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Abstract
We apply a class of Markov switching models (independent spike models) to six European 
electricity markets and two European gas markets. This paper extends the current 
framework by introducing Gamma distributed spikes, which improves the fit for most 
energy markets. The models are quite complex. The robustness of the estimates is there-
fore evaluated using three different estimation strategies: direct maximization of the like-
lihood function, the Expectation-Maximization algorithm, and Markov Chain Monte 
Carlo (MCMC). The seasonal variation is corrected for by using the month-ahead 
forward price as a predictor. The models provide good empirical results for most markets.

1. Introduction

Energy prices are qualitatively different from many other commodity prices. 
They are often seasonal on a yearly, weekly, and daily time scale, and prices are 
mean-reverting. Other features are spikes and drops—sharp increases/decreases
in the spot price followed by a return to the previous level a few days later (see 
Haugom, 2011). 

We adjust for the seasonal variation by modeling the spread between spot 
prices and month-ahead forward prices. The daily data sets have therefore not been 
subject to any deseasonalization techniques other than on a weekly time frame, 
contrary to most other studies. The spread is modeled in a framework that can fit 
these extreme observations as well as other energy price characteristics. These 
models are known as Independent Spike models and have been successfully used 
in previous studies (see Janczura and Weron, 2010, for information on many of 
the recent developments).

The main methodological contribution of this paper is that we extend the inde-
pendent spike model framework to include Gamma distributed spikes, which gives 
a better fit to the data than light-tailed (Gaussian) spikes and drops, while having 
lighter tails than log-normal spikes. This difference is important, as the conditional 
expected value of the spot price is undefined when spikes are log-normally dis-
tributed. 

A second contribution of this paper is a robustness study. Independent spike 
models are complex with a high dimensional parameter vector, and this can cause 
practical problems when fitting the models. We have used three related estimation 
strategies—direct maximization of the likelihood function, the EM algorithm, and 
MCMC—to assess their practical performance on simulated data.

* Financial support from the EU INTERREG IVa “Vind i Öresund” project is gratefully acknowledged by 
the second author.
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The remainder of the paper is organized as follows. In Section 2, we introduce 
the most commonly used models for spot price dynamics, while Section 3 discusses 
independent spike models in detail. Section 4 presents the results when applying 
these models to market data, and Section 5 concludes.

2. Spot Price Dynamics

The spot price is determined by the equilibrium between supply and demand. 
These are often subject to various restrictions in most energy markets. The supply is 
capped by the maximum production capacity for the generator units and the produc-
tion cost increases almost exponentially with higher output. There can be dramatic 
changes in supply caused by a production shortfall or integration with another mar-
ket, which expands the production network. The demand is fairly inelastic; consumption 
is practically unaffected by the current price level and is strongly seasonal due to 
consumer and industrial use. A large amount of the change in demand for energy is 
caused by shifts in temperature throughout the year; warm summers increase demand 
due to the heavy use of air conditioning, while cold winters increase demand due to 
heating, especially in the Nordic countries. This seasonality in the demand leads to 
higher prices during the summer for many energy markets and during the winter for 
the Nordic countries (see Eydeland and Wolyniec, 2003; Benth et al., 2008). There is 
additional weekly and intraday temporal dependence. Industrial facilities increase 
the demand during business days, and there is also higher demand during business 
hours. This is reflected in price variations throughout the day, with higher spot prices 
during peak hours. These characteristics are not found for many other financial 
instruments.

A prominent feature of energy spot prices is their tendency to return to 
the long-term level after a deviation. This effect is called mean-reversion and is not 
found for many other asset classes. Some energy markets are also characterized by 
volatility clustering. This effect can be directly observed as stressed periods when 
the price level varies much more than normal. This can be caused by some temporary 
disturbance of the market, congestion (see Haldrup and Nielsen, 2006) or uncertainty
about the future.

The frequent occurrence of large changes in prices is unique to energy spot 
markets due to consumers’ inability to react to changes in price levels and capped 
production levels. Periods of high demand have much higher price sensitivity to dis-
ruptions, as excess supply is scarce and expensive to produce, leading to a large increase 
in the price, which is reversed when the disruption is gone (see Benth et al., 2008).

