FINANCE A ÚVĚR 12/1992
ročník 42

Vydává federální ministerstvo financí ve spolupráci se Státní bankou československou ve vydavatelství Economia, a. s., Praha
© federální ministerstvo financí
Adresa redakce: Vinohradská 49, 120 74 Praha 2
Telefon: 253 018 nebo 2110, linka 361
Vedoucí redaktor: Ing. Ivan Kočárník, CSc.

OBSAH
Věra KAMENIČKOVÁ: O fiskální politice v roce 1992 — a nejen o ní 573
Pavel DVOŘÁK: Exogenní vlivy, rozpočtový deficit a veřejný dluh 578
Aleš BULÍŘ: Monetární kritéria v modelu kompetitivního bankovnictví 591
Rudolf OLŠOVSKÝ: Prostředky MMF — zdroje a jejich užití ... 610

Finance a úvěr v zahraničí
Václav VYBÍHAL: Crédit Agricole a její particpance na rozvoji francouzského zemědělství 618

Recenze
Aleš BULÍŘ: Poptávka po penězích (David E. W. Laidler) .. 623

Informace
Ludmila NUTILOVÁ: Nové vzdělávací středisko pro pracovníky územních finančních orgánů .. 628
Informace pro čtenáře ... 628

Uprostřed čísla:
Celoroční rejstřík časopisu Finance a úvěr

FINANCE A ÚVĚR 12/1992
Volume 42

© Federal Ministry of Finance
Editor’s Office: Vinohradská 49, 120 74 Prague 2, CSFR
Editor in Chief: Ivan Kočárník

CONTENTS
Věra KAMENIČKOVÁ: Fiscal Policy in 1992 (and Further Aspects) 573
Pavel DVOŘÁK: Exogenous Influences, Budget Deficit, and Public Debt 578
Aleš BULÍŘ: Monetary Targets in the Model of Competitive Banking 591
Rudolf OLŠOVSKÝ: Means of the IMF — Sources and Outlays 610

Finance and Credit Abroad
Václav VYBÍHAL: Crédit Agricole and Its Participation in French Agriculture Development ... 618

Book Review
Aleš BULÍŘ: The Demand for Money (David E. W. Laidler) .. 623

Information
Ludmila NUTILOVÁ: New Educational Centre for Tax Authority Officials 628
Information for Readers ... 628

In the middle of this issue:
Journal Year Index

Monetární kritéria v modelu kompetitivního bankovnictví

Aleš BULIŘ

Budeme proto diskutovat model, který vede k opačným závěrům. Úrokové sazby a peněžní zásoby jsou endogenními veličinami, které jsou generovány strukturálním modelem kompetitivního bankovnictví. Model bere do úvahy více vnějších faktorů a jeho výsledky jsou „věrohodnější“.

Kritika modelu peněžního multiplikátoru

Pochyby vůči peněžnímu multiplikátoru je možné založit na výtce, že velikost peněžní zásoby je definována jako jednostranný proces. Peněžní nabídka je chápána jako veličina stanovená exogeně, mimo systém obchodních bank, změnu monetární báze centralní bankou. Zásah centralní banky nevyvolá změnu úrokové sazby. V geometrickém vyjádření má nabídková křivka peněžní zásoby, M^*, vertikální tvar a je plně závislá na diskrečním rozhodnutí monetární instituce, viz graf č. 1.

Tato úvaha není správná ze dvou důvodů: (a) jen ve výjimečném případě může být změna peněžní zásoby zcela exogenní (hypotetický Friedmanův příklad „helicopter money“, peněž shazovaný z vrtulníku); (b) zcela se opomíjí vliv zásahu monetární instituce na výši úrokových sazeb, a tedy zpětně na velikost peněžní zásoby držené ekonomickými subjekty.

Oba důvody nejsou nicméně novým, nicméně přitažlivost modelu multiplikátoru je taková, že tyto připomínky byly a jsou opomíjeny. Jedním z ekonomů, který zdůraznil výše uvedené námětky proti modelu peněžního multiplikátoru, byl James Tobin. Tento přesvědčený keynesiánc byl k článkům [Tobin 1963] a [Brai-

* Ing. Aleš Buliř, MSc., CSc., pracovník katedry měnové teorie a politiky VŠE v Praze a poradce SBČS

1 Ucelený výklad peněžního multiplikátoru je uveden v habilitační práci [Buliř 1992].

Model kompetitivního bankovnictví

Necht se rozvaha bankovního sektoru skládá na straně pasiv z jednoho typu vkladů (\(D\)) a na straně aktiv z půjček (\(L\)) a hotovostních rezerv (\(B\)). Pro zjedno- dušení budeme nejprve předpokládat, že v systému nejsou žádné volné rezervy, a tedy že hotovost se v systému vyskytuje výlučně ve formě povinných rezerv. Míra povinných rezerv bankovního systému je vyjádřena jako podíl na vkladech (\(\rho\)). Rozvaha banky nabývá podobu
\[D = L + B = L + \rho D \]
a jako identita vyplývá, že půjčky se rovnají vkladům minus povinné rezervy
\[L = (1 - \rho)D \]

Zisk banky \((\pi)\) lze zapsat v podobě ziskové funkce, kde jediným výnosem banky jsou kreditní úroky a kde banka čeli dvěma typům nákladů: nákladů depozitních úrokových sazeb a transakčním nákladům. V tomto případě abstrahuje
me od obvyklých výnosů z bankovních služeb: ze správy cenných papírů, platebního styku nebo poradenských služeb, resp. od nákladů nelikvidity.
\[\pi = R_L L - R_D D - xD = |R_L (1 - \rho) - R_D - x|D \]

kde \(R_L\) je úroková sazba z půjček,
\(R_D\) je úroková sazba z vkladů,
\(x\) jsou jednotkové náklady, kterým banka čeli při poskytování svých peněžních služeb. Patří sem platy zaměstnanců banky, náklady na údržbu a provoz platebních automatů apod.

