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Abstract
The present study analyzes the extra insights that option pricing models may achieve 
when uncertainty about parameters is modeled through fuzzy numbers. Specifically, we 
consider the Heston stochastic volatility model, which assumes that stock price changes 
and their instantaneous variance evolve as a bivariate, possibly correlated, diffusive 
process. The original Heston model provides a quasi-closed formula for the pricing of 
several derivative products such as European options. By applying the fuzzy extension 
principle, we generalize the model to the case of fuzzy parameters; given their shape we 
are able to derive the membership of the fuzzy price of a European option. Finally, to under-
stand the extent to which our approach might be useful in practice, we give a numerical 
illustration of our procedure on the S&P 500 and VIX indexes. As a by-product of 
our research, a simple estimation method is introduced to obtain (crisp) parameters in 
the Heston model under the risk-neutral measure and applied in the sequel of the paper
to obtain alternative shapes for the fuzzy parameters of the model.

1. Introduction

In recent research several studies have been developed in order to handle, 
in a proper way, the intrinsic uncertainty ever present in financial and economic 
models. Many authors, such as Hryniewicz (2010) and Zadeh (2008), have argued 
that the mathematical theory of fuzzy numbers is the correct description of vagueness 
and imprecision; in Zadeh (2008) it is also underlined that fuzziness exists in many 
fields, especially in human sciences such as economics, and the application of fuzzy 
mathematics can provide rigorous results.

The origin of the mathematical theory of fuzzy numbers is essentially due to 
Zadeh (Zadeh, 1965), but many results in this field were achieved by Dubois and 
Prade (1980, 1993).

Most of the financial models in derivative pricing theory describe market 
uncertainty through the stochastic evolution of the price of the underlying assets, 
where some constant parameters are assigned. We are confident that extra value
may be added to these stochastic models by jointly considering the uncertainty of 
the evolution and the vagueness of the parameters involved, which may be modeled 
through fuzzy numbers. By assuming that parameters are fuzzy, it is possible to 
reflect in the shape of their membership function both objective features and personal 
beliefs about the behavior of the parameters themselves.

* This research was partially supported by National Project PRIN (2008JNWWBP_004): Models and Fuzzy
Calculus for Economic and Financial Decisions, financed by the Italian Ministry of University.
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We follow the stream of research introduced by Zmeškal, who first introduced 
the fuzzy-stochastic approach and so-called hybrid models (see, for instance, Zmeškal, 
2001, 2010). The first approach to the financial applications of such models is given 
in Guerra, Sorini, and Stefanini (2011), where the advantages of the fuzzy-stochastic 
approach are investigated in the Black and Scholes environment. In the quoted paper, 
the key parameters of the model are the volatility, the risk-free interest rate, and 
the price of the underlying asset. It is observed by the authors that the fuzzy price for 
the call option seems not to be heavily influenced by the shape of the fuzzy volatility 
para-meter.

Market practitioners, however, claim that volatility behavior is crucial in the mar-
ket; a central issue is the unsatisfactory hypothesis of constant volatility through 
time and its inconsistency with stylized facts observed in financial data. In order to 
generalize the Black and Scholes constant volatility assumption, a vast literature is 
devoted to volatility modeling and volatility forecasting.

The motivation for this paper is based on our conviction that, given the rele-
vance of the volatility parameter/variable in the market, the possible use of fuzzy 
theory in volatility modeling deserves deeper investigation.

Volatility models usually assume that volatility is itself a stochastic process; 
among others, the Heston model (Heston, 1993) is greatly appreciated due to the avail-
ability of a closed formula for the price of European options and other derivatives.

In this paper we generalize the Heston setting by assuming that the parameters 
are modeled as fuzzy numbers and we show how their vagueness affects the final 
option price, which is also obtained as a fuzzy number. The analysis is performed for 
several choices of the shapes of the membership functions of the parameters. In Figà-
Talamanca and Guerra (2009) and Figà-Talamanca, Guerra, Sorini, and Stefanini 
(2010), we present preliminary studies on the same argument. 

