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1. Introduction

A digital option is a special type of financial derivative with a non-linear
discontinuous payoff function. In spite of this, the payoff is simple enough
to allow (relatively) easy valuation of these contracts. It is the reason why
digital options can be (and regularly are) applied to decompose and hedge
statically the positions in many options with more complicated and usually
discontinuous payoff functions; see for example (Andersen – Andreasen –
Elizier, 2002), (Carr – Chou, 1997), (Carr – Ellis – Gupta, 1998) or (Derman
– Ergener – Kani, 1995).

It is clear, that in order to ensure efficient risk management of compli-
cated exotic options, the procedures for pricing and hedging digital options
must be no less efficient. However, the valuation of digital options is easy
only in the Black and Scholes (1973) setting. By contrast, relaxing some
Black and Scholes restrictions can cause an incompleteness of the model,
either by stochastic volatility, presence of jumps or non-normally distributed
returns (non-normality of returns is commonly modeled by suitable Lévy
models with an infinite intensity of jumps).

Another problem arises if a trader is not sure about the underlying model.
Hence, he or she can only guess and, therefore, probably applies the incor-
rect one. Obviously, it can also happen that the only model available to ap-
ply is the Black and Scholes model. Although the trader can know the true
evolution, it can be comprised of such complicated features that the appli-
cation can be impossible. This situation can again lead to incorrect results.

Several authors have already been concerned with the efficiency of repli-
cation methods under misspecified input data. The majority of them studi-
ed the case of wrong volatility, see e.g. (Ahn et al., 1996). By contrast, in
many works on static replication it was argued that to get perfect results,
the underlying process can be regarded as irrelevant only if the market
prices all assets efficiently.

* Department of Finance, V·B-TU (Technical University) Ostrava, Czech Republic (tomas.tichy@vsb.cz)

The first part of this paper was presented at one of the EU MOptFin workshop series –
The Technology of Asset and Liability Modelling, Agia Napa, Cyprus, 2003, sponsored by the EU
through the grant HPCF-CT-2002-00011. The second part, related to incomplete markets, was
developed under the research project of the GAâR (Czech Science Foundation) 402/05/P085.
All support is greatly acknowledged.



Another issue is how the replication works if some inputs are well-speci-
fied; however, others are not included in the model. The task of the paper
is to examine the method of dynamic replication in such a case via Monte
Carlo simulation and compare the results with the static replication. We
also verify the irrelevance of the underlying process on the effect of static
replication in the case of market efficiency.

We study two basic approaches to option replication (static and dynamic)
within four different settings or different types of scenarios of the underly-
ing asset price evolution. The only same things valid under each model are
that the trader is not able to trade continuously and the only applicable
model of the underlying asset price to execute the replication strategy is
the Black and Scholes model. By contrast, we suppose that the market works
efficiently so that the market prices are in accordance with the “true” as-
set price evolution.

The considered evolutions of the option underlying asset price are (i) geo-
metric Brownian motion (thus the Black and Scholes model, BS model),
(ii) geometric Brownian motion with stochastic volatility following the Hull
and White process (Hull – White, 1987) (thus the stochastic volatility model,
SV model), (iii) variance gamma process (Madan – Seneta, 1990) regarded
as a Brownian motion subordinated by a gamma time process (thus a spe-
cial type of the exponential Lévy model, VG model), and (iv) variance gamma
process with stochastic volatility (or more generally the model in stochas-
tic environment, VGSE model) driven by additional random time – the Cox-
-Ingersoll-Ross process (1985). The last two examples can be regarded as
special cases of subordinated or time-changed processes, developed by
Bochner (1949), first introduced in economics probably by Clark (1973), and
tested in econometrics, e.g. by Stock (1988).

The paper proceeds as follows: In the following Section 2 we briefly re-
view the typology of options, digital options and their pricing. Subsequently,
we recall the principles of dynamic and static replication of options, see e.g.
(Tich ,̆ 2004). Next, we define and briefly describe all stochastic processes
applied in this paper.1 Finally, in Section 5 we provide numerical results of
the replication performance. The paper ends with conclusions.

2. Digital Option

By an option we generally mean a non-linear financial derivative that
gives its owner (long position) the right to buy (call options) or the right to
sell (put options) the underlying asset (S) under predefined conditions. Si-
multaneously, the seller of the option has an obligation to respect the right
of the owner (hence the short position). The predefined conditions concern,
for example, the underlying amount of assets, the maturity time (T), the exer-
cise price (K). Options, whose payoff can be written as �T = (ST – K)+ or �T =
= (K – ST)+, where ST indicates the underlying asset price at maturity and
X+ � max (X;0), are referred to as plain vanilla options.
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Sometimes also other non-standard conditions are defined (average price,
barrier level, etc.) and such options are referred to as exotic options. More-
over, the option which one can exercise only on the maturity date is called
a European option and the option exercisable at any time at or prior to ma-
turity is called an American option.

