenia. Since the start of the global financial crisis, the comovement has increased 
further.

3.3 Multiscale Granger Causality Test of Spillovers Between Stock Market 
Returns

To study the multiscale return spillovers between the Czech and the European 
stock markets, we resort to the Granger causality test.18 More specifically, we perform 
the modified Granger causality test of Granger (1969) and Granger and Morgenstern 
(1970), running the following bi-variate Vector Autoregression (VAR) models:

18 The strength of comovement (i.e., correlation analysis) is another interesting issue that could be inves-
tigated at the multiscale level. This, however, would exceed the limits of this paper and is left for further 
research.
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where PX
j,tD is the MODWT wavelet detail series of the PX returns on scale j

( 1, ,7j   ),19 oi
j,t -iD is the wavelet detail series of the other stock index returns on 

scale j , t is a time index, and p is the number of time lags. The null hypothesis is 
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with the null hypothesis 0 2,
1

: 0
p

i
i

H 


 . 

The hypotheses are tested using the F-test and the interpretation of the results 

is as follows: if the null 0 1,
1

: 0
p

i
i

H 


 (or 0 2,

1

: 0
p

i

i

H 


 , respectively) is rejected 

and, at the same time, hypothesis 0 2,

1

: 0
p

i

i

H 


 (or 0 1,
1

: 0
p

i
i

H 


 , respectively) is 

not rejected, we conclude that the foreign (from the Czech perspective) stock index 
returns (or the PX returns, respectively) are Granger-causing the PX returns (or 
foreign index returns, respectively) on scale j . If both of the null hypotheses are 

rejected, then a feedback mechanism exists between the pair of index returns on scale 

j . If none of the hypotheses are rejected, no Granger causality exists between 

the variables on the particular scale. A one-way causal relationship is confirmed only 
if for one VAR equation the null hypothesis is rejected and for the other VAR equa-
tion the null hypothesis is not rejected.20

The MODWT MRA analysis of the index return series is performed by using 
a Daubechies least asymmetric filter with a wavelet filter length of 8 (LA8).21 This is 
a common wavelet filter used in other empirical studies on financial market inter-
dependencies (Gençay et al., 2001b; Ranta, 2010). The maximum level of the MODWT
is 7 ( 0 7)J  in order to also investigate the longer-term relationship between 

the stock markets.22 A “circular boundary condition” is applied; therefore, only

19 Scale 1   (or scale 1, as 1 1
1 2 1   ) measures the dynamics of the returns over 2–4 days; scale 2

(scale 2, as 2 1
2 2 2   ) over 4–8 days; scale 3 (scale 4, as 3 1

3 2 4   ) over 8–16 days; scale 4

(scale 8, 4 1
4 2 8   ) over 16–32 days; scale 5 (or scale 16) over 32–64 days; and scale 6 (or scale 32) 

over 64–128 days.
20 When the GARCH effect is present in the time series, the Granger causality test leads to over-rejection 
of the true null hypothesis. Instead, the wavelet (MODWT) pre-filtering is robust to GARCH errors 
(Månsson, 2012).
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Figure 2 MRA of PX Daily Returns
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Notes: The raw return series presents the returns of the original data (PX daily returns). Dj (j = 1,...,7) are 
the return series of the scale τj details obtained by the MRA analysis. S is the smooth series. 

details not affected by the boundary condition are captured in the Granger analysis. 
The MRA analysis for the PX return series is presented in Figure 2.

To obtain unbiased estimates in the Granger causality test, only non-boundary 
wavelet details may be considered. Tables 8a and 8b report the results of the multi-
scale Granger causality tests. 