Stochastic volatility modeling in a fuzzy scenario has been previously addressed
in the literature. For instance, in Thavaneswaran, Thiagarajah, and Appadoo (2007), 
the idea of fuzzy parameters is introduced in a discrete stochastic setting and 
fuzzy numbers are used to incorporate volatility variability. In Hung (2009) and 
Thavaneswaran, Appadoo, and Paseka (2009), Generalized Autoregression Conditional
Heteroskedasticity (GARCH) discrete models are analyzed in a fuzzy context. In 
the former contribution the author modifies the threshold values for a positive/
/negative information distinction with a fuzzy rule and many empirical investigations 
are reported in order to validate the method. In the latter one, the authors study 
the centered moments and kurtosis for a class of FCA (Fuzzy Coefficient Auto-
regressive) and FCV (Fuzzy Coefficient Volatility) models.

Finally, in Swishchuk, Ware, and Li (2008), the authors also investigate 
the Heston model and obtain a fuzzy option price in the same context as ours; 
however, they assume that the instantaneous (local) volatility is itself a fuzzy number 
and derive its membership by transforming the probability distribution of the instan-
taneous variance process to its possibility distribution through the method described 
in Dubois, Prade, and Sandri (1993). The non-linear fuzzy PDE is then used to price 
European options.

On the contrary, we retain the original dynamics specification for the instan-
taneous variance and assign a membership function to the model parameters; 
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the fuzzy price for the option is then obtained by applying the fuzzy extension 
principle.

Note that fuzzy option prices may prove useful in real markets with frictions; 
in fact, the range of the support (or a different α-cut) of the fuzzy option price may be 
considered as a measure of the bid-ask spread.

Another contribution of this work is the idea of applying a rolling estimation 
method for crisp model parameters in order to design fuzzy parameter shapes which 
are consistent with empirical market observations. We point out that estimation of 
the Heston model is still a subject of ongoing research and has stimulated a debate on 
whether to use stock or derivative market data. So, as a by-product of our research, 
we also introduce a simple method to derive the Heston model parameters, based on 
both stock and derivatives information. More precisely, the suggested procedure is 
based on joint observations of the stock index and of its volatility index (the value of 
which depends on the price of traded options on the index itself). In our numerical 
illustration the S&P 500 stock index and the VIX volatility index are considered. 
While we apply the rolling approach to the Heston model, and considering our 
estimation method, it is worth noting that the same idea may be applied to any model 
as well as for any estimation method.

The paper is divided into five sections. After the introduction, in Section 2 we 
give a brief description of the Heston model and we introduce the basic elements 
of the theory of fuzzy numbers. The third section is devoted to the introduction of 
our simple estimation procedure for Heston (crisp) parameters and to describe how 
it is used for the empirical construction of several possible supports and shapes for 
the fuzzy parameters. In Section 4 a numerical experiment is outlined in order to 
analyze how fuzzy option prices are obtained in our setting. A final section, devoted 
to concluding remarks, underlines the relevance of the results obtained and traces 
some paths for possible future research.

2.1 The Heston Model

The Heston model (Heston, 1993) is a benchmark among stochastic volatility 
models due to the availability of a closed formula for the price of several derivative 
securities. In particular, the price at time t of a European call option with maturity T
and strike price X is given by the following formula:

                                           ( )
1 2( , ) r T t

t tC T X S Xe                                           (1)

where r is the market risk-free rate, assumed to remain constant until maturity.

The quantities 1 and 2 represent the probability that the option will be 

exercised at maturity with respect to different probability measures and are obtained 
through inversion of a Fourier transform. More precisely, for j = 1, 2 we have
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Defining ,T t   the exact expressions of the functions jA and jB are 
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Hence, we have

                                  ( , ) , , , , , , , ,t t tC T X C X S r c                                        (2)

where , ,c   are the parameters appearing in the joint dynamics of the price tS

(at time t) of the underlying stock and its local variance tV . Such dynamics are 

specified, under the so-called risk-neutral probability measure, by the following 
bidimensional stochastic equation: 
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where (B,W) is a possibly correlated Brownian motion with ,t tdB dW dt (see 

Heston, 1993, for further details). The instantaneous variance tV is thus modeled 

by a mean-reverting process where parameter   represents the long-run mean 

variance,   is the speed of return to the long-run mean   , and c is the so-called 
volatility of volatility parameter.