Not only do upward spikes occur in energy markets, but there are also large 
downward movements called drops. Large drops are caused by unexpected events, 
either decreased demand or (more likely) increased supply in combination with 
the need for real-time balancing; neither an excess nor a lack of energy can exist in 
the spot markets. This has recently led to some occurrences of negative electricity 
prices in the hour-ahead market in both the German and Danish electricity spot 
markets (see Janczura and Weron, 2010). The production of renewable energy (pri-
marily wind power) is very volatile.

There is now a consensus that a realistic model for electricity prices must 
include seasonality, mean-reversion, varying volatility, and jumps (see Escribano 
et al., 2011, for a recent analysis of eight different markets).
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Figure 1 The Log Spot Price of the EEX Market (left panel) and the Spread between 
the Log Spot Price and the Log Month-Ahead Forward Price (right panel)

           

3. Independent Spike Models

In energy spot price modeling there is some concern about what to model due 
to the close relation between spot and forward prices and their seasonal variation. 
Almost all previous studies use deseasonalized data; techniques vary from using 
a sinusoidal function with a linear trend (see Pilipovic, 2007) to wavelet decompo-
sition (see Weron et al., 2004) and hybrid methods. The purpose of the desea-
sonalization is to work with stationary time series data. The different techniques 
for removing seasonal dependence complicates comparisons between published 
models.

We use the framework introduced in De Jong and Schneider (2009), letting 
the electricity prices mean-revert to the market-quoted monthly forward price. The log
spot price and the spread between the log spot and log forward price for the EEX 
market are presented in Figure 1.

This will implicitly correct the spot price for exogenous information and 
yearly seasonal effects, as the same factors influence the forward price. Much of that 
information is discarded when using statistically deseasonalized data. The weekday 
dependence is not incorporated into the monthly forward price and this is adjusted for 
in the model by rescaling the daily prices with their inverted mean prices. 

It can be seen in Figure 1 that the spread switches between a normal state and 
one or several extreme states where the spread is very large (positive or negative). 
This observation is the basis for our modeling approach.

3.1 Markov Regime Switching

Independent Spike models are attractive as a complex model is derived from 
a regime switching mixture of simple models. The mixture is governed by a Markov 
chain, i.e., a complex model is derived as a mixture of simple models. The general 
idea is to use one model for a normally functioning market and other, independent 
model(s) for disruptions in the market. The first paper discussing Markov switching 
models that we are aware of is Lindgren (1978). We begin by defining the regime 
variable. 

A Markov chain is a process where the future state depends only on the cur-
rent state and the probability of a particular value is given by 
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The transition probabilities must fulfill the condition that they sum to unity. 
It is often enough to have two or three states for modeling energy prices. This is 
interpreted as a normal state and one or two spike regimes. To ease the visual inter-
pretation of the model we will use B, S or B, S, D as the sets of possible regimes, 
where B indicates the base regime, S the spike or up-spike regime, and D the drop or 
down-spike regime.

3.2 Base Regime Dynamics

Mean-reversion of prices is one of the most important features of energy spot 
price models (see Section 2). Many energy spot price models are defined using 
a mean-reverting stochastic differential equation driven by standard Brownian motion
or a Levy process (see Andreasen and Dahlgren, 2006).

The models in this paper are primarily used for forecasting, which is why we 
resort to discrete time models. A discrete time version of the Vasicek model (see 
Vasicek, 1977) forms the basis for our extensions:

                                                1Δ      t t t ty y

written in terms of the log spot price. The model can be applied once we have 
an expression for the mean-reversion level that is consistent with the seasonal 
patterns (see Botterud et al., 2011). We defined the mean-reversion level as a function 
of the month-ahead logarithmic forward price 

                                                     0  t t tg f f

This model is still limited by having constant volatility, even though the vola-
tility has been observed to vary between time periods in some markets. We therefore 
adopt, as proposed by Janczura and Weron (2010, 2011) and Regland and Lindström 
(2010) in the setting of independent spike models, the use of a Constant Elasticity of 
Volatility (CEV) process in the base regime. This generalization accounts for varying 
volatility depending on the price level and is described as follows:

                                            1Δ       t t t t ty y y

where γ is henceforth called the CEV parameter. The model reduces to the Vasicek 
model for γ = 0 and to the Cox, Ingersoll, and Ross model (see Cox et al., 1985) for 
γ = 0.5. The CEV model is able to capture the skew of volatility versus price as stated 
in Eydeland and Wolyniec (2003) and the inverse leverage effect persistent in some 
energy markets, which states higher volatility for higher price levels. 