Pro kompetitivní bankovní systém je nutné předpokládat podmínku nulového zisku; musí tedy platit první derivace ziskové funkce rovná nule \((d\pi/dD = 0)\).2

Tato podmínka nám tak dává první rovnici systému
\[R_L (1 - \rho) = R_D + x \] (1)

V systému je dále nutné definovat poptávku po půjčkách a nabídku půjček. Jejich formulace si zaslouží drobnou odbočku. Prozatím jsme uvažovali dvě úrokové sazby — debetní a kreditní. (Při absenci povinných rezerv by v kompetitivním systému měly byt obě sazby totožné.) V ekonomice ovšem existuje větší počet aktiv, která mohou sloužit jako substituční zboží vzhledem k vkladům, resp. která vyjadrují náklady příležitosti vypuštění vži na úvěrovém trhu. Zavedeme proto vnější úrokovou sazbu \((R_S)\), vnější v tom smyslu, že není určena na úvěrovém trhu simultánně spolu s ostatními vlastními úrokovými sazbami a oběma vkladům a půjčkám. Může se jednat například o úrokovou sazbu dlouhodobých státních obligací nebo pokladničních poukázkách, která je v otevřené ekonomice rovná světovým sazbám.

Druhá rovnice, rovnice poptávky po půjčkách, proto nabývá podoby
\[L = (1 - \rho)D = l(R_L, R_S) \quad l_L = \frac{dL}{dR_L} < 0; \quad l_S > 0 \] (2)

kterou lze také zapsat jako objem vkladů potřebný ke krytí příslušného objemu půjček při dané výši povinných rezerv \(\rho\). Parciální derivace určují změnu poptávky po půjčkách při změně příslušných úrokových sazeb. Vlastní cenová změna je u normálního zboží3 vždy záporná a \(l_L\) je tedy menší než nula. Znaménko deriva-

2 Přirozeně není možné vyloučit, že za jistých okolností by se půjčky mohly stát Giffenovým statkem. Jinými slovy, že poptávka po půjčkách by se snížovala s poklesem úrokové sazby a naopak rostla s růstem úrokové sazby. Vysledkem by byla růstová poptávková křivka a pravděpodobné situace nestabilního rovnovážného bodu. Od tohoto hypothetického příkladu je ovšem možné abstrahovat.
ce \(l_S \) je kladné, což je důsledek skutečnosti, že je možné si vypůjčit buďto na úvěrovém trhu, nebo na vnějším trhu za sazbu \(R_S \). Pokud roste vnější úroková sazba, je přirozeně výhodnější poptávat dodatečný kapitál na úvěrovém trhu a nutně platí \(l_S > 0 \).

Třetí rovnici modelu je funkce nabidky vkladů

\[
D = d(R_D, R_S) \quad d_D > 0; \quad d_S < 0
\]

(3)

Platí, že jeho nabídka vkladů se zvyšuje s růstem ceny (depozitní úrokové sazby, \(R_D \)) a naopak se snižuje s růstem vnější úrokové sazby \((R_S) \), která představuje náklady příležitosti investování do alternativních aktiv. Použijeme-li předchozí příklad, kde \(R_S \) byla úroková sazba pokladničních poukázek, které mohou být úzkým substitučním statkem vkladů, potom při větším vynosu poukázek bude, ce teris paribus, klesat nabídka vkladů.

Jednoduchý model nabídky peněz prováděné kompetitivním bankovním systémem je vyjadřen v rovnicích (1), (2) a (3). Přes svoji jednoduchost model zachycuje všechny podstatné rysy procesu vytváření peněžní zásoby a dovoluje diskusii jednotlivých nástrojů centrální banky. Může být v ekonomice popsán tímto modelem libovolně manipulováno peněžní zásobou bez zpětných vazeb přes změny úrokových sazeb? Pokusíme se ukázat, že nikoli.

Budeme se věnovat změnám vnější úrokové sazby, změnám povinných rezerv, zvýšení efektivnosti bankovního systému (snižení transakčních nákladů), zvýšení rizikovosti bankovních půjček, zvýšení poptávky po půjčkách, resp. kontrole objemu půjček centrální bankou, zvýšení monetární báze emitované centrální bankou a stanovení limitů úrokových sazeb bankovních půjček poskytovaných obchodní bankou; tedy zásahům podobným těm, které pro peněžní multiplikátor diskutoval Mishkin [1991–2].

Změna vnější úrokové sazby

Nejprve provedeme algebraickou diskusi komparativní statické analýzy, která může být demonstrována grafickým vyjádřením. Nechť monetární instituce změnila výši vnější úrokové sazby — například operacemi na volném trhu, které snížily \(R_S \). Celkový diferenciál rovnic (1), (2), (3) nám dává v maticové podobě

\[
\begin{pmatrix}
1 - \rho & -1 & 0 \\
-l_I & 0 & 1 - \rho \\
0 & -d_P & 1
\end{pmatrix}
\begin{pmatrix}
dR_I \\
dR_P \\
dD
\end{pmatrix}
=\begin{pmatrix}
0 \\
l_S \\
d_S
\end{pmatrix}
\begin{pmatrix}
dR_S
\end{pmatrix}
\]

Povšimněme si, že exogenní proměnné jsou na pravé straně a endogenní na levé straně rovnic. Prvním krokem je zjištění determinantu matice na levé straně a jeho znaménka.

\[
\Delta = \begin{vmatrix}
1 - \rho & -1 & 0 \\
-l_I & 0 & 1 - \rho \\
0 & -d_P & 1
\end{vmatrix} = -l_I + d_P(1 - \rho)^2 > 0
\]

Determinant je jednoznačně kladný, neboť derivace \(l_I \) je záporná. Pro systém, ve kterém centrální banka uvaluje na bankovní systém povinné rezervy \((\rho \neq 0) \), platí, že část vkladů musí „ležet ladem“ ve formě hotovostních povinných rezerv a nemůže být použita na půjčky. Objem půjček tak bude nižší než objem vkladů. Aby se systém dostal do stavu rovnováhy, musejí být kreditní sazby vyšší, než by byly v systému s \(\rho = 0 \), a depozitní sazby nižší než za těchto okolností. Výsledné
rozpětí mezi R_L a R_D musí být takové, aby zajistilo pokrytí požadované výše povinných rezerv.