2.2 Fuzzy Numbers and the Extension Principle

In order to describe the methodology applied, we recall some preliminaries 

about fuzzy numbers. A fuzzy number 
L,R

, ,u a a a  is usually specified by its 

core Ra and a membership function : R [0,1]  , with support in [ , ]a a 
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defined as 
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where L(x) is an increasing function with L( ) 0a  , L( ) 1a  and R( )x is a de-

creasing function with R( ) 1a  , R( ) 0a  . Functions L(.) and R(.) are the left and 

right shape functions of u, and they are assumed to be differentiable. For values of 
[0,1]  , the α-cuts are defined to be the compact intervals [ ] { | ( ) }u x x    , 

which are “nested” closed intervals.

For our purposes it is more convenient to specify fuzzy parameters with 
the Lower-Upper (LU) representation introduced in Stefanini, Sorini, and Guerra 
(2006); we briefly recall that an LU-fuzzy number u is determined by any pair 

 ,u u u  of functions  , : 0,1 Ru u   , defining the end-points of the α-cuts, 

satisfying some conditions, and possessing non-empty and compact α-cuts of 

the form [ ] , Ru u u  
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  , and the lower and upper branches (.)u and (.)u are continuous invertible 

functions defining the membership function (.)u as two continuous branches, 

the left being the increasing inverse of (.)u on 0 1,u u  
  and the right the decreasing 

inverse of (.)u on 1 0,u u  
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position of the interval  0,1 into N sub-intervals  1,i i  for j = 1,2,…,N. For each 

decomposition, 4(N+1) parameters are required:
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The simplest representation is obtained on the trivial decomposition of 
the interval [0,1] , with N = 1 (without internal points) and 0 10, 1.   In this 

simple case, u can be represented by a vector of eight components

                                 0 0 0 0 1 1 1 1( , , , ; , , , )u u u u u u u u u          

where 0 0 1 1, , ,u u u u     are used for the lower branch u
 , and 0 0 1 1, , ,u u u u     for 

the upper branch u
 .
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When managing functions of real variables, the fuzzy extension has to 
be the result of correct application of the extension principle. Given a function

 1 2, ,..., ny f x x x of n real variables 1 2, , ..., nx x x , its fuzzy extension is obtained to 

evaluate the effect of uncertainty on the jx modeled by the corresponding fuzzy 

number ju , i.e., for each level  by the interval , ,,j ju u 
  

  giving the possible 

values of jx for that level. If  1 2, ,..., nv f u u u denotes the fuzzy extension of a con-

tinuous function f in n variables, for each level  the resulting interval ,v v 
  

 

represents the propagation of uncertainty from the variables jx to the variable y. In 

particular, if the uncertainty on the original variables is also modeled by linear fuzzy 
numbers, the obtained v is still a fuzzy number starting from a single value (at level 

1)  to the most uncertain interval (at level 0  ), but it loses the linearity 

property. It follows that parametric representation is also necessary when the input 
variables are triangular fuzzy numbers in order to apply the extension principle and 
to represent the non-linear output fuzzy numbers.

In practice, to obtain the fuzzy extension of f to normal upper semi-continuous 

fuzzy intervals, we have to compute the α-cuts [ , ]v v 
  of ,v defined as the images of 

the α-cuts of 1 2( , ,..., )nu u u that are then obtained by solving the following box-

constrained optimization problems for [0,1]  :
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Only in simple cases can the optimization problems above be solved ana-
lytically. In general, the solution is difficult and computationally expensive to find, 
as, for each [0,1],  the global solutions of two non-linear programming problems 

are required.

2.3 The Fuzzy Heston Pricing Formula

It is worth noting that the option value obtained through the above-mentioned 
pricing formula (1) can only be computed when we have complete information 
on the parameters. This is hardly the case when dealing with real data applications. 
Of course, the parameters are not known and should be estimated; furthermore, as 
already noted in the introduction, many procedures have been introduced in the sta-
tistical and financial literature for the estimation of Heston model parameters and it is 
a subject of debate whether the estimates should be obtained by using pure statistical 
methods based only on a time series of the stock price (considering the instantaneous 
variance Vt as a latent variable) or calibration methods based essentially on market 
option prices (some highlights can be found in Figà-Talamanca and Guerra, 2006). In 
addition, some authors have suggested using proxies for process Vt, such as the realized 
variance (see, for instance, Bollerslev and Zhou, 2002). It is hard to establish the best 
solution, and even though we were able to choose one of the methods, statistical 
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estimation is imprecise by definition, not to mention that parameter estimates change 
over time. In Benhamou, Gobet, and Miri (2009), an effort is made to extend the Heston
model to the case of time-dependent parameters, but this drastically reduces the ana-
lytical tractability of the model.