It may be worthwhile to consider that the stochastic differential equation that 
was discretized in order to arrive at the model may not have a solution for all values 
of γ, e.g. when γ < 0. 

3.3 Spike/Drop Regime Distributions

The fact that spikes are rare events makes them difficult to model and even 
more difficult to fit to data. Previous studies have approached this problem by model-
ing the spikes with a white noise process. This simplifies the statistical analysis.
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We continue this tradition and use several distributions in our analysis. Pre-
vious studies have used the Gaussian, log-normal (see Weron et al., 2004), Gaussian 
Jump-Diffusion (see De Jong, 2006), and even Pareto distributions (see Weron, 2009) 
to model the spikes and drops. The Gaussian Jump-Diffusion distribution is a ran-
dom sum of Gaussian normal variables where the number of variables is governed by 
a Poisson process. Let X be distributed as the compound Poisson-driven jump dif-
fusion:
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This distribution simplifies to a Gaussian if λ = 0, is skewed when μ ≠ 0, λ > 0, 
and has heavy tails when λ > 0.

3.3.1 Gamma Distribution

We also used the Gamma distribution for the spikes/drops. The Gamma dis-
tribution can be interpreted as a sum of independent exponential random variables. 
More precisely, α is the number of exponential variables with intensity β. The prob-
ability density is given by:
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where α is the shape parameter, β is the inverse scale parameter (also known as 
the rate parameter), and Γ is the Gamma function. 

The distribution has fewer parameters than the Gaussian Jump diffusion, 
heavier tails than the Gaussian distribution (which is often found to be too light 
tailed), and lighter tails than the log-normal and Pareto distribution (which is so 
heavy tailed that the expected value of the spot price is undefined, making any at-
tempt at using Monte Carlo simulations to evaluate portfolio strategies void). This 
problem was acknowledged by Weron (2009), who reverted to modeling prices rather 
than log-prices in order to use heavy-tailed spike distributions.

Another nice feature of the Gamma distribution is that it is part of the ex-
ponential family, making fast and robust inference using the Expectation-
Maximization (EM) algorithm feasible.

3.4 Full Model Description

The complete independent spike model with three regimes, where the base 
regime is given by a CEV model and where spikes and drops have distribution F, is 
given by: 
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The regimes are switched by a Markov chain governed by the transition 
matrix:
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where we have restricted the Markov chain so that it cannot go from spikes to drops 
(or vice versa) directly without passing the base regime. This reduces the number of 
parameters and eliminates parameters that are really difficult to estimate.

3.5 Parameter Estimation Methods

We used three related estimation strategies to estimate the parameters and 
latent regimes in independent spike models: direct maximization of the likelihood 
function (see De Jong, 2006), the Expectation Maximization algorithm (see Janczura 
and Weron, 2010), and Markov Chain Monte Carlo (MCMC). All of these methods 
are closely related, ensuring that the maximum likelihood optimality properties (e.g. 
Cramer-Rao) hold for all estimates.

Direct maximization can be tricky, as the likelihood function is multi-modal. 
The likelihood was maximized using the derivative-free Nelder-Mead algorithm. It is 
often argued that maximizing the likelihood by maximizing the full information 
likelihood as part of the EM algorithm is more robust. An obvious advantage of 
the EM algorithm is that the value of the likelihood function increases monotonously, 
but even the EM algorithm can get stuck in a local maximum.

MCMC has not been previously considered for independent spike models. 
MCMC is based on Markov Chain sampling from the posterior distribution, i.e., 
the joint distribution of latent states and parameters conditional on observations. We 
refer to Robert and Casella (1999) for details of the method. MCMC will converge 
regardless of the initial parameters used (the initial part of the simulated chain is 
discarded as burn-in) if a sufficient number of samples from the Markov chain are 
generated (though this can very time-consuming in practice).