Podívejme se na výsledky komparativní statické analýzy v modelu. Podle Cramerova pravidla můžeme v třírovinovém systému získat tři parcíální derivace. Pro úrokovou sazbu z půjček bude platit při zvýšení vnější úrokové sazby

$$\frac{dR_L}{dR_S} = \frac{l_S - d_S(1 - \rho)}{\Delta} > 0$$

Podobně pro úrokové sazby z vkladů

$$\frac{dR_D}{dR_S} = \frac{(1 - \rho)[l_S - d_S(1 - \rho)]}{\Delta} > 0$$

de vidíme, že zvýšení debetní sazby je menší než nárůst sazby kreditní. Jestliže v systému bez povinných rezerv by se objem vkladů neměnil, to jest $dD/dR_S = 0$, nelze určit znaménko následující derivace

$$\frac{dD}{dR_S} = \frac{(1 - \rho)l_S d_D - l_D d_S}{\Delta}$$

Ze vstupních předpokladů modelu kompetitivního bankovnictví lze snadno ukázat, že první součinitel v čitateli je kladný a druhý záporný. Objem vkladů (a půjček) tak může klesat nebo růst v závislosti na relativní velikosti parcíálních derivací poptávkové funkce půjček a nabídkové funkce vkladů.

Situace je znázorněna na grafu č. 2. Zřejmě nejzajímavější otázka je, co se stane s rozpětim úrokových sazeb při změně vnější sazby, R_S. Z podmínek nulového zisku víme, že rozpětí závisí na výši povinných rezerv a transakčních nákladech (x)

$$R_L - R_D = \rho R_L + x$$

Protože transakční náklady se pravděpodobně nemění se změnou vnější úrokové sazby ($dx/dR_S = 0$), je možné po algebraických úpravách zapsat změnu úrokového rozpětí při změně R_S jako

$$\frac{d(R_L - R_D)}{dR_S} = \rho \frac{dR_L}{dR_S} > 0$$

Jinými slovy, zvýšení R_S vede k růstu kreditních i debetních úrokových sazeb, což zvyšuje náklady příležitostí držby neúročených rezerv obchodní bankou. Banka získává zpět tyto náklady rozšířením rozpětí mezi R_L a R_D. Toto nám ukazuje kladné znaménko předchozí parcíální derivace a stejný výsledek jsme mohli vidět na grafu č. 2

$$|R^2_L - R^2_D| > |R^1_L - R^1_D|$$

(Lze si povšimnout, že při $\rho = 0$ by se rozpětí nezmenilo. Je tomu tak proto, že obě sazby jsou totožné.)

Z výše uvedených parcíálních derivací modelu je možné vyčíst, že rovnovážná kreditní úroková sazba musí být zvýšena více než vnější úroková sazba; a na-

4 Derivace zvolené endogenní proměnné podle proměnné exogenní získáme dosazením sloupec exogenní proměnné z pravé strany do příslušného sloupec na levé straně. Dále už jen spočítáme determinanty v čitatele (se substituovanými exogenními proměnnými) a jmenovateli. K odvození Cramerova pravidla srovnáv [Chiang 1984].

Změna povinných rezerv

Následující nástroj centrální banky, kterému se budeme věnovat, jsou povinné rezervy. Jsou obecně známé jako nástroj vysoce účinný, na druhé straně jako nástroj „neohrabaný“. Povinné rezervy se nepoužívají pro operativní, „doladovací“ zásahy monetární politiky. Na tomto místě nás ovšem bude zajímat především dopad na úrokové sazby a na celkový objem vkladů a půjček při jednotkové změně ρ.

Celkový diferenčiál systému simultánních rovnic podle R_i, R_D, D a ρ dává v maticovém zápisu

$$
\begin{pmatrix}
1 - \rho & -1 & 0 \\
- l_L & 0 & 1 - \rho \\
0 & -d_D & 1
\end{pmatrix}
\begin{pmatrix}
dR_i \\
dR_D \\
dD
\end{pmatrix}
=
\begin{pmatrix}
R_i \\
D \\
0
\end{pmatrix}
\begin{pmatrix}
\rho
\end{pmatrix}
$$

596
Můžeme proto formulovat tři výsledky komparativní statické analýzy. Nejprve vliv změny \(\rho \) na kreditní úrokovou sazbu

\[
\frac{dR_L}{d\rho} = \frac{D + (1 - \rho)d_D R_L}{\Delta} > 0
\]

Tato derivace je jednoznačně kladná a úrokové sazby z půjček vzrůstou. Pro depozitní úrokové sazby ovšem platí

\[
\frac{dR_D}{d\rho} = \frac{(1 - \rho)D + l_L R_L}{\Delta} \geq 0 \quad (?)
\]

Tato derivace je nezáporná, pokud první člen v čitateli je větší nebo roven členu druhému, tj. pokud platí \((1 - \rho)D > l_L R_L\). Tato podmínka je intuitivní, i když nemusí být splněna automaticky.

Pro vklady potom odvodíme

\[
\frac{dD}{d\rho} = \frac{[R_L l_L + (1 - \rho)D]d_D}{\Delta} > 0 \quad (?)
\]

Také v tomto případě je znaménko derivace nejisté a bude kladné jen v případě, že platí výše uvedená podmínka \((1 - \rho)D > l_L R_L\).