To cope with the imprecision of the parameters, which is the final aim of 
this analysis, retaining both the parsimony and analytical tractability characterizing 
the Heston model, we generalize the model by assuming the fundamental parameters 
to be fuzzy numbers.

More precisely, we set 

                                    
L, R L,R

, , ,   , ,            

                                     
L,R

, , ,   , ,cc c c c         

and , ,c     and we assign the corresponding membership functions ( ),  

( ),   ( )c  , ( ),  ( )  . As soon as information on the parameters is modeled 

by fuzzy numbers, the value of the call option in (2) also becomes fuzzy and may be 

represented by its membership as well as by its α-cuts ,C C 

   
 

for all degrees 

of possibility. The maximum uncertainty corresponds to the support at 0.  This 
membership function and the corresponding α-cuts are obtained by applying 
the fuzzy extension of function ( , )tC T X in (2) in a rigorous way. The shape of 

the membership obtained for the option price serves as a measure of imprecision 
propagation from the parameters to the call option value. It is worth noting that 

( , )tC T X is highly non-linear in the parameters, making the computation of the cor-

responding fuzzy-valued function a tricky step. To reduce the computational burden 
we implement the multiple population differential evolution (DE) algorithm, which is 
designed to compute the values and the slopes of the LU representation of the fuzzy 
extensions of (2).

3. Derivation of the Fuzzy Support for the Model Parameters

To obtain the fuzzy support of the model parameters and properly assign 
the memberships of the parameters we proceed in two steps. First, we introduce 
a simple estimation technique for the Heston model parameter, under risk-neutral 
dynamics; then, we build the fuzzy support by applying the estimation procedure on 
rolling (moving) windows of the data. Our procedure provides estimates for the risk-
neutral parameters; it is based on observations for the stock index price and
for the volatility index value. The underlying idea is to read the volatility index as 
a proxy for the integrated volatility under the risk-neutral probability. This latter 
approach is a statistical alternative to the calibration of parameters obtained through 
the minimization of the distance between theoretical and market option prices (see 
Cont and Kokholm, 2009, and Sepp, 2008). We detail the procedure by considering 
the S&P 500 stock market index and its volatility index, the VIX.

The VIX is a volatility index computed on the basis of prices for options on 
the S&P 500 index (SPX options). Denote 
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where T is the time to maturity of all considered options, tF is the forward index 

level at time t (derived from index option prices), 0K is the first strike below tF , iK
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is the risk free rate at time t for a bond with maturity T, and  , ;iQ K T t is 

the midpoint of the bid-ask values for the option with strike .iK Then, the value of 

the VIX at time t is given by the following formula:
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i.e., the VIX value is finally obtained as a weighted mean of the output of formula (3) 
for values 1T and 2T corresponding to near and next term maturity.

The options to be considered in the calculation of the VIX are out-of-the-
money calls and puts with non-zero bid prices, centered around the at-the-money 
strike price 0 .K Full details on the VIX computation are available in the VIX white 

paper The CBOE Volatility Index, 2009.

As mentioned above, we use the VIX volatility index as a proxy for the square 
root of the expectation (under the risk-neutral measure) of the annualized integrated 
variance over a one-month horizon.

Specifically, if we define the integrated variance process ( , )I t  as

                                                     
1

( , )
t

s

t

I t V ds






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we assume that
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QVIX E I t
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Hence, the value of the square VIX/100 index at time t is assumed to be 
the sample observation, under the risk-neutral measure, of the process ( , )I t  with 

30
365

  .

The heuristic motivation for this choice is given in Sepp (2008). A detailed 
analysis of this assumption is beyond the scope of our work; however, the interested 
reader can find a theoretical justification in Cont and Kokholm (2009).