In this paper we focus on replication of European digital options. A digi-
tal option is a financial derivative which if exercised pays its owner some
fixed amount Q or the value of any specified asset. Hence, unlike the plain
vanilla call or put, the payoff does not depend on the difference between
the spot price and the exercise price. It indicates that the payoff function
is not smooth. Obviously, the payoff conditions of digital options can be fur-
ther complicated, e.g. by the existence of a barrier level or a gap in the pay-
off.

The simplest example of a digital option is the cash-or-nothing call (put).
The owner of this option receives at option maturity T the specified amount
Q if the terminal price of the underlying asset ST is (not) at least as high
as the exercise price K. The payoff function of the call � call

dig–cash can be writ-
ten as:

Q if ST � K
� call

dig–cash (ST, K;Q) = � (1)
0 otherwise (if ST < K)

The situation is illustrated in Figure 1. The payoff of the plain vanilla call
is strictly and linearly increasing for all S > K. The payoff of the digital call
with fixed payable amount Q is horizontal with a discontinuity (and a jump)
at S = K. Notice that the payoff of discontinuous path-dependent options is
further complicated. For example, for the case of an up-and-out call it is
zero up to the exercise price level, then it is linearly increasing up to S < bar-
rier, and finally, it is zero for all S > barrier.

The pricing of digital options as the one of (1) is significantly dependent
on the pricing of plain vanilla options. As we can see at the maturity time
(see Figure 1), the value of option fT is either zero or Q times one. Consider
Q = 1. Apparently, the option value at maturity is identical with the vanilla
option delta (the first partial derivative with respect to the underlying as-
set price � =

�S
–�f ). Before the maturity time, the crucial variable to value
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FIGURE 1 Option Payoff Function

On the left – plain vanilla call; in the middle – digital call (Q = 10); on the right – up-and-out call (barrier = 115).
Vertical axis – option payoff, horizontal axis – underlying asset price, exercise price K = 100.
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the digital option will be the probability that S > K.2 In other words, it is
the probability that the call option will be exercised.

From the Black and Scholes model for the vanilla call on a non-dividend
stock we know that the option delta is very close to the probability of exer-
cising, since:

Vcall
vanilla = S . N(d+) – K . e–r.� . N(d–) (2)

where � is the time to maturity, N(z) is the cumulative distribution func-
tion of the standard normal distribution – the probability that a random
number from the standard normal distribution N[0;1] will be lower than z,
and the term N(d–) can be interpreted as the probability that ST � K. By
contrast, the term N(d+) is the delta of the option and (within the BS model)
d+ = d– +  � . �–� .

Thus, the properties of the digital call value function are close to the delta
function of the vanilla call. Similarly, the digital call delta will be close to
the gamma of the vanilla call.

To summarize, the digital cash-or-nothing call option value is the present
value of the payoff amount Q times the probability of exercising the option:

Vcall
digital = Q . e–r.� . N(d–) (3)

This result is general enough to be valid for various types of underlying
processes. Still, the digital option price will be given by the probability of
exercising, which should be very close to the vanilla call delta.

3. Digital Option Replication

Respecting the number of revisions in time we can distinguish dynamic
replication and static replication. The main drawback of dynamic replica-
tion is implied by its definition – the method is based on an ever-changing
replicating portfolio which consists of one riskless (riskless zero-bond or
bank account B) and n risky assets where n is the number of underlying
(independent) risk factors. Considering the Black and Scholes model, it is
the underlying asset S, so that n = 1, and the replicating portfolio can be
denoted as H(B,S).

The portfolio composition can be described at general time t as:

Ht = xt
. Bt + �t

. St (4)

Here (xt;�t) indicates the structure of the replicating portfolio H at time t,
more particularly the capital invested into the risky asset S and riskless
asset B at time t.

Since the only source of risk is the underlying asset price and � denotes
the sensitivity of the option price f to the underlying price, the risk of both
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positions, the derivative f and the portfolio H should be the same. If that is
the case and ft = Ht, then it must also hold that at time t + dt:

Ht+dt = xt
. Bt+dt + �t

. St+dt � ft+dt = Ht+dt (5)

This furthermore implies the self-financing condition:

Ht+dt = xt
. Bt+dt + �t

. St+dt = xt+dt
. Bt+dt + �t+dt

. St+dt (6)

It is clear that the weights of assets B and S in the portfolio H must be
rebalanced at any time the underlying asset price changes. Hence, it needs
to be done continuously, which is obviously impossible. Even if the reba-
lancing interval is small, but not infinitely, the replication error can be high
through the discontinuity in the payoff.