Grafické zobrazení výše uvedených parciálních derivací je uvedeno na grafu č. 3. Zvýšení míry povinných rezerv \(\rho \) vyžaduje zvětšení rozích mezi debetními a kreditními sazbami. Na obrázku je změna rozích úrokových sazeb ukázána jako

\[R_L^2 R_D > R_L^1 R_D \]

Graf č. 3 Rovnovážná situace při změně povinných rezerv
zvýšení kreditní sazby při nezměněné sazbě debetní a konstantním objemu vkladů. Graficky jsme zobrazili situaci \(\frac{dR_L}{dp} = 0 \) a \(\frac{dD}{dp} = 0 \).

Připomináme, že objem vkladů a výše depozitní úrokové sazby se může, ale nemusí měnit — na tomto místě předpokládáme, že \(D \) a \(R_D \) jsou neměnné. Naproti tomu je nepochybné, že vzrostlé úroková sazba z půjček (z \(R_i^L \) na \(R_i^L \)), a tím klesne objem půjček (z \(L^{1} \) na \(L^{2} \)), neboť při neměnných vkladech musí být „vytlačena“ část poptávaného objemu půjček. Nerezípující vklady jsou použity na vyšší povinné rezervy. Dalším, na grafu č. 3 potvrzeným, poznatkem předchozího modelu je rozšíření úrokového rozpětí.

Na tyto poznatky je možné se podívat i z aspektu vstupní podmínky nulového zisku: \(R_L (1 - \rho) - R_D = 0 \). Je-li výše depozitní sazby nezměněná, potom při neměnné \(R_D \) a větším \(\rho \) se nutně musí zvýšit kreditní úroková sazba. Pokud by k takovému přizpůsobení nedošlo, byla by narušena podmínka nulového zisku. Obchodní banky by se dostaly do ztráty. Naopak, při poklesu povinných rezerv by se vytvořila situace nevyužitého zisku a její odstraňování je inherentním znakem kompetitivních systémů.

Jaký je klíčový závěr této varianty modelu kompetitivního bankovnictví? Změna povinných rezerv zřejmě nebude mít podstatný dopad na objem vkladů, a tudíž neovlivní ani objem peněžní zásoby. Jediný nesporny dopad bude na objem půjček, které poklesnou v důsledku své vyšší ceny.

Zvýšení efektivnosti bankovního systému

Další zajímavou otázkou je, jaký dopad na peněžní zásobu, půjčky a úrokové sazby budou mít finanční inovace, které sniží transakční náklady (značené jako podíl na vkladech \(xD \), resp. jako \(x \) v podmínce nulového zisku). Mezi náklady patří mzdové náklady, náklady na zpracování řeků a podobné. Příkladem finanční inovace snižující náklad mohou být například peněžní (hotovostní) automaty, které sniží mzdové náklady. Podobným příkladem může být zavedení platebních karet, které vytlačí z oběhu bankovky, a tudíž sniží náklady uchovávání a přepravy hotovosti v bankovním systému.

Ve stejném pořadí jako u předchozích variant se nejprve podíváme na vliv změny jednotkových transakčních nákladů na kreditní úrokovou sazbu

\[
\frac{dR_L}{dx} = \frac{(1 - \rho)d_D}{\Delta} > 0
\]

Tato derivace je jednoznačně kladná a úrokové sazby z půjček při poklesu transakčních nákladů určitě poklesnou. Podobně odvodíme pro depozitní úrokové sazby

\[
\frac{dR_D}{dx} = \frac{l_i}{\Delta} < 0
\]

Tato derivace je záporná a naznačuje nepřímo závislost mezi transakčními náklady a úroky z vkladů. Úroková sazba z vkladů při poklesu \(x \) roste. Obě předchozí závislosti jsou intuitivně pochopitelné — nižší transakční náklady povedou ke zmenšení rozpětí úrokových sazeb, kterým si banky kryjí své náklady. Nižší rozpětí musí být nějakým způsobem rozděleno mezi dlužníky a věřitele banky: dlužníci budou platit menší kreditní sazby \(R^L_i \) a věřitelé ziskají vyšší debetní sazby \(R^D_i \).

Za jistých okolností nemusí ke změně debetních sazeb dojít. Je tomu tak v případě, že změna implicitního úroku (služeb) z vkladů je dostatečná ke zvýše-
ní nabídky depozit. Takovým příkladem může být zavedení platebních karet, které mají podobu implicitního úroku placeného majiteli vkladu. Nabídka vkladů je potom funkci

\[D = d(R_D, R_S, \text{tech}) \]

kde tech je implicitní výnos z titulu služeb nabízených jako součást vkladů. Samotný fakt nabídky těchto služeb bankou zajistí růst depozit bez nutnosti změny \(R_D \) nebo \(R_L \).

Pro vklady potom odvodíme očekávaný výsledek

\[\frac{dD}{dx} = \frac{l_L d_D}{\Delta} < 0 \]

kde nepřímá závislost říká, že vklady s poklesem \(x \) porostou.

Tyto poznatky si můžeme ověřit na grafu č. 4. Pokles transakčních nákladů znamená posun nabídkové křivky (D) směrem ven na D'. Intuitivním vysvětlením je, že obchodní banky si mohou dovolit návratníci nižší úrokovou sazbu z vkladů, protože menší rozvětění \(R_L \) a \(R_D \) může být pokryto menším objemem vkladů. Jak velké je rozvětění, které zajišťuje splnění podmínky nulového zisku? Z podmínky nulového zisku (1) víme, že

\[R_L - R_D = x + \rho R_L \]

a nižší transakční náklady tak snižují úrokové rozvětění třem cestami: (a) přímo, přes nižší \(x \), (b) nepřímo, snižením kreditní úrokové sazby, (c) nepřímo, zvýšením úrokové sazby z vkladů.