In addition, we take advantage of the fact that the moments of the integrated 
variance under the Heston dynamics specification can be derived as a function of 
the parameters. We know from the results in the literature (see Figà-Talamanca, 
2009, for instance) that ( , )I t  is a stationary process for a fixed value of  , for 

which
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where expectations are computed with respect to the risk-neutral probability measure.

Hence
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Once *̂ , *̂ are computed we can estimate 0( )Var V by writing

                                         
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from which
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Since, under the Heston model assumptions,  0

2

2

cVar V 







, we may com-

pute parameter ĉ as

                                               
* ^

2
0*

ˆ2
ˆ

ˆ
c Var V






Parameter ρ is simply derived as the sample correlation between the S&P 500 

index excess returns and the ˆ
tI time-series: 
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are the sample means of the S&P 500 excess returns and of the proxy for the in-
tegrated variance, respectively.

3.1 Choice of the Fuzzy Support

The support of the fuzzy parameters may be constructed—when a dataset of 
n observations is available—by rolling the estimation procedure on moving windows 
of length m so that k = n – m estimates are available for each parameter. In our 
numerical illustration we are given a dataset for the S&P 500 index and its volatility 
index (the VIX Index) from January 1990 to October 22, 2010 for a total number of 
n = 5,244 daily observations. The estimation is repeated k = 3,500 times for (over-
lapping) moving windows of length m = 1,744 of the VIX index; the estimated values 
are reported in Figure 1 for each parameter of the model. Considering the time span, 
the estimates show good stability performance. Of course, the most volatile of the para-
meters is the correlation, which is the only estimate relying on both the S&P 500 
return and the VIX series.

Given these outcomes we suggest several possible ways to obtain the fuzzy 
support for each parameter; in all cases the crisp value is given by the median esti-
mated value. We consider linear fuzzy numbers with the support having the extremes

obtained according to a percentage variation p of the crisp value. If we denote by x

the median of a generic parameter, the support is the closed interval [ (1 ), , (1 )]x p x x p   

and is, by construction, a centered interval on .x
In Figure 2 the histogram is reported for each of the four parameters. It is 

clear from the figures that the estimated values are asymmetric with respect to their 
median value. In order to take into account this asymmetry we use the empirical 
distribution of the parameters for an alternative definition of the parameter support.

We therefore define the fuzzy support of parameter x as [ ( ), ( )]l x h x , where ( )l x

is a low percentile (l%) and h(x) is a high percentile (h%) of the estimated values for x. 
Typical examples would be l = 10 and h = 90 or l = 25 and h = 75. As a natural gener-

alization we also consider trapezoidal supports of the type  1 2( ), ( ), ( ), ( )l x m x m x h x

considering percentiles around the median (m1 = 45, m2 = 55). Note that this approach to 
the construction of market data consistent fuzzy shapes may be used in different model 
settings as well as for different estimation procedures.
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Figure 1 S&P500 Index and VIX volatility: Parameters Estimated Values
from the Beginning of 2000 to the End 2005 

(from top left, clockwise we have κ∗, θ∗, c, ρ)

Figure 2 S&P500 Index and VIX volatility: Histograms of Parameters Estimated 
Values  from the Beginning of 2000 to the End 2005 
(from top left, clockwise we have κ∗, θ∗, c, ρ)

4. Numerical Illustration

We are given a dataset of the VIX index values from January 1990 to Octo-
ber 22, 2010 for a total number of n = 5,244 daily observations. In order to derive 
the support of the fuzzy parameters the estimation procedure described above is 
repeated k = 3,500 times for (overlapping) moving windows of length m = 1,744. 
From the 3,500 values obtained we derive the percentiles reported in Table 1.
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Table 1

*̂ *̂ ĉ ̂

Min. 0.02589 0.1306 0.05147 -0.18419

10th 0.02735 0.1384 0.06340 -0.10989

25th 0.03986 0.1468 0.08043 -0.10319

45th 0.04479 0.1662 0.08281 -0.09747

50th 0.04671 0.1747 0.08443 -0.09489

55th 0.04891 0.1838 0.08818 -0.09364

75th 0.05549 0.2491 0.09761 -0.07522

90th 0.06127 0.3209 0.16598 -0.06089

Max. 0.06273 0.5593 0.26232 -0.03160

In our experiment, denoting by  i i
x the time series of estimated d values for 

the parameter x and by   ,i i
q x n its n-th percentile, the following specifications for 

the support of each fuzzy parameter x are developed:

– 1 1 0 1, 0.20,x x x x x       0 1 1.80x x   , providing a symmetric triangular 

fuzzy number ( 0.8p  );

– 1 1 ,x x x   0 1 0.60,x x   0 1 1.40x x   , providing a symmetric triangular 

fuzzy number ( 0.4p  ); 

–   0 ,10 ,i i
x q x    0 ,90i i

x q x  , 1 1 ,x x x   providing an asymmetric 

triangular fuzzy number;

–   0 , 25 ,i i
x q x    0 ,75i i

x q x  , 1 1 ,x x x   providing an asymmetric 

triangular fuzzy number;

–   0 ,10 ,i i
x q x    0 ,90i i

x q x  ,   1 , 45 ,i i
x q x    1 ,55 ,i i

x q x 

providing a trapezoidal fuzzy number;

–   0 , 25 ,i i
x q x    0 ,75i i

x q x  ,   1 , 45 ,i i
x q x    1 ,55 ,i i

x q x 

providing a trapezoidal fuzzy number.

In Figure 3 we plot, as an example, the six different shapes for parameter  

according to the definitions given for the fuzzy support in the above list. It is worth 

noting that the empirical distribution of   is very skewed; while the higher 
extremes of the support are similar for cases 1, 3, 5 and 2, 4, 6, the same is not true 
for the lower extremes. Similar plots, with different numeric values, can be derived 
for the other parameters.

4.1 The Fuzzy Option Price and its Membership Function

According to the selected shape for the fuzzy parameters we compute the fuzzy
prices for European options by applying the extension principle to the option pricing 
formula as illustrated in Section 3. We illustrate the results by considering three dif-
ferent strikes, which are taken as examples of out-of-the-money (OTM), at-the-money
(ATM), and in-the-money (ITM) options, and for two different maturities (1 and 
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Figure 3 Fuzzy Shapes of Parameter κ∗ According to Several Definitions
of the Fuzzy Support

                

Figure 4  Fuzzy Price for Options on the S&P500 Index Traded on October, 22th, 2010: 
Symmetric versus Asymmetric Triangular Fuzzy Parameters

          

3 months). In Figure 4, from left to right, the membership for fuzzy option prices is 
reported for the examples of OTM, ATM, and ITM options, respectively; the top 
graphs refer to maturity T = 1 month and the bottom graphs to T = 3 months. In 
particular, option prices are computed starting from symmetric triangular fuzzy para-
meters with 0.8p  (dash-dotted) and 0.4p  (dotted) as well as for asymmetric 

triangular fuzzy parameters with extremes fixed at the 10th and 90th percentiles 
(dashed) and 25th and 75th percentiles (solid).
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Figure 5  Fuzzy Price for Options on the S&P500 Index Traded on October, 22th, 2010: 
Triangular versus Trapezoidal Fuzzy Parameters

          

In Figure 5, from left to right, fuzzy option prices are reported for the ex-
amples of OTM, ATM, and ITM options, respectively; the top graphs refer to 
maturity T = 1 month and the bottom graphs to T = 3 months. Option prices are 
computed in this case assuming asymmetric triangular fuzzy parameters with 
extremes fixed at the 10th and 90th percentiles (dashed) and 25th and 75th per-
centiles (solid) as well as their trapezoidal generalization considering the 45th and 
the 55th percentiles as extremes for the 1-cut of the parameters’ fuzzy shape (dash-
dotted and dotted, respectively).

From Figure 4 we understand how the call prices vary with the choice of 
symmetric or asymmetric triangular fuzzy parameter (Cases 1 and 2 against Cases 3 
and 4), while Figure 5 shows the variation of the call prices with the choice of 
triangular or trapezoidal asymmetric fuzzy parameter (Cases 3 and 4 against Cases 5 
and 6). It is worth noting that starting from linear or symmetric fuzzy parameters 
does not give linear or symmetric option prices; this is due, of course, to the high 
non-linearity of the Heston option pricing formula with respect to the underlying 
model parameters.