We follow the implementation of an MCMC scheme for a CEV process from 
Eraker (2001), which uses a uniform prior distribution for the parameters known as 
Jeffrey’s prior, and least squares estimation of parameters to sample from an Inverse 
Gamma (IG) distribution. The CEV parameter γ does not have any explicit solution 
and the sampling is therefore implemented using the Metropolis-Hastings algorithm. 

The implementation for the spike distributions is straightforward for the Gaussian 
distribution, as we are using conjugate priors. The log-normal spikes are updated 
using the same method after the observations are transformed. 

We follow the adoption from Son and Oh (2006) for the Gamma distributed 
spikes, where the inverted scale parameter β has an inverted gamma distribution and 
the shape parameter α has a non-standard distribution with a probability density 
function. We sample from this density using the Adaptive Rejection Sampling (ARS) 
method suggested by Son and Oh (2006).

The practical performance of different estimation techniques for regime-
switching models was evaluated in Ryden (2008), who compared the EM and
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Table 1 Simulation Study Using Three Regime-Independent Spike Models 
with a CEV Base Regime and Log-Normal Spikes. 
With 5,000 Observations All the Methods Perform Well and Yield Almost 
the Same Estimates

Initial Par. True Par. ML EM MCMC

α 0.300 0.250 0.224 0.229 0.251

μ 1.000 0.950 0.953 0.953 0.953

σ 0.100 0.080 0.081 0.081 0.081

μS 0.000 -1.000 -0.999 -0.997 -1.021

σS 0.500 0.300 0.297 0.297 0.345

μD 0.000 -1.000 -0.985 -1.007 -1.038

σD 0.500 0.300 0.309 0.313 0.371

πBS 0.050 0.015 0.016 0.016 0.019

πBD 0.500 0.700 0.670 0.681 0.733

πSB 0.050 0.015 0.014 0.014 0.017

πDB 0.500 0.700 0.713 0.717 0.761

γ 0.000 0.500 0.522 0.549 0.498

Log-
Likelihood

0.958 0.958 0.956

MCMC techniques. The findings were inconclusive in the sense that no method was 
uniformly better than the others regardless of the model, but he found that the EM 
often is the fastest method if point estimates are the only quantity of interest. How-
ever, the computational demands even out for more complex models and when 
the bootstrap is used for computing confidence intervals.

3.5.1 Simulation Study

We simulated 5,000 synthetic observations using CEV dynamics and Log-
Normal spikes. The results are shown in Table 1. Direct maximization of the like-
lihood function and the Expectation Maximization algorithm perform very well, 
while MCMC estimates the parameters well except for the transition probabilities. 
Some remarks on the study: the EM algorithm was iterated 50 times and MCMC was 
run 20,000 times, with the first 20% discarded as burn-in.

The results for the ML and EM estimators are similar, while additional
iterations are needed for the MCMC to converge.

3.6 Model Validation

The distributions, size of the regime variable, and type of base model form 
a large set of possible models. This emphasizes the need for appropriate measures for 
selecting and validating models. We discarded models where the parameters attain 
unrealistic values, e.g. when the γ parameter was estimated such that the cor-
responding SDE did not have a solution.

A tool we use is the Schwartz (or Bayesian Information) Criterion. It measures 
the fit of models using the negative log-likelihood and penalizes it by the number of 
parameters times the logarithm of the number of observations. The evaluation is 
ranking-based; the lowest value indicates the best model. 
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Table 2 Installed Capacity for Germany, France, the UK, the Netherlands, 
the Nord Pool System, and Nord Pool Sweden. 
Germany Has Four Transmission System Operators and Only 79%
of the Total Installed Capacity Is Published.

Germany France UK Netherlands Nordic Sweden

Date 2010 2009 2009 2010 2009 2009

Coal 37% 7% 33% 25% 21% 15%

Gas 11% 3% 40% 69% 4% 5%

Hydro 7% 19% 1% — 52% 47%

Nuclear 21% 64% 19% 3% 12% 26%

Other 24% 7% 7% 3% 11% 7%

The basic distribution test we use is the Kolmogorov-Smirnov (K-S) test, also 
adopted for electricity prices in Janczura and Weron (2010), which compares the em-
pirical cumulative distribution function with the theoretical cumulative density 
function (see Robert and Casella, 1999). While the K-S test is suitable for many 
distributions, specific tests have better reliability. We also use the Lilliefors test to 
assess if the residuals are Gaussian when possible.