Static option replication is based on static decomposition of complicated
payoffs into a set of more simple payoffs. The decomposition should be such
that it will be sufficient to leave the structure of the portfolio intact up to
maturity. Fortunately, the payoff of a cash-or-nothing call can be easily de-
composed into a tight spread of plain vanilla options.

Consider a digital call option f = Vcall
dig–cash(�; S, K; Q), where � is the time

to maturity, S is the underlying asset, K is the exercise price and the pay-
off amount is Q = 1. Create a portfolio Hvanilla call of vanilla call options with
the same time to maturity � and written on the same asset S as indicated
below:

Hvanilla call = Vcall
vanilla (�; S, K–�) – Vcall

vanilla (�; S, K) (7)

Hence, it is the long position in the call with exercise price equal to K – �,
� > 0, and the short position in the call with exercise price K. At maturity
the payoff will be:

ST � K    ST – K + � – ST + K = �
Hvanilla call =(ST – (K – �))+ – (ST – K)+ = �ST � (K–�; K) 0 � ST – K + � � �

ST � K–�       0 (8)

Comparing equations (1) and (8) we can see that if the portfolio payoff is
zero, the digital also pays zero. If the portfolio payoff is �, the digital pays Q.
Therefore, by creating x = Q/� tight spreads, the digital payoff will be repli-
cated. Moreover, we can see that if ST � (K–�; K) the portfolio’s payoff is
between zero and �. Since the digital option is not exercised for ST �
� (K–�; K), the position in x portfolios Hvanilla call is super-replicating – its
terminal value will be at least the same as the terminal value of the digi-
tal option with probability one:

Pr(HT � fT) = 1 (9)

It is clear that the initial value of the portfolio cannot be lower than
the derivative price under no-arbitrage condition, since it is super-repli-
cating. Note that the portfolio Hvanilla call will be almost replicating
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Pr(HT = fT) → 1

if � → 0 and thus x → 	.
Alternatively, we can create a lower-cost sub-replicating portfolio 

Hvanilla call and Pr(HT � fT) = 1.

4. Stochastic Processes

In this section we briefly define all processes applied in the paper. The sim-
plest building blocks are the Poisson process (or closely related ones such
as a gamma process) and the Wiener process, which provides ingredients
for construction of almost all processes with a diffusion part.

The Wiener process wdt can be defined as wdt = 
�1 . �dt, where random
number 
�1 belongs to the standard normal distribution, thus 
�1 � N[0;1],
and dt describes the (infinitesimal) time increment. Hence, the Wiener pro-
cess is a martingale; its expected increment is zero at any time and the vari-
ance is closely related to the time change.

We can, besides others, build on the basis of the Wiener process the geo-
metric Brownian motion (GBM). It is the process which was supposed to be
the one followed by stock prices in Black and Scholes (1973).3 The typical
property is the normal distribution of asset returns and logarithms of prices
– which is equivalent to lognormal distribution of prices. Two key facts are
that the financial-assets gain return continuously and that their prices can-
not be negative. Both ideas are supported by GBM, since the price is given
by an exponential formula.

It is assumed that the price dynamic can be described by the following
stochastic differential equation

dS = � . S . dt + � . S . wdt (10)

where dS is the price change over time interval dt, � is the (continuous-
-time) expected return and � is its volatility, both � and � are supposed to
be deterministic constants. The solution to stochastic differential equa-
tion (10) is according to Itô’s lemma:

St+dt = St . exp��� –
2

––�2 	 . dt + � . wdt
 (11)

Note also that in the risk-neutral setting the preceding formulation
changes by � → r to ensure that the asset gains riskless return r.

Since the volatility of asset returns is very difficult to measure and fore-
cast, some slightly more realistic models suppose its stochastic feature.
However, a candidate to model the volatility must respect the empirical fact
that it regularly reverts back to its long-run equilibrium. Besides others, it
is the case of the Hull and White (HW) model (1987). Hull and White sup-
posed the volatility to put into (11) can be modeled by:
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d� = a . � . (b – �) . dt + s . � . wdt (12)

Here, a describes the tendency of mean-reversion, b is the long-run mean
(equilibrium) and s is the volatility of the volatility. The Wiener process of
HW (12) which drives the volatility is usually supposed to be independent
of the one of the GBM (10).

4.1 Lévy Models

Under the family of Lévy processes, so called in honor of Paul Lévy, are
generally understood such processes that are of independent and statio-
nary increments. These processes are also typical by the stochastic conti-
nuity – the probability of jump occurrence for given time t is zero. The Lévy
process can be decomposed into a diffusion part and a jump part. Clearly,
not all parts must be present.