21 A reasonable choice of filter must consider the specific analysis goal we want to achieve (such as 
isolation of transient events in a time series, analysis of variance, multiresolution analysis, etc.) and
the properties we need in the filter to achieve that goal (Percival and Walden, 2000). Choosing the wavelet 
filter of the shortest width (L = 2,4,6) can sometimes introduce undesirable artifacts into the resulting 
analyses. Alternatively, while wavelet filters with a large L can be a better match to the characteristic 
features in a time series, their use can result in more coefficients (or details) being influenced by boundary 
conditions and an increase in the computational burden. Percival and Walden (2000) suggest a strategy of 
using the smallest L that gives reasonable results. The Daubechies class of wavelets possesses appealing 
regularity characteristics and produces transforms that are effectively localized differences of adjacent 
weighted averages. The least asymmetric (LA) subclass, known as symmlets, has approximate linear phase 
and exhibits near symmetry about the filter midpoint. This linear phase property means that events and 
sinusoidal components in the wavelet and scaling coefficients at all levels can be aligned with the original 
time series. For the MODWT, this alignment is achieved by circularly shifting the coefficients (or details) 
by an amount dictated by the phase delay properties of the basic filter (Cornish et al., 2006). LA filters are 
available in even widths L. A wider filter is smoother in appearance and reduces the possible appearance 
of artifacts in a multiresolution analysis due to the filter shape. It also results in stronger uncorrelatedness 
between wavelet coefficients across scales for certain time series, which is useful for deriving confidence 
bounds from certain wavelet-based estimates. Taking all these considerations into account, the LA(8) filter 
is an appropriate choice (Percival and Walden, 2000), as it yields coefficients that are approximately 
uncorrelated between scales while having a filter width short enough such that the impact of boundary 
conditions is tolerable.
22 

0 7J  is the maximum MODWT level we can use, as the time series (of 3,060 days) is too short to 

obtain MODWT details unaffected by the boundary condition for 0 8J  (the elements of 8D affected 

by the boundary condition would be the first 1,784 elements, i.e., the elements with indices

0, , 2 0, ,1785jt L     , and the elements with time indices t = 3060 – 1785 + 1,...,N – 1 =

1276, ,3059  .
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Table 8a Multiscale Granger Causality Test Results (scales τ1 to τ4 )

A pair 
of indices

Direction 
of causality

Raw return 
series

Scale τ1 Scale τ2 Scale τ3 Scale τ4

PX-ATX
PX→ATX
ATX→PX

1.06
6.22**

4.39**
7.43***

9.27***
3.40*

4.62**
3.61*

0.28
0.66

PX-CAC40
PX→CAC40
CAC40→PX

9.86***
19.72***

15.42***
32.34***

67.50***
54.15***

20.66***
26.96***

21.66***
22.44***

PX-DAX
PX→DAX
DAX→PX

2.77*
20.02***

14.57***
15.82***

35.81***
40.11***

14.85***
19.77***

1.97
2.31

PX-FTSE100
PX→FTSE100
FTSE100→PX

17.68***
27.84***

18.96***
32.12***

119.95***
101.41***

40.60***
41.65***

13.17***
13.96***

PX-BUX
PX→BUX
BUX→PX

0.04
10.69***

2.12
0.22

22.68***
207.19***

29.04***
44.92***

43.47***
41.13***

PX-LJSEX
PX→LJSEX
LJSEX→PX

17.82***
8.15***

66.96***
92.41***

2.69
7.83***

199.16***
188.97***

48.57***
61.50***

PX-WIG20
PX→WIG20
WIG20→PX

2.14
9.35***

6.09**
7.99***

20.18***
9.95***

26.76***
34.89***

72.07***
66.50***

Notes: The table reports the F-statistics of the Granger causality tests for the full sample and also for different 
time scales. The lag length used in the Granger test is determined by Schwarz Information Criterion 
(SIC). The optimal lag for all pair-wise correlation time series as determined by SIC criteria is 1. 
The notation A→B means that A Granger causes B. *** denotes 1 percent significance, ** denotes 5 % 
significance level and * a 10% significance level of rejection of the null hypothesis.

Table 8b Multiscale Granger Causality Test Results (scales τ5 to τ8 )

A pair 
of indices

Direction
of causality

Scale τ5 Scale τ6 Scale τ7

PX-ATX
PX→ATX
ATX→PX

4.59**
4.44**

88.27***
56.14***

40.82**
44.01***

PX-CAC40
PX→CAC40
CAC40→PX

2.64
2.33

36.10***
46.34***

17.98***
16.59***

PX-DAX
PX→DAX
DAX→PX

3.50*
3.04*

45.13***
50.81***

4.27**
3.43*

PX-FTSE100
PX→FTSE100
FTSE100→PX

2.12
1.92

5.14**
12.98***

0.01
0.29

PX-BUX
PX→BUX
BUX→PX

0.01
0.19

21.31***
22.04***

88.49***
100.76***

PX-LJSEX
PX→LJSEX
LJSEX→PX

88.23***
69.52***

37.43***
34.94***

1.48
3.36*

PX-WIG20
PX→WIG20
WIG20→PX

0.00
0.05

251.09***
269.53***

7.20***
5.38**

Notes: See notes for Table 8a.