The chosen model was finally validated by visually comparing the simulated 
trajectory from the estimated model with the data. We are especially interested in 
whether the models can reproduce the qualitative features of the data.

4. Analysis of European Energy Markets

Six electricity and two gas markets are analyzed. The data consists of daily 
one-day-ahead spot prices and month-ahead forward contract prices from 2005 to 
2010. 

We applied a large number of models to each market, estimating each of them 
using Maximum likelihood, EM, and MCMC. The preferred model is then selected 
on the basis of the model selection and validation criteria in Section 3.6. The pre-
ferred model is also inspected visually in order to see if the qualitative features of 
the data are captured by the model. 

4.1 Electricity Markets

The composition of power generation from different energy sources can ex-
plain the qualitative behavior in markets. The composition of (net) installed capacity 
is shown in Table 2, where we can see large differences between markets (see EEX, 
2009; NationalGrid, 2009; Nordel, 2008; RTE, 2010; TenneT, 2010). It can be seen 
that in the UK and the Netherlands power is generated predominantly using gas and 
coal as fuel, while French power generation is dominated by nuclear power. Note that 
the installed capacity does not have to reflect the actual generation of power, only 
the possible capacity for the entire power generation system.

4.1.1 European Energy Exchange

The European Energy Exchange (EEX) is the power market for the German 
power grid. It is the most volatile of the markets considered, and it also has the largest 
number of observed drops; 11% of the observations are estimated to be lower than
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Figure 2 Historical and Simulated Spread for the EEX Market. 
The Lower Left Box Presents the Posterior Regime Probabilities and 
the Lower Right Box the Corresponding Regime Probabilities 
for the Simulated Data.

normal. We believe that this is due to the large amount of (volatile) renewable energy 
in this market. There are even negative prices in this data set. These prices have been 
truncated to the smallest positive price observed in the market. 

The preferred model for EEX was a three-regime model with log-normal 
spikes and the Vasicek model for the base regime. However, the model does not fully 
explain the negative skewness and kurtosis of the data even though the qualitative 
features of the data are captured by the model. Another limitation is the truncation of 
the data, in combination with the logarithmic transformation, making further model 
development necessary.

Figure 2 shows the historical log-spread versus a simulated log-spread. The poste-
rior regime probabilities of the historical spread are also compared with the posterior 
regimes for the simulated spread with satisfactory results.

4.1.2 PowerNext

PowerNext is the French power market. There are relatively few spikes and 
drops compared to the other markets, but the historical spread is quite volatile, 
with a volatility of around 15%. A plausible explanation is that power generation
dominated by nuclear power is fully adequate for the French market. 

The best-fitting model for the spread on the PowerNext market is a three-
regime model with log-normal spikes and CEV dynamics. In Figure 3 we see good 
similarity between the historical and simulated spreads and posterior regime proba-
bilities. 

4.1.3 UKSPOT

Power generation in the United Kingdom is heavily dependent on gas and 
coal. The spot price volatility is low, but the frequency of spikes is rather high (4% of 
the observations are classified as spikes). The size of these is significantly smaller
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Figure 3 Historical and Simulated Spread for the Powernext Market. 
The Lower Left Box Presents the Posterior Regime Probabilities and 
the Lower Right Box the Corresponding Regime Probabilities 
for the Simulated Data.

Figure 4 Historical and Simulated Spread for the UKSPOT Market. 
The Lower Left Box Presents the Posterior Regime Probabilities and 
the Lower Right Box the Corresponding Regime Probabilities 
for the Simulated Data.

than the corresponding spikes on the EEX, PowerNext, and APX markets, indicating 
that the system reacts efficiently to supply shortages (starting up a gas-fired power 
plant is much quicker than starting up a nuclear power plant).