The modeling of financial prices is usually restricted to exponential Lévy
models. The price dynamic is given by an exponential of a Lévy process Xt

and some (deterministic) drift �:

St+dt = St . exp[� . dt + Xdt – �– . dt] (13)

Moreover, we must deduce the term exp(�–) = exp(E[Xdt]) to ensure that
E[St+dt] = St . e�.dt. In fact, it is equivalent to deducing 1–

2
. �2 . dt in the case

of geometric Brownian motion. We can therefore interpret �– as a mean cor-
recting parameter to the exponential of the Lévy process Xt.

The classic works incorporating jumps in price returns were based on
jump-diffusion models such as the Merton model (1976). These models are
typical by a finite number of jumps in any time interval. However, the mo-
dern models of financial returns are of infinite activity – thus, the jumps,
although small in scale, occur infinitely many times in any time interval.
In fact these models do not need to be constructed of diffusion components,
since the infinite activity allows description of the true feature (either jumps
or skewness and kurtosis in the distribution of returns) well enough. In ad-
dition, the terminal price can be produced by simulation within one step.

Many Lévy models are regarded as subordinated Brownian motions. If
w(t) denotes a Wiener process in time t, we can define the subordinated
Brownian motion Xt with drift � and volatility � by subordinating with an-
other Lévy process g(t) just replacing t by g(t). Thus, changing the time we
get:

Xt = � . g(t) + � . w(g(t)) (14)

Hence, the subordinated process Xt(g(t);�,�) is driven by another pro-
cess g(t) which is referred to as the subordinator. Since the random pro-
cess g(t) plays the role of the time in the original model, it must be non-de-
creasing in time.

In such a case we have to imagine “an internal time” given by process g(t).
Of course, the process still evolves in time t. However, so-called internal
time gives us a very nice economic interpretation of subordinated processes
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– the (geometric) Brownian motion given in a random business time, which
is stipulated by the economic activity, the mass of information, etc.4 In other
words, “the time increments” are not constant but stochastic. Transform-
ing the original time into the stochastic process we can also model other pa-
rameters of the distribution and fit the model more closely to the set of real
data.

The very popular subordinators are the gamma process resulting into va-
riance gamma model (the name is due to the variance of the primary com-
ponent is not given by the classical time but by the “gamma-time”) and
the inverse Gaussian process which results into normal inverse Gaussian
model – see e.g. (Barndorff-Nielsen, 1995).

In this paper we apply the variance gamma (VG) model5 (for more details
see, e.g., (Madan – Seneta, 1990), (Madan – Milne, 1991) or (Madan – Carr
– Chang, 1998)). Consider the VG process VG(g(t;
);�,�), where g(t;
) is
the (random, but strictly increasing) gamma time from gamma distribu-
tion G[1;
] (here 
 describes its variance and allows us to control the kur-
tosis), � is the drift (by which we can control the symmetry), and � describes
the volatility. Hence the asset price dynamics can be expressed as:6

St+dt = St
. exp[� . t + VGt – �– . dt] = St

. exp[� . t + � . gt + � . w(gt) – �– . dt]
(15)

where �– = – 1–
2

. ln(1 – � . 
 – 1–
2

. �2).

One further step is to incorporate the notion of the stochastic environ-
ment into Lévy models. Although many Lévy models allow fitting well
the empirical structure of returns including skewness and kurtosis, the ca-
librated parameters in general do not stay the same over time. Besides
the stochastic volatility approach of Hull and White (1987) or Heston (1993),
this can be done either by applying Lévy-driven Ornstein-Uhlenbeck pro-
cesses to model volatility (this direction was developed mainly by Barndorff-
-Nielsen and Shephard) or time changed Lévy processes (which was sug-
gested by Carr et al. (2003)). A brief review of all approaches are provided
by, e.g. (Cont – Tankov, 2004) or (Schoutens, 2003).

Here, we proceed according to the approach of Carr et al. (2003), in which
according to Brownian scaling property it is supposed that the change in
volatility can be captured by the (random) change in time. Thus, although
the VG model is given by time-changed Brownian motion (by gamma time),
it is further extended by introducing a stochastic time Y(t) given by mean-
-reverting CIR square-root process (Cox – Ingersoll – Ross, 1985):

dy = � . (� – y) dt + � . �–
y . wdt (16)
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with long-run time change �, the rate of mean reversion � and time volatility
�. Thus, the VG(g(t;
);�,�) model can be reformulated into VG(g(t;�,�); 
);
�,�). Note that (16) describes the dynamics of the time rate y – the change
of Y-time over the interval dt. Thus, yt+dt = yt + dy and the alternate time
describing the stochastic environment is given by:

t

Yt = �yudu (17)
0

Figure 2 illustrates the evolution of these two times, t and y, for �t = 0.004.
The rate of this internal time y is illustrated on the left and the accumu-
lated time Y is on the right.