Je možné uzavřít, že jakékoli zvýšení efektivnosti bankovního systému povede velmi pravděpodobně k rozšiření nabídky vkladů i peněžní zásoby. Tato předpo-
věď se potvrdila v USA a v západní Evropě v průběhu 70. a 80. let, kdy byla do života uvedena řada finančních inovací. Finanční inovace, tj. nabídka nových finančních produktů, jako jsou depozitní certifikáty nebo rozšíření služeb sporozší.-ra, se významnou měrou podílely na zvýšení míry úspor v Československu po jejich relativně prudkém poklesu v roce 1990.

Zvýšení rizikovostí bankovních půjček

Jednou z možných variant modelu kompetitivního bankovnictví je rozběr vlivu rizikovostí bankovních půjček. Obchodní banky budou hodnotit riziko jednotlivých půjček v závislosti na insolvenčních ztrátech a úpadku dluhovení, jak jakým danými faktory nezajímají se proti větší možnosti ztrát z insolvenčních vytvoření volných rezerv.

Označme si rizikovost půjček jako směrodatnou událost jejich výnosu, σ. Upravit je nutné děli rovnice v našem modelu: podmínku nulového zisku a nabídka vkladů. V prvním případě je vždy intuitivně nutné zvětšení mezery mezi vklady a půjčkami, které vede k vytvoření volných rezerv, f. Vliv na nabídku vkladů je už méně zřejmý. V modelu ovšem platí identita

$$L = (1 - \rho)D$$

a je možné přecházet od nabídky vkladů k nabídce půjček.

Formálně se jedná o úpravu podmínky nulového zisku (1)

$$R_L(1 - \rho) = R_D + f\sigma \tag{1'}$$

kde obchodní banka drží nejen povinné rezervy ρ, ale i volné rezervy f. Volné rezervy nechť jsou pro zjednodušení násobkem rizikovostí půjček. Směrodatná odchylka půjček, σ, vstupuje i do funkce nabídky vkladů (3)

$$D = d(R_D, R_S, \sigma) \tag{3'}$$

kde platí pro parciální derivaci nabídkové funkce vkladů $d_s < 0$. V maticovém zápisu při změně rizikovosti σ dostáváme model v tvaru

$$
\begin{pmatrix}
(1 - \rho) & -1 & 0 \\
-\rho & 0 & 1 - \rho \\
0 & -d & 1
\end{pmatrix}
\begin{pmatrix}
dR_L \\
dR_D \\
D
\end{pmatrix} =
\begin{pmatrix}
f \\
0 \\
1
\end{pmatrix}
$$

Nejprve se podívejme na vliv změny rizikovosti půjček na kreditní úrokovou sazbu

$$\frac{dR_{UL}}{d\sigma} = \frac{(1 - \rho)(fd_D - 1)}{\Delta}.$$

Tato derivace je nejednoznačná a kreditní úrokové sazby při zvýšení rizikovosti půjček mohou růst nebo klesat. Přesněji řečeno, kreditní úrokové sazby porostou, bude-li platit $fd_D > 1$; v opačném případě poklesnou. Protože d_D je fixní parametr, vše závisí na velikosti volných rezerv (f), které banka vytvoří, bude-li očekávat zvýšení σ. Racionální je očekávat růst kreditních úrokových sazeb, což ukáže na příslušném obrázku. Podobně odvodíme pro depozitní úrokové sazby

$$\frac{dR_D}{d\sigma} = \frac{-(1 - \rho)^2 + fL}{\Delta} < 0.$$
Tato derivace je záporná a úroková sazba z vkladů při zvýšení σ klesá. Tato závislost nemusí být intuitivně pochopitelná na první pohled, má ovšem svou logiku: větší rizikovost povede ke snížení úrokových sazeb z vkladů a ke zvětšení rozpětí úrokových sazeb, kterým si banky kryjí své náklady.

Pro vklady potom odvodíme opět nejednoznačný výsledek

$$\frac{dD}{d\sigma} = \frac{(fd_D - 1)l_L}{\Delta}$$

který nám řiká, že vklady s růstem σ poklesnou, bude-li fd_D větší než 1. Obecně je uvedená derivace přirozeně neurčitelná.

Tyto poznatky si můžeme ověřit na grafu č. 5. Povšimněme si, že křivky se nemění, mění se ovšem rozpětí obou úrokových sazeb, R_L a R_D. Ekonomické vysvětlení je jednoduché. Obchodní banka bude přesvědčena o větším riziku půjček a bude se snažit omezit jejich rozsah, resp. zvýšit volné rezervy, které by pokrýly případné náklady nelikvidity banky. Oba procesy probíhají souběžně. Aby banka snížila objem vkladů, musí snížit depozitní úrokovou sazbu, a tím „odradit“ vkladatele. Současně ovšem musí snížit úrokové sazby z půjček o méně, aby si pokryla své úrokové rozpětí, kterým financuje volné rezervy. Hybnou silou změn zůstává podmínka nulového zisku.

Vzhledem k nejednoznačnosti derivací je možné nové rovnovážné body zakreslit prakticky kamkoli. Jedinou jednoznačně určenou změnou je pokles debetní úrokové sazby. Zvolili jsme proto rovnovážné body, které jsou snadno intuitivně přijatelné. Změnu sklonu křivek L a D (tj. měněním hypotetických parametrů d_D a l_L) je možné dosáhnout v zásadě libovolných rovnovážných kreditních sazeb a objemu vkladů (půjček).
Bude-li křivka poptávky po půjčkách \((L) \) nekonečně elastická (horizontální), potom by změna kreditní úrokové sazby byla nulová a dopad by byl výlučně na objem nabízených vkladů \((půjček) \). Podobně je možné odvodit, že změna objemu vkladů závisí na sklonu křivky nabídky vkladů, tj. na velikosti parametru \(d_0 \). Při vertikální křivce \(D \), tj. neelastické nabídice vkladů \((d_0 = 0) \), se všivec nezmění jeho objem a podmínka nulového zisku bude obnovená přes výraznější rozšíření úrokového rozpěti \(R_t \) a \(R_p \).