To get a better idea of how option prices vary against the strike price, we plot 
in Figures 6 to 8 the membership (shape) functions for the considered call option 
prices against all the available strike prices (denoted by K) on the date of interest 
(October 22, 2010), for maturities T = 1, 2, 3 months, respectively. The plots cor-
respond to a choice of asymmetric triangular fuzzy parameters with the 10th and 90th 
percentiles as the extremes of their support (Case 3).

It is clear from the figures that not only do prices increase with the time to 
maturity for each fixed strike, but also that the membership α-cuts for fixed levels 
of possibility, become larger and larger with the time to maturity of the options. In 
addition, the α-cuts ranges increase with the strike price and are more asym-
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Figure 6  The Fuzzy Smile for Options with Maturity T = 1 Month 
Fuzzy Memberships for the Option Prices Is Plotted Against the Strikes 
Prices Traded on October, 22th, 2010

Figure 7  The Fuzzy Smile for Options with Maturity T = 2 Month 
Fuzzy Memberships for the Option Prices Is Plotted Against the Strikes 
Prices Traded on October, 22th, 2010

metric for lower strike prices. Similar graphs can be obtained for the other shapes of 
the fuzzy parameters, leading to analogous comments.

In all the above figures the maximum possibility value ( 1)  corresponds to 

the crisp option price under the Heston model with crisp parameters. Note that in 
the derivative market, traded options are not quoted with a single price but with a bid 
price and an ask price. The difference between these prices is called the bid-ask spread
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Figure 8  The Fuzzy Smile for Options with Maturity T = 3 Month 
Fuzzy Memberships for the Option Prices Is Plotted Against the Strikes 
Prices Traded on October, 22th, 2010

and, in standard option pricing models, is considered a friction in the market. In fact, 
a standard assumption in pricing models is that the price of a financial asset is 
unique; this problem is usually overcome by considering the midpoint of the bid-ask 
range as the unique price. In our generalized Heston framework, with fuzzy para-
meters, we are given a range for option prices (for each α-cut with 1  ) which may 
properly represent the bid-ask spread.

5. Conclusion

Our analysis is intended to cope jointly with the uncertainty arising from 
the random evolution of a stock price and the vagueness of information on the as-
signed parameters. This fuzzy-stochastic approach is developed here within the frame-
work of the Heston stochastic volatility model by formally representing the vagueness
of the parameters through the mathematical theory of fuzzy numbers. 

The Heston model provides a closed formula for the price of European options
when the parameters are known. By assigning different membership functions to 
the fuzzy parameters we obtain, by rigorous application of the extension principle, 
the membership function of the fuzzy option value. It is worth noting that, due to 
the high non-linearity of the Heston option pricing formula with respect to the para-
meters, linear shapes for the membership function of the input parameters propagate 
to non-linear shapes for fuzzy option prices. This observation motivates the para-
metric representation of the fuzzy numbers involved. 

In the central part of the paper we suggest a constructive method for deter-
mining the shape of the fuzzy parameters so that their memberships are properly 
assigned to be consistent with the empirical observations in the stock and derivatives 
markets. 
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Our analysis is developed through several experiments in which a different 
shape for the fuzzy parameters is assigned. We then give a numerical illustration on 
a dataset for the S&P 500 index and the VIX volatility index. The outcomes of our 
study seem encouraging and might prove useful in real markets, especially where 
transaction costs, such as different bid-ask prices, are indeed allowed; in this case 
there is no unique price for a traded asset, but instead there is a bid price and an ask 
price, whose range is called the bid-ask spread. Under suitable assumptions on the shape
and the support of the fuzzy parameters, the extremes of the support (or of a specific 
α-cut) of the fuzzy option price, obtained using our approach, may be used to 
represent the bid-ask spread for the option itself. The next step for our research is to 
understand the statistical theoretical properties of the joint fuzzy-stochastic Heston 
model and possibly to apply our approach for risk measurement purposes. 

As a by-product of this study we introduce a way to derive parameters in 
the Heston model by using a moment-matching estimation procedure based on joint 
observations of a stock market index and its volatility index, which served as a proxy 
for the integrated volatility. The proposed estimation method, though novel and very 
simple, is not the main focus of the paper. Of course, we will investigate this method 
further in future research by deriving its theoretical properties and by comparing its 
performance with that of existing procedures. 
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