As before, to get the asset price dynamic in either a true or risk-neutral
setting, we must incorporate the mean correcting parameter. For example,
in the risk-neutral setting we need to get E[St+dt] = St . er .dt. And therefore

exp[r . dt + VG(Y(dt))]
St+dt = St –––––––––––––––––––– (18)

E[exp[VG(Y(dt))]]

Fortunately, the replication should be valid regardless of the type of
the world. Hence, in order to examine its efficiency we can stay within
the risky (or true) market feature.

4.2 Option Pricing within Lévy Models

Lévy models must usually be regarded as incomplete. Standard Black and
Scholes arguments (replication with the underlying) cannot be used since
there are more sources of risk. The alternative risk-neutral approach is also
problematic since there does not exist a unique martingale probability which
is equivalent to the original space of true-market probabilities. The pricing
problem can be solved by incorporating a mean correcting parameter, in-
troducing characteristics functions or applying suitable transform tech-
niques. Some interesting questions of martingale measures of Lévy pro-
cesses are examined by, e.g., Fujiwara and Miyahara (2003).
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FIGURE 2 Illustration of the Time-Changed Process – CIR
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Note that the nature of Lévy processes usually does not allow us to use
dynamic replication of Section 3 as it is valid only for the world of one rele-
vant risk factor. Moreover, it is often very difficult to replicate the risk of
jumps.

For illustrative reasons, we will now state the European call option pric-
ing formula within VG model VVG (S,�;�), which is probably the only one
available in the “user-friendly” expression:

	

VVG (S,�;�) = �G(t) VBS �S . exp(�g + 1–
2
�2 g – ��), ��––

g–� ;�	 dg (19)
0

As before, S is the underlying asset price, � is the volatility, � is the drift,
� is the time to maturity, � is the mean correcting parameter, VBS (.) is
the Black and Scholes pricing formula and G(t) denotes the probability den-
sity function of the gamma distribution.

5. Numerical Results

In this section we successively apply particular models in order to verify
the efficiency and examine the differences of dynamic and static replication
under various (in)complete models. This is done by simulating 10,000 ran-
dom paths of the underlying asset price evolution and calculating the cha-
racteristics of the terminal replication error (HT – fT).

We suppose four different types of underlying models: BS (Black and Scho-
les) model, SV (stochastic volatility Hull and White) model, VG (variance
gamma) model and VGSE (VG in stochastic environment given by CIR
model) model.

Furthermore, we suppose that the market works efficiently and the only
model ready to be applied when executing the replication/hedging stra-
tegy is the BS model. The reason can be either unknowingness or igno-
rance of the true model or the impossibility of its application – although
the true model of the evolution can be known, it need not be feasible to
work with it. As the number of independent factors and complexity of
the model increases, it starts to be more and more time-consuming to get
the option fair price. Calculation of optimal portfolio positions is further
complicated. Normally, some numerical approximation technique should
be used.

In each of the tables 1–4 we provide the characteristics of replication er-
ror distribution. In particular, the first part includes the minimal (min) and
maximal (max) error value. The second part describes the basic characte-
ristics of the distribution: mean, median and the standard deviation (�).
The third part gives more information about the shape of the distribution
– it provides the skewness and kurtosis.

Consider now a financial institution whose task is to replicate a written
option f as efficiently as possible. The option parameters are:

f = Vcall
dig/cash �� = 0.1; S0 = K = 100; � = r = 0.1; � = 0.15; Q = 1	
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5.1 Dynamic Replication

In this subsection we examine dynamic replication of the option f by (dis-
crete) trading with the underlying S and the risky asset B.

Firstly, we examine the complete BS model. Thus the price of the under-
lying asset S follows the SDE (10) so that the option is priced and can be
hedged due to the BS model. The initial value of the option equals the ini-
tial value of the replicating portfolio H0 = f0 = 0.5685 and the initial posi-
tion in the risky underlying asset is given by �0 = 0.0818. The replication
error at maturity time is given by RET = –fT + HT. The asset price evolution
during option life is recovered according to the discrete version of (11):

S(n)
t+�t = S(n)

t . exp(�S(n)
�t )  =  St . exp[(� – �2–

2
) . �t + � . 
�1

(n) . ��t]     n=1,...,N

Here, N = 10,000 is the number of independent paths and �t is obtained
according to pre-specified number of discrete rebalancing intervals, M = �/�t.
Since the option life supposed here is 5 weeks, which is about 25 business
days, the considered rebalancing intervals are once a week, one day, six
hours and one hour, i.e. M = 5, 25, 100, 600.

The resulting values for particular rebalancing intervals are presented in
Figure 3 and Table 1. The graphical results indicate the symmetry distri-
bution of the error around the zero-mean and decreasing standard devia-
tion with an increasing number of rebalancing intervals. However, some ex-
treme results are present even for very short intervals.