The most appropriate model for the UK market is a three-regime model with 
Gamma spikes and CEV-dynamics. There is a good match between the historical 
moments and the moments generated by the model, although this may be misleading. 
It can be seen by comparing the historical spread and the simulated spread in Figure 4
that the size and the frequency of the spikes are decreasing over time, whereas
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Figure 5 Historical and Simulated Spread for the APX-NL Market.
The Lower Left Box Presents the Posterior Regime Probabilities and 
the Lower Right Box the Corresponding Regime Probabilities 
for the Simulated Data.

the model assumes a fixed jump intensity and jump distributions. The market seems 
to stabilize during the second part of the sample, and it is possible that this market is 
one of the most stable markets during the final years of the sample. 

4.1.4 APX Power NL

The Amsterdam Power Exchange (APX-ENDEX) is the power exchange for 
the Dutch power grid. The market has the smallest frequency of spot price deviations 
of all the markets, with only 6% of the observations being classified as spikes or 
drops. This is most probably a result of the high dependence on gas as fuel (see 
Table 2). Gas power plants can be started up quickly at times of high demand, there-
by balancing supply and demand in the power grid.

The best-fitting model that was consistent with the model validation criteria 
was a three-regime model with Gamma spikes and CEV-dynamics, but even a two-
state model provided a good fit to the data (see De Jong and Schneider, 2009). In 
Figure 5 we see a good similarity between historical and simulated regime switches 
even though the frequency of the jumps is decreasing (cf. the UKSPOT market).

4.1.5 Nord Pool System

Nord Pool ASA was created in Norway in 1991 and has now been extended 
to all Nordic countries (Sweden joined in 1996, Finland in 1998, Denmark in 2000, 
and Estonia in 2010), creating an international power market (see Haugom, 2011). 
The large share of hydro power (52%) in the Nord Pool System gives the dominating 
market participants the possibility of storing large amounts of power in the form of 
water reservoirs.

The highly flexible hydro power is not enough to stabilize the market, as
almost 13% of the observations are classified as spikes or drops, although the size of
these unusual events is comparatively small. A plausible explanation is the large
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Figure 6 Historical and Simulated Spread for the Nord Pool System Market. 
The Lower Left Box Presents the Posterior Regime Probabilities and 
the Lower Right Box the Corresponding Regime Probabilities 
for the Simulated Data.

  

  

amount of wind power in the system. Our study also showed that the Nord Pool 
System is almost decoupled from other European markets, with most spikes occur-
ring independently of when other markets are experiencing spikes.

The best-fitting model is a three-regime model and CEV dynamics. However, 
the estimate for the γ parameter was negative, which is why the preferred model is 
a three-regime model with Gamma spikes and Vasicek dynamics. The moments are 
well matched by the model, but the qualitative features are different from the data 
when prices are low (the area includes Denmark, where negative prices occurred dur-
ing the time period). The spread is highly left-skewed compared to the other markets, 
with only a few spikes but many more drops, as seen in Figure 6. This effect is cap-
tured by the independent spike model, but there may be additional dynamics in
the base regime as the spread fluctuates up and down during the year. 

4.1.6 Nord Pool Sweden

This regional area in the Nord Pool area has a different spot price than 
the Nord Pool System price during congestion. The magnitude of the spikes in this 
area is larger than in the combined (Nord Pool System) market (see Lundgren et al., 
2008).

The Schwartz criteria ranks the model with the CEV base regime first, but 
the negative γ parameter in the base regime does not lead to a valid spot price 
process, as the volatility explodes when prices tend to zero. The model preferred in 
this paper is again a three-regime model with Gamma spikes and Vasicek dynamics.

The historical spread and the simulated spread are compared in Figure 7, 
where we find similar qualitative features in terms of posterior regime probabilities 
and the size and frequency of the jumps.
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Figure 7 Historical and Simulated Spread for the Nord Pool Sweden Market. 
The Lower Left Box Presents the Posterior Regime Probabilities and 
the Lower Right Box the Corresponding Regime Probabilities 
for the Simulated Data.

  

  

4.2 Gas Markets

The Title Transfer Facility (TTF) and National Balancing Point (NBP) virtual 
gas hubs have smaller spikes and drops than the power markets. It is also worth 
noting that the skewness of the spikes and drops is not as prominent as compared 
with power markets.

It may seem that there are not enough spikes and drops in gas spot prices to 
motivate an independent spike model. Still, De Jong and Schneider (2009) argue that 
regime-switching models may improve the fit, so the same methodology is used for 
gas price spreads.