Zvýšení poptávky po půjčkách

Další variantou modelu kompetitivního bankovnictví je autonomní změna poptávky po půjčkách. Alternativní interpretací je kontrola nabídky půjček ze strany centrální banky — například prostřednictvím limitu bankovních půjček. Možným scénářem této varianty je exogenní zvýšení poptávky po půjčkách ve smyslu keynesiánského „živočišného ducha“: optimismus podnikatelů ohledně budoucího hospodářského vývoje povede ke zvýšení poptávaného množství bez ohledu na úrokovou sazbu.

S růstem úrokové sazby není obchodní banka ochotna zvyšovat objem poskytovaných půjček. Efekt zvýšené kreditní sazby \((R_t) \) je kompenzován zvýšením rizikovosti půjček \((\sigma) \). Připomínáme, že v modelu kompetitivního bankovnictví není funkce nabídky půjček explicitně formulována. Je ovšem implicitně vyjádřena v nabídkové funkci vkladů a v podmínce nulového zisku. Jak ukázali Stiglitz a Weiss [1981], přidělování úvěru a interní omezení expozice půjček je konzistentní s kompetitivní strukturou obchodního bankovnictví, resp. splňuje podmínku nulového zisku.

Jako tyto zásahy do kompetitivního systému modelovat? Druhý scénář, tj. situace přidělování úvěru, je podstatně komplikovanější a vyžaduje definování zpětné zakřivené nabídkové křivky. Soustředíme se proto na variantu autonomního zvýšení poptávky po půjčkách — je tomu tak nejen z důvodu jednoduchosti, ale i proto, že znamená derivaci modelu je stejná. Rovnicí poptávky po půjčkách (2) jsme proto upravili o parametr „posunu“, bliží neurčenou fiktivní promeňnou \(Z \)

\[
(1 - \rho)D = L = l(R_t, R_N, Z)
\]

Změna \(Z \) nezmění sklon křivky, pouze ji posune od nebo k začátku.

Výsledky komparativní statické analýzy získáme stejným způsobem jako v předchozích případech. Nejprve se podíváme na vliv změny poptávky po půjčkách na kreditní úrokovou sazbu

\[
\frac{dR_t}{dZ} = \frac{1}{\Delta} > 0
\]

Tato derivace je jednoznačně kladná a úrokové sazby z půjček při zvýšení poptávky zcela logicky vzrostou. Podobně odvodíme pro depozitní úrokové sazby.
\[
\frac{dR_D}{dZ} = \frac{1 - \rho}{\Delta} > 0
\]

kladné znaménko jejich derivace. Úrokové sazby z vkladů musejí vzrůst, aby byla získána nová depozita potřebná ke krytí povinných rezerv (\(\rho\)). Očekávaný je i následný dopad na objem rovnovážné výše vkladů

\[
\frac{dD}{dZ} = \frac{d_D(1 - \rho)}{\Delta} > 0
\]

kde kladné znaménko ukazuje, že vyšší depozitní úrok skutečně přilákal nové vklady.

Uvedenou situaci jsme znázorobili graficky na grafu č. 6. Povšimněme si především toho, že autonomní změna poptávky po půjčkách posouvá poptávkovou křivku směrem ven (z \(L\) na \(L'\)), přičemž nabídková křivka vkladů zůstává nezměněná. Ekonomické subjekty jsou ochotny platit za jakékoli množství půjček vyšší úrokovou sazbu (z \(R^1_L\) na \(R^2_L\)), než byly ochotny platit v předchozím období. Obě úrokové sazby se zvyšují, depozitní sazba potom proto, že je nutné přilákat nové vklady nezbytně k pokrytí vyšších povinných rezerv.

Co nám tyto závěry říkají o druhém „scénáři“, tj. o situaci, kdy obchodní banka zvýší interní limit poskytovaných půjček? Je možné se domnivat, že bude zachováno zvýšení depozitní úrokové sazby a dojde tedy i ke zvýšení objemu vkladů.

Graf č. 6 Vliv autonomního zvýšení poptávky po půjčkách na rovnovážnou situaci
Je tomu tak proto, že i v této variantě modelu může být nabídka vkladů zvýšena pouze díky vyšším úrokovým sazbám nabidnutým spořitelům. Uvolněním limitu poskytovaných půjček, resp. menším „přidělováním úvěru“ dojde i k zvýšení objemu půjček.

Az dosud je situace totožná s autonomním růstem poptávky po půjčkách. Liší se v následujícím: Stav přidělování úvěru je obecně vyvoláván nedůvěrou banky v návratnost projektů nabízených jednotlivými dlužníky (σ v předchozí variantě modelu). Změní-li obchodní banka názor na duvěryhodnost klientů, například z důvodu vzestupné fáze hospodářského cyklu, potom by měly být výsledky v začátku totožné s předchozím „scénářem“.

\[\pi = R_l \cdot L + \zeta L' - R_d \cdot D \cdot xD - L' \]

kde \(L' \) jsou půjčky insolventních dlužníků;
\(\zeta \) je podíl na ztrátě banky z insolventních půjček, který bude hradit stát.

Zřejmě platí, že \(0 < \zeta < 1 \). Stát tedy uhradí část ztráty, nikoli ztrátu celou.