All these results are confirmed by exact values of particular characteris-
tics in Table 1. Compare daily and hour rebalancing. Although the mean is
zero and the standard deviation decreases significantly, the extreme results
– minimal and maximal errors – are almost the same (or even slightly
higher). Note that the maximal payoff of the option is one. It means that
the maximal shortfall is higher than the maximal payoff.
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FIGURE 3 Dynamic Replication Error of Digital ATM Call – BS/BS, M = 5, 25, 100, 600
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TABLE 1 Dynamic Replication Error of Digital ATM Call – BS/BS

M Min. Max. Mean Median � Skewness Kurtosis

weekly –1.187 1.255 –0.004 –0.003 0.243 0.040 3.408

daily –0.949 1.008 –0.001 –0.001 0.173 0.056 6.739

6 hours –0.996 1.141 0.001 0.000 0.126 –0.090 14.296

1 hour –1.039 0.985 0.000 0.000 0.080 –0.179 35.708



The skewness and the kurtosis are closely connected with the intensity
of trading (rebalancing). In particular M = 600 indicates obviously negative
skewness and high kurtosis. The (a)symmetry is also confirmed by the quan-
tiles given in the same table.

Secondly, we proceed to the case of stochastic volatility given by the Hull
and White (SV model). In order to model the price we first generate the vo-
latility according to equation (12) and subsequently put it into (11). How-
ever, we assume that the financial institution cannot take advantage of this
model and it can apply only the BS model.

By contrast, suppose that the market is efficient and the option market
price corresponds with the SV model, including its parameters �0 = b = 
= 14.5 % p.a., the rate of mean reversion a = 16 % p.a. and the volatility of
volatility s = 1. Respecting these parameters, the market price is approxi-
mately the same as the one according to the BS model (implied volatility is
close to the actual). It is caused by the fact that the payoff of the digital op-
tion is influenced only by the probability of exercising and it stays approxi-
mately the same in the example studied here.

The results are depicted in Figure 4 and Table 2. The graphical presen-
tation of results indicates symmetric distribution around zero; however, it
is more spread-out this time. It is confirmed by values in the table.
The stochastic volatility does not cause the occurrence of arbitrage oppor-
tunity in the broad sense, as the mean is close to zero again.

By contrast, the standard deviation is higher, compared with the BS
model, for high-frequency rebalancing. (For infrequent trading it is almost
the same). Also interesting are the maximal and minimal error. It is sig-
nificantly higher compared to the BS model and far behind the maximal
payoff value. On the other hand the kurtosis is not so high (it is caused by
more spread-out distribution).

As we decrease the rebalancing interval in the BS model, we are able to
mimic the true evolution almost exactly for the majority of scenarios – the de-
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FIGURE 4 Dynamic Replication Error of Digital ATM Call – BS + SV/BS

TABLE 2 Dynamic Replication Error of Digital ATM Call – BS + SV/BS

M Min. Max. Mean Median � Skewness Kurtosis

weekly –1.15291 1.65711 –0.006 –0.006 0.258 0.124 3.769

daily –1.55101 1.42682 –0.003 –0.004 0.203 0.164 6.975

6 hours –1.22939 1.13906 0.000 –0.002 0.162 –0.048 10.125

1 hour –1.338 1.337 –0.001 –0.001 0.127 0.005 13.926
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viation decrease significantly, but the extremes stay similar. However, in
the SV/BS setting, we are not able to perceive the true evolution with so
much success – the true realized volatility can be different to the one we
suppose.

Thirdly, we suppose that the underlying asset price returns are not nor-
mally distributed; the skewness and kurtosis are presented. Hence we model
it by the VG model with the parameters ��,�,
� = �–0.1436, 0.12136, 0.3�,
which implies volatility slightly lower than 15 %, skewness of –0.8 and kur-
tosis of 4.14. We suppose again that the only model available to the finan-
cial institution is the BS model.

The initial market price of the option is f = 0.75. The price corresponds to
the VG model introduced above. The institution does not know this model,
so that it calibrates the volatility to get Vcall

dig/cash(.,� = ?) The result is 
� = 0.045.

As before, the results are given in Figure 5 and Table 3. This time, how-
ever, the graphical presentation indicates that the results are significantly
different. Although the strategy is no-arbitrage – the mean error is close to
zero – the deviation is high, the extreme (minimal) results are huge, as are
skewness and kurtosis. In the picture a line close to one and negative me-
dian are noticeable. We also see that frequency of trading does not play
a significant role.

The bad results are caused by the fact that the VG model is typified by
the occurrence of jumps (with infinite activity). These jumps are usually
small, but they do exist. If it happens close to the exercise price, where
the delta is very sensitive, it can cause significant errors.