4.2.1 NBP

The NBP is the market for gas in the UK. The qualitative behavior of the spread
is similar to the UKSPOT spread. The volatility in the market is decreasing over 
the time period (the same effect holds for the frequency of the spikes), which in-
dicates that the markets are increasingly efficient at handling unexpected events (cf. 
the UKSPOT market).

Several two-regime models provided a good fit to the data, but the combined 
assessment of the validation criteria still selects a three-regime model with Vasicek 
dynamics and Gamma distributed spikes. The resulting model is compared to the his-
torical spread in Figure 8, with satisfactory results.

4.2.2 TTF

The TTF is the gas trading hub in the Dutch power grid and is located in 
Zeebrugge. Gas prices in this hub might be expected to be closely related to elec-
tricity prices on the Amsterdam Power Exchange, but this does not seem to be 
the case in our study in spite of the massive use of gas in the power generation 
system. Similar results were found in De Jong and Schneider (2009), who only found 
weak evidence of cointegration between these markets.
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Figure 8 Historical and Simulated Spread for the NBP gas Market. 
The Lower Left Box Presents the Posterior Regime Probabilities and 
the Lower Right Box the Corresponding Regime Probabilities 
for the Simulated Data.

  

  

Figure 9 Historical and Simulated Spread for the TTF Gas Market. 
The Lower Left Box Presents the Posterior Regime Probabilities and 
the Lower Right Box the Corresponding Regime Probabilities 
for the Simulated Data.

  

  

Several two-regime models provide a good fit, indicating that three-regime 
models may over-fit the data. However, our combined model validation and selection 
criteria found that a three-regime model with Vasicek dynamics and Gamma dis-
tributed spikes was the preferred model. It can be seen in Figure 9 that the seasonal 
adjustment was less successful for this market than for most of the electricity mar-
kets, indicating that additional modeling may be needed in addition to the inde-
pendent spike models.
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4.3 General Remarks

The introduction of Gamma distributed jumps was a success, as not only 
was it theoretically sound and easy to use within the EM framework, but it was also 
the statistically preferred jump distribution for six out of the eight markets. The esti-
mated models also demonstrated the need for both state-dependent volatility (CEV 
dynamics) and jumps (see Escribano et al., 2011).

We applied the models to electricity and gas markets using our framework 
and found that a three-regime model is needed for the electricity markets (which is 
consistent with Janczura and Weron, 2011) and for the gas markets, even if a two-
regime model may be enough for the gas market once we can find a better model for 
the seasonal variations (see De Jong and Schneider, 2009). We believe that the dif-
ference between the markets is due to the storability of natural gas and the lack 
thereof for electricity.

We found that the volatility and jump intensity on the UKSPOT and APX-NL 
markets and on the corresponding gas markets was decreasing over the period. This 
may be an indication that the European energy markets are converging (see Bunn and 
Gianfreda, 2011). 

5. Conclusions

In this paper we applied independent spike models to six electricity and two 
gas markets. The models were used to describe the price risk by modeling the spread 
between the spot price and the one-month forward contract used for hedging. Inde-
pendent spike models are complex models that can be challenging to fit to the data. 
We compared three different estimation strategies and found, contrary to Ryden 
(2008), that the EM algorithm (see Janczura and Weron, 2009) was superior in terms 
of performance and reliability compared to MCMC.

We introduced Gamma distributed spikes and drops in the independent spike 
model. The Gamma distribution provides the best fit for six out of the eight markets, 
and does not have the theoretical limitations that log-normal spikes have. The Gamma
distribution is also part of the exponential family, making inference using the EM 
algorithm even more attractive.

We used a mixture of criteria to select the preferred model. The focus was 
the fit to the market data and the model is well suited for short-term forecasts and 
spike analysis. The fitted models are able to re-create spikes of the same magnitude 
and frequency as the historical observations for most markets. There was a large 
discrepancy between the historical and simulated kurtosis in the EEX market 
and Nord Pool System. We believe that this was caused by the negative prices that 
occurred last year. It is obvious that logarithmic spot price models will lead to
inaccurate forecasts for small or negative prices. This rather new effect should be 
included in future models.
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