Jak se změní chování banky? Je logické očekávat, že banka zareaguje menší nabídka půjček. Zvýší sice depozitní sazbu a objem přijatých vkladů, ovšem objem půjček bude nižší o míru volných rezerv (\(\lambda = f/D \)) a rozpětí úrokových sazeb bude větší. Bude tedy platit následující identita půjčky — vklady vyplývající z rozvahy banky

\[L = (1 - \rho - \lambda)D \]

Vliv limitu kreditních úrokových sazeb

Model kompetitivního bankovnictví nám dovoluje i následující rozšíření, které popisuje situaci blízkou současné československé ekonomice. Nechť je ustanoven limit kreditních úrokových sazeb, který vede k převisku poptávky po půjčkách. Je-li strop úrokové sazby aktivní podmínkou, je narušena podmínka nulového zis-
ku a obchodní banka se bude nalézat mimo dlouhodobé optimum. Co se stane, bude-li odstraněn limit úrokových sazeb? Takovým zásahem může být například zrušení maximální odchylky od diskontní sazby.

Formálně se zabyváme zvýšením kreditní úrokové sazby \(R_t \). Je zřejmé, že musíme přeformulovat nás maticový zápis, neboť úroková sazba z půjček byla dosud na levé straně jako závisle proměnná. Nahradíme ji vnější úrokovou sazbou (sazbou z krátkodobých státních obligací), protože v momentě, kdy je regulována úroková sazba z půjček, výnos státních obligací se stává závisle proměnnou. Vnější úroková sazba \(R_s \) se stává endogenní proměnnou, neboť státní orgány (tj. ministerstvo financí nebo centrální banka) nemohou kontrolovat obě sazby — vnější a kreditní — zcela nezávisle na sobě. Celkový diferenciál dává v maticové podobě při změně úrokové sazby z půjček \(R_t \)

\[
\begin{pmatrix}
0 & -1 & 0 \\
-l_s & 0 & 1 - \rho \\
-d_s & -d_P & 1
\end{pmatrix}
\begin{pmatrix}
\frac{dR_s}{dR_t} \\
\frac{dR_t}{dR_t} \\
\frac{dD}{dR_t}
\end{pmatrix}
= \begin{pmatrix}
1 - \rho^2 \\
l_t \\
0
\end{pmatrix} \frac{dR_t}{dR_t}
\]

Matice na levé straně má ovšem odlišný determinant. Potřebujeme především znát jeho znaměnko, které je jednoznačně záporné.

\[\Delta^* = d_s(1 - \rho) - l_s < 0\]

Nyní se už můžeme podívat na vliv změny kreditní úrokové sazby \(dR_t \) na vnější úrokovou sazbu

\[
\frac{dR_s}{dR_t} = \frac{d_P(1 - \rho)^2 - l_t}{\Delta^*}
\]

Tuto derivaci není možné jednoznačně určit, protože první člen v čitateli je kladný a druhý je záporný. Dopad na vnější sazbu proto není možné určit bez znalostí vlastních úrokových koeficientů poptávky po půjčkách \(l_t \) a nabídky vkladů \(d_P \). Podobně odvodíme pro depozitní úrokové sazby

\[
\frac{dR_D}{dR_L} = \frac{-d_s(1 - \rho)^2 + l_s(1 - \rho)}{\Delta^*} = -(1 - \rho) < 0
\]

jednoznačně záporné znaměnko derivace. Úrokové sazby z vkladů musejí poklesnout, aby byla v systému odstraněna depozita potřebná ke krytí povinných rezerv \(\rho \) při předchozí regulované výši půjček. Očekávaný je i následný negativní dopad na objem rovnovážné výše vkladů

\[
\frac{dD}{dR_t} = \frac{-d_s l_t - l_s d_P(1 - \rho)}{\Delta^*} < 0
\]

dké záporné znaměnko ukazuje, že nižší depozitní úrok vedl k poklesu vkladů a půjček. (Oba členy v čitateli jsou záporné.)

Pokusme se nyní o ekonomickou interpretaci těchto výsledků. Měl by k němu napomoci graf č. 7. Bude-li obchodním bankám umožněno zvýšit své úrokové sazby na rovnovážnou úroveň \(z \ R_t^1 \) na \(R_t^2 \), potom v kompetitivním systému, kde existoval převz poptávky po půjčkách a omezení výše \(R_L \) bylo aktivní, poklesne

5 Toto tvrzení platí opět jen v tom případě, že v ekonomice nedochází k přidělování úvěru. Potom opuštění limitu kreditních úrokových sazeb nemusí nutně vést ke změně rovnovážné úrokové sazby z půjček ani ke změně jejich objemu.
objem vkladů jako důsledek nižší úrokové sazby z vkladů. Tato situace by — v jistém rozsahu — nastala i tehdy, kdyby byla původně zachována podmínka nulového zisku a depozitní úroková sazba byla taková, že úrokové rozpětí by krylo náklady banky. Nyní se rozpětí R_L a R_D zvětšuje ještě více, což je nutné pro důsledné podmínky nulového zisku při nižším objemu půjček.

Změna monetární báze

Zbyvá poslední otevřená otázka: Co se stane v našem modelu, bude-li centrální banka měnit objem monetární báze? V modelu peněžního multiplikátoru by došlo k multiplikativnímu nárůstu peněžní zásoby, tj. hotovosti a vkladů veřejnosti.

⁶ Platnost tohoto tvrzení je možné dokázat na příkladu USA, kde limity hypotečních úrokových sazeb uvalené na spořitelny v 50. a 60. letech vedly v konečném důsledku k poklesu nabídky hypoték a k finančním obtížím spořitelén.
Z modelu kompetitivního bankovnictví je patrné, že monetární báze do modelu nevstupuje přímo. Úvahu o vlivu exogenního zvýšení objemu bankovek v oběhu je však možné formulovat jiným způsobem.