Have a look at the source of the line close to 1. Remember that the ter-
minal error has been formulated as RET = –fT + HT. Here, the option pay-
off fT is either zero or one. Hence, the first idea is that such an error emerges
if fT = 0 and HT = 1 – shortly before the maturity, the option is not sup-
posed to be exercised; however, a jump (or large increment) can occur and

373Finance a úvûr – Czech Journal of Economics and Finance, 56, 2006, ã. 7-8

FIGURE 5 Dynamic Replication Error of Digital ATM Call – VG/BS
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TABLE 3 Dynamic Replication Error of Digital ATM Call – VG/BS

M Min. Max. Mean Median � Skewness Kurtosis

weekly –12.007 4.691 –0.003 –0.067 0.613 –3.312 48.296

daily –20.601 8.832 –0.010 –0.085 0.700 –5.241 121.807

6 hours –36.845 8.464 –0.011 –0.087 0.846 –15.400 541.493

1 hour –13.145 10.067 0.010 –0.088 0.631 –2.944 60.355



the new conditions will cause the replication error to be close to one.
The counterexample is that although the reverse can happen there is no
such line close to minus one.

A more justifiable idea is that it is natural implication of skewness. In-
deed, if we examine the strategy for various levels of skewness, we could see
that the distribution of the terminal error is symmetric only if the underly-
ing distribution is also symmetric. As the skewness of the underlying dis-
tribution increases (decreases), and under the no-arbitrage condition, the me-
dian becomes negative and a distinct line in the positive area appears.

The last example of dynamic strategy concerns the stochastic environment
given by the time changed VG model (VGSE); see equations (15) and (16).
The parameters to put into the CIR model must be such that the condition
2 . � . � � �2 will hold. For simplicity, we suppose that � is identical with
the length of the rebalancing interval.7 Thus the lowest � is 1/6000 and 
choosing � = 0.1 we must set � = 32 (at least). These inputs imply the mar-
ket price to be close to the VG price f = 0.75. Because of this, the BS im-
plied volatility is again approximately � = 0.045.

Since we have chosen relatively low volatility and high speed of mean-re-
version, the results are not very different from the VG model and therefore
are not presented here. To briefly name the big difference – the deviation
is somewhat lower and the mean is slightly positive (around 0.003). Instead
of tables with results we have presented Figure 2 – a particular scenario
hof Y-time for � = 1/250. The stochastic environment given by the time-fluc-
tuation implies the change of all distribution: the volatility, skewness and
kurtosis.

5.2 Static Replication

In this subsection we examine the static replication. Consider the same
digital option f = Vcall

dig/cash(� = 0.1; S0 = K = 100; � = r = 0.05; � = 0.15; Q = 1)
which will be statically (super)replicated by (decomposed into) the position
in a vanilla call spread H = VS = �Vcall

vanilla (0.1;100,99) – Vcall
vanilla (0.1;100,100)�,

� from equations (7) and (8) is one. The final error can arise only if ST �
� [99,100]. The maximal potential error is one – ST is close to 100. Note
also that the difference between the values of these two assets H and f in-
creases with the approaching maturity time.

Since the portfolio is superreplicating, we must proceed as follows. At
the beginning, the financial institution gets the yield from the sold option.
The capital which is to be spent to long the spread is, however, higher.
The difference (which is nonzero and negative) is borrowed at the riskless
rate up to maturity.

In this way, we can create a portfolio �.

� = H0 + (f0 – H0)
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7 Empirical estimates for the model show that the long-run rate of Y-time change need not
strictly be closely related to physical time. Furthermore, some estimates may violate the non-
-negative condition. For more results, see (Carr et al., 2003) or (Schoutens, 2003).



which should on average replicate the option, E[fT] = E[�T]. All the posi-
tions are left intact up to maturity. At that time, the replication error (RE)
can be formulated as:

RET = – fT + HT + (f0 – H0) . exp(r . �) =
= –1 . Ist�K + (ST – K – 1)+ – (ST – K)+ – (f0 – H0) . exp(r . �)

First suppose the complete setting – the case of the BS model. The initial
difference in values of the derivative and the replication portfolio is given
by:

(f0 – H0) = (0.57 – 3.03 + 2.42) = –0.04

Obviously, this will determine the error if ST � [99,100]. In particular:

RET(ST � [99,100]) = (f0 – H0) . exp(r . �) � –0.041

The graphical illustration of results is given by Figure 6 and particular
characteristics are depicted in Table 4. Since the portfolio is left intact up
to maturity, the number of rebalancing intervals is irrelevant. Therefore,
only one result will be provided for each method. Note that the probability
Pr�ST � [99,100]� is close to 5 %, which is approximately 500 random paths
of the underlying asset price evolution.

The presentation of results confirms the theoretical bounds of the error.
The total error is either –0.041 (ST � [99,100]) or between zero and one (for
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FIGURE 6 Static Replication of Digital Call – BS, SV, VG and VGSE model
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ST � [99,100], excluding initial costs). It significantly influences the me-
dian, skewness and kurtosis. The mean value of the replication error is zero,
which confirms the no-arbitrage opportunity. Note again that if the mean
value differs from zero, one of positions is preferred (either f or H) and
the relative prices change.