The results show that there are significant Granger causal relationships (return 
spillovers) between the Czech and European stock markets, mostly bi-directional—
from the Czech market to other European stock markets and the reverse—indicating 
a feedback Granger causal mechanism between the stock markets’ returns. The results 
are in line with the conclusions drawn from the research of Égert and Kočenda 
(2010), Patev et al. (2006), and Horobert and Lupu (2009), who show that not only do 
the stock returns in the developed European stock markets (of Austria, France, 
Germany, and the UK) Granger-cause the stock returns of CEE stock markets, but 
also the CEE stock market returns may influence the stock returns in developed 
markets.



Finance a úvěr-Czech Journal of Economics and Finance, 62, 2012, no. 4                                            387

The strength (as measured by F-statistics) of the causal relationships may vary 
across scales. This finding has been confirmed by other multiscale Granger causality 
test studies (Ramsey, 1998a,b; Gençay, 2002; Zhou, 2011). For example, we can find 
that on scales τ1 to τ4 and again on scale τ6 a strong bi-directional Granger causal 
relationship exists between the PX and FTSE100 returns. No Granger causal relation-
ship, however, is found on scales τ5 and τ7.

The strength and direction of the causal relationship for the raw return series 
may change when specific time scales are examined. For example, we observe that 
for the raw return series (untransformed daily return series) the ATX returns Granger-
cause the PX returns; however, the scale analysis indicates that a bi-directional 
Granger causal relationship exists between the stock markets’ returns.23 As Zhou 
(2011) has also argued, this finding indicates that the results from the raw returns 
data, which averages all time scales, may be inappropriate for time-scale-conscious 
investors.

4. Conclusion

We studied the comovement and spillover dynamics between the returns of 
the Czech stock market and other major European stock markets (the developed 
stock markets of Austria, France, Germany, and the UK) and the stock markets of 
CEE countries (namely, Hungary, Slovenia, and Poland) in the period April 1997–
–May 2010. A DCC-GARCH analysis is applied to show that the correlation between 
the Czech and European stock markets is time-varying. This is clearly demonstrated 
by financial market crises (the Russian financial crisis, the dot-com crisis, and 
the global financial crisis), which led to short-term increases in correlation between 
the Czech and other stock market returns investigated. 

The returns of the PX index during the period April 1997–May 2010 cor-
related most with the ATX, WIG20, and CAC40 returns and least with the LJSEX 
returns. For investors already present in the Czech stock market, the greatest di-
versification benefits are thus achievable by investing in LJSEX-indexed instru-
ments. The DCC-GARCH correlation analysis also showed a rising trend in the pair-
wise correlations between the returns of the Czech and European stock markets. 
The rising correlation trend is more evident for some stock index pairs (namely, 
between PX and ATX and CAC40 and FTSE100) and less evident for others 
(namely, between PX and LJSEX). By splitting the entire observation period into 
three sub-periods, the present paper has proved, based on econometric evidence, that 
European Union integration led to more correlated movements in all stock markets in 
Europe with the exception of Slovenia. Since the start of the global financial crisis 
the comovement has increased further. 

The paper aimed also to investigate the return spillovers between the Czech 
and European stock markets and whether they depend on the horizon over which they 
are calculated (i.e., whether they are a multiscale phenomenon). The DCC-GARCH 
model results show that there were significant return spillovers between the stock 
markets in the period April 1997–May 2010. The multiscale return spillovers, ana-
lyzed using a multiscale Granger causality test, indicate that the Granger causal 

23 The strength of the comovement (i.e., correlation analysis) is another interesting issue that could be 
investigated on the multiscale level. This, however, would exceed the limits of the present paper.
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relationships between the Czech and European stock markets over the entire period 
investigated were mostly bi-directional—from the Czech to other European stock 
markets and the reverse—indicating a feedback Granger causal mechanism. 
The strength and direction of the causal relationship for the raw return series may 
change when specific time scales are examined. 

The results of the present study are important for international investors 
seeking diversification benefits in European stock markets. The results suggest that 
such investors should consider the time-varying comovement between stock market 
returns and investigate scale-based return spillovers. 
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