Držba hotovosti v rukou veřejnosti je behavorální veličinou a standardně se předpokládá, že s dlouhodobého hlediska je poptávka po reálné hotovosti \(b^* = B/P \) funkci důchodu \(Y \), úrokové sazby \(R \) a především transakčních zvykovostí veřejnosti \(T \)

\[
b^* = \alpha + \beta_1 (Y/P) + \beta_2 (R/P) + \beta_3 T
\]

které jsou vyjádřeny v reálných veličinách. Z krátkodobého pohledu je optimální držba hotovosti závislá na nákladech přizpůsobení aktuální držby dlouhodobě optimální veličině. Nazveme-li tyto náklady \(K \) a dlouhodobě optimální výši objemu hotovosti \(b^* \), potom může mít nákladová funkce například tvar\(^1\)

\[
K = \kappa_1 [b^* - b_t]^2 + \kappa_2 [b_t - b_{t-1}]^2
\]

kde \(\kappa \) jsou parametry nákladové funkce.

Ekonomické subjekty budou pocítovat dva typy nákladů, budou-li chtít přizpůsobit objem hotovosti optimální velikosti. Za prvé to budou náklady nerovnováhy. Protože drží jinou než optimální hotovost \(b^* \), získávají méně výhod, než by získaly za ideálních okolností. Tyto náklady mají podobu ušlého úroku, když jsou reálné hotovostní zůstatky větší než optimální, \(b_t > b^* \), resp. podobu nemožnosti uskutečňovat transakce, když \(b_t < b^* \). Za druhé, pocití přizpůsobovací náklady, tak jak mění svou držbu hotovosti v čase \((b_{t-1} \text{ na } b_t)\). Tyto náklady budou mít podobu vynucených transakcí nebo podobu ztráty času při nadbytečných cestách do bank.

Reakce obchodních bank na větší zásobu hotovosti je nejednoznačná. V modelu peněžního multiplikátoru by banky získaly přebytečné rezervy (větší než povinné) a tyto rezervy by se okamžitě snažily rozpůjčit. Tato úvaha neplatí v modelu kompetitivního bankovnictví. Zvýšení rezerv (vkladů) totiž není doprovázeno adekvátním zvýšením poptávky po půjčkách. Bude-li navíc platit důchodová neutralita zvýšení hotovosti \((dy/db = 0)\), potom k žádnému zvýšení vkladů nedoje. Do banky uložená hotovost bude spotřebována ve formě bezhotovostních výdajů. Zvýšení monetární báze bude mít měl vliv pouze za podmínky, že větší hotovost vede k většímu bohatství, a tudíž k větší nabídce vkladů a větší poptávce po pe-

\(^1\) Druhé mocniny jsou zde proto, aby záporná nerovnovážná hodnota v jednom případě nekompensovala kladnou nerovnovážnou hodnotu. Druhé mocniny rovněž „penalizují“ větší odchytku oproti odchylicie menší.

\(^2\) Jev, kdy větší peněžní zásoba nebo větší hotovost vedou ke zvýšení spotřeby, hýba někdy názvány Pigovovým efektem nebo efektem bohatství. Zpravidla se předpokládá, že tento efekt vyprchá po krátké době.
něžná zásobě. Zvýší se nabídka vkladů \((D)\), a tudiž poklesne depozitní sazba \(R_D\). Ani tento fakt ovšem neřeší sám o sobě otázku chybějící poptávky po půjčkách.

Pro dosažení nového rovnovážného bodu na vyšší úrovní vkladů (peněžní zásoby) a půjček by muselo dojít k současnému snížení kreditních úrokových sazeb a autonomnímu zvýšení nabídky vkladů. Jinými slovy, domácnosti by nabízely více vkladů při jakékoli úrokové sazby z vkladů (pokles z \(R_L^1\) na \(R_L^2\)). Formálně je tato situace zachycena na grafu č. 8, kde se křivka nabídky vkladů posouvá z \(D\) na \(D'\). Vidíme, že klesají obě úrokové sazby. Logický řežec je následující: Větší objem nabízených vkladů sníží jejich úrokovou sazbu \(R_D\) a podmínka nulového zisku tlačí obchodní banku ke snížení kreditní úrokové sazby. Pokud by \(R_L\) ne-klesla, obchodní banky by dosahovaly vyššího než normálního zisku, došlo by ke vstupu nových bank do odvětví a nižší ceny by opět stlačily zisk na nulovou úroveň. Velikost úrokového rozpětí je tak zachována na původní úrovní. Zvyšuje se poptávka po půjčkách a nový rovnovážný bod je dosažen při větším objemu půjček i vkladů.

Scénář očekávaný podle modelu peněžního multiplikátoru se naplní pouze tehdy, pokud neplatí předpoklad „helikoptérových peněz“. Vklady se zvýší tehdy, pokud větší monetární báze zvýší bohatství domácností a ty budou ochotny udržovat větší objem vkladů při nezměněných, resp. nižších debetních úrokových sazbách.

Některé poznatky z modelu kompetitivního bankovnictví

Model kompetitivního bankovnictví není jen vhodným evišením z maticové algebry. Za přijatelných zjednodušení nám dovoluje modelovat realistické situace
monetárního sektoru tržních ekonomik. Zřejmě nejvýznamnějším poznatkem zůstává, že centrální banka, resp. monetární instituce mohou jen v omezeném rozsahu manipulovat velikostí peněžní zásoby (například změnou úvěrových limitů, zvýšením efektivnosti obchodního bankovníctví a — za jistých okolností — změnou monetární báze). Centrální banka by ovšem, podle tohoto modelu, měla mít celkově přijatelnou volbu nástrojů působících na kreditní i debetní úrokové sazby.

LITERATURA

SUMMARY

Monetary Targets in the Model of Competitive Banking

This article is a description of the model of competitive banking. This model enables within plausible simplifications to present realistic situations of monetary sector in market economies. On the base of this model the author concludes that the most significant result is that central authority can influence the level of money supply to limited extent only. It can do so by a change in ceilings, increasing effectiveness of commercial banking, and by changing the monetary base. According to this model the central bank should have reasonable choice of instruments influencing interest rates in case of deposits as well as in case of lending.