The SV model, VG model and VGSE model are applied by virtue of
the same principle. We suppose that actual market prices correspond to
the relevant model of the underlying asset price evolution. On the basis of
market prices (market prices are everything we need to know to replicate
the option statically) the initial difference is calculated. It also determines
the terminal error for ST � [99,100]. The results are clear from Figure 6
and Table 4.

Apparently, these results are very similar for all models. None of
the strategies allows an arbitrage opportunity; the mean is zero and
the standard deviation is very low. It seems that the SV model is close to
the BS model, and the VG model is close to the VGSE model, as should be
supposed.

5.3 Other Market Frictions

The efficiency of both the dynamic and static replication strategies is de-
termined also by the existence of transaction costs and liquidity or position
constraints.

The dynamic strategy is based on more or less frequent trading with
the underlying asset. Without doubt, as we increase the frequency of trad-
ing the total costs we incur will also rise. By contrast, the static strategy
requires trading only at the beginning, when the portfolio is set up. Al-
though the transaction costs are commonly higher on the financial deriva-
tives market than on the spot market, the difference is usually not so high
as to make the dynamic strategy more favorable. Besides that, the dynamic
method of the VG/BS and VGSE/BS strategy is totally unsuitable.

Another problem arises when the market is not sufficiently liquid or con-
straints on portfolio positions must be respected. This issue concerns mainly
trading with options.8 As was shown in equations (7)–(9), the error of static
replication can be controlled by the parameter �. As we bring the error
bounds closer to zero, the number of options to be purchased and sold sharply
rises. The requirement need not be met with the true market characteris-
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8 Of course, also large short positions in the underlying can be prohibited. However, the delta
of digital options is low, so it should not significantly affect the dynamic replication.

TABLE 4 Static Replication of Digital Call – BS, SV, VG and VGSE model

Model Min. Max. � Mean Median Skewness Kurtosis

BS model –0.041 0.959 0.161 0.000 –0.041 4.212 20.275

SV model –0.043 0.956 0.164 0.000 –0.043 4.070 19.097

VG model –0.028 0.971 0.135 –0.001 –0.028 5.330 31.473

VGSE model –0.030 0.967 0.136 –0.002 –0.030 5.284 30.983



tic. It can be either impossible to purchase such a high number of options
or this act would be associated with unfavorable transaction costs. This was
the reason why we supposed here a relatively high �, which allows us suf-
ficient freedom in setting up the portfolio.

6. Conclusions

Digital options can be regarded as a derivative at a half-step between
plain vanilla options and complicated exotic options. On one hand the (the-
oretical) pricing is relatively simple; on the other the discontinuity in
the payoff function can cause a serious problem in replication and hedg-
ing.

The task of this paper was to examine the relationship of the replication
error on the completeness of the model. More particularly, we have studied
the dynamic replication and the static replication within four distinct mo-
dels. Three of them were supposed to be incomplete. We showed how repli-
cation methods work if the underlying process is not known or cannot be
utilized when the replication portfolio is constructed.

The dynamic method performs relatively well only in a complete setting
and with frequent rebalancing of the replication portfolio. Under incomplete
models, the frequency of BS-rebalancing does not play such a significant
role (SV model) or it is almost insignificant (VG model).

By contrast, the static replication performed well also if the underlying
process was not known by the subject. However, the inevitable assumption
is that the market price must correspond to the true evolution, otherwise,
the results may be poor.

The strength of the static replication is that it does not require trading
up to the maturity and it allows us to manage the theoretical bounds of
the replication error. Of course, if the market significantly changes its view
about the underlying price process, the positions can be rebalanced to mini-
mize the expected error.
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SUMMARY
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Model Dependency of the Digital Option
Replication
Replication under an Incomplete Model

Tomáš TICHÝ – Faculty of Economics, VŠB-TU Ostrava, Czech Republic (tomas.tichy@vsb.cz)

The paper focuses on the replication of digital options under an incomplete mo-
del. Digital options are regularly applied in the hedging and static decomposition of
many path-dependent options. The author examines the performance of static and
dynamic replication. He considers the case of a market agent for whom the right
model of the underlying asset-price evolution is not available. The observed price
dynamic is supposed to follow four distinct models: (i) the Black and Scholes model,
(ii) the Black and Scholes model with stochastic volatility driven by Hull and White
model, (iii) the variance gamma model, defined as time changed Brownian motion,
and (iv) the variance gamma model set in a stochastic environment modelled as
the rate of time change via a Cox-Ingersoll-Ross model. Both static and dynamic re-
plication methods are applied and examined within each of these settings. The au-
thor verifies the independence of the static replication on underlying processes.
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