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Abstract 

We propose a dynamic structural model of credit risk of multiple loan portfolios. In line 
with Merton, Vasicek and Pykhtin, we assume that a loan defaults if the assets of the debtor 
fall below his liabilities, and the subsequent loss is determined by the collateral value. For 
each loan, the assets, liabilities and the collateral value each depends on a common and 
an individual factor. By applying our model to two nationwide United States loan portfolios 
with real estate collateral, we demonstrate its considerable predicting power and show 
that, similarly to calculations under prudential regulation, it can be used within financial 
institutions to measure credit risk under various macroeconomic situations and different 
probability levels. This makes the model usable for quantification of loan loss allowances 
under IFRS91 or for stress tests of credit risk. 

1. Introduction 
At the end of the last decade, when the financial crisis fully hit the United States 

(US) economy, losses from real estate loans in the US increased ten times, compared 
with the period of economic growth ending in 2007.2 A natural challenge is to study 
the causes of crises of this kind to avoid them in the future, namely to construct realistic 
and practically usable models of credit risk. No doubt that these models have to 
consider the interconnectedness of different sources of credit risk and the 
macroeconomic environment. The aim of this paper is to introduce such a model, 
describing default rates (usually used to predict the probability of default, PD) and 
losses given default (LGD) of multiple loan portfolios secured by collaterals. To the 
best of our knowledge, there is a very limited amount of literature on the specific 
combination of model features proposed in our paper (i.e. combining PD, LGD, 
macroeconomic factors, their interconnectedness and dynamics).  

The model we propose is a structural factor one, based on the approaches of 
Merton (1974), the author of the first factor model, Vasicek O. A. (2015a; 2015b), who 
first described the distribution of default rate within the model, and Pykhtin (2003), 
who incorporated the collateral value. Although there are different possible ways of 
building factor models, see, for instance, Frye (2000), Jimenez & Mencia (2009), 

 
1 IFRS 9 is an International Financial Reporting Standard (IFRS) addressing the accounting for financial 
instruments 
2 According to the delinquency and charge-off rates published by the United States Federal Reserve 
System (FED) 
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Frontczak & Rostek (2015) or Witzany (2011), we stick to the Merton-Vasicek-
Pykhtin concept of explaining defaults and LGD at micro level. In particular, the 
default happens when resources fall below a certain threshold, and the subsequent loss 
derives itself from the collateral price. Specifically, we assume that, for each loan, the 
log-assets, log-liabilities and log-collateral price are each a sum of an individual and a 
common factor. As, in a large portfolio, the individual factors diversify out, the PDs 
and LGDs depend only on the common factors, the dynamic of which is described by 
a linear vector model.  

Multiple homogenous loan portfolios may be simultaneously treated in our 
model. The homogeneity of a portfolio means that the (joint) distributions of the assets, 
liabilities, and the collateral prices of individual loans are identical. The distributions 
may, however, differ between portfolios, each depending on its own common factors 
and having its own variability (standard deviations of the individual factors).  
Our model is easily manageable in the sense that all its parameters except the variance 
of the collateral individual factor are estimated jointly. Moreover, analytical formulas 
exist for distributions of PD and LGD forecasts and confidence intervals, which, 
among other things, enables to express unbiased point forecasts analytically for both 
PDs and LGDs. 

The model is general in the sense that the common factors may follow an 
arbitrary Vector Autoregression (VAR).3 In the empirical part, we use a Vector Error 
Correction Model (VECM) style estimation, because it’s still general and capable of 
handling integrated variables, which the factors themselves appear to be. 

Last but not least, our model has a rather surprising theoretical implication 
which is inter-portfolio diversification of idiosyncratic risk. To be specific, there is no 
difference whether all the individual factors are unrelated or whether individual factors 
of loans are correlated between portfolios; the latter could happen, for instance, when 
people have mortgages and credit cards from the same bank. To be more exact, the 
losses of the portfolios may be stochastically dependent because of the dependence of 
their common factors, but the joint distribution of the losses would be the same, 
whether the individual factors of the loans are correlated or not. 

We demonstrate the applicability of our approach by applying it to the 
nationwide residential and commercial US real estate loan portfolios. Several US 
macroeconomic indicators serve as explanatory variables, namely GDP, commercial 
and residential house price indices, FED base interest rate and unemployment. In 
explaining PDs and LGDs of both portfolios, our model is statistically significant. 
Notably, it predicts PDs significantly better than the LGDs, the factors of which are, 
on the other hand, cointegrated with the macro variables. This suggests that both PDs 
and LGDs are linked to the macroeconomic environment, each, however, in a different 
way: while there is some inertia in default rate, the severity of losses is interconnected 
with the current state of economics.  

Not surprisingly, the losses of both the examined portfolios are highly related. 
They display similar trends over time and the correlations between the increments of 
their underlying factors are positive. Moreover, they are interconnected beyond 
explanation by their history and the exogenous variables. To demonstrate this, we show 

 
3 In principle, any linear model with normal distribution of forecasts may be used, and the requirement of 
normality may be relaxed in exchange for loosing analytical formulas for PD and LGD forecasts. 
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that the full model is highly statistically significant in comparison with its version 
without mutual relations of the portfolios. 

Finally, we show that the amount of hypothetical economic capital 
recommended by our model for both portfolios can be compared to that resulting from 
the Internal Rating Based (IRB) regulatory approach, which allows to use the model 
as an internal credit risk model for calculation of loan loss allowances, economic 
capital and stressed levels of credit risk under adverse macroeconomic conditions 
within the Internal Capital Adequacy Assessment Process (ICAAP). 

There are many different works modelling interconnectedness of credit risk and 
macroeconomic environment. For instance, Hamerle et al. (2011) showed, studying a 
bond portfolio, that it is necessary to consider changes in the macroeconomic 
environment, and they compare their point-in-time multi-factor credit risk model with 
the usual through-the-cycle approach. Similarly, Sommar & Shahnazarian (2009) used 
the vector error correction model to estimate the dependency of expected default 
frequency of a portfolio of nonfinancial listed companies on several macroeconomic 
factors, from which they found the interest rate to be the most influential. The influence 
of the interest rate is in line with the findings of Virolainen (2004), who also model a 
dependency of the credit risk on the key macroeconomic variables. None of these 
models, however, simultaneously treats PDs and LGDs of more portfolios. 

The model closest to ours is that of Pesaran et al. (2006), which also treats losses 
of multiple portfolios (of corporate loans in their case) in dependence on a 
macroeconomic Global Vector Autoregressive (GVAR) model.  Similar to us, a loan 
defaults if the log-value of a debtor’s assets falls below a certain threshold. In contrary 
to us, LGD is constant. Moreover, their model is applied to a large dataset of 
international portfolios, which are heterogeneous by geography, credit quality and 
legal framework, on top consisting of loans with different ratings.  

Apart from the different macroeconomic sub-model and constant LGD, the 
model of Pesaran et al. (2006) is technically equivalent to ours, with the conditional 
mean of the debtor’s return replacing our common factor and the difference of the 
return and its conditional mean replacing our individual factor. In both the models, the 
common factors stand on the left hand side of a linear (macroeconomic) model. Thus, 
if we assume constant factors underlying LGD, use a GVAR model for the factors and 
apply bucketing, i.e. assume separate portfolios for loans with different ratings (Gordy, 
2003), we can emulate their model by ours. 

Besides explicit modelling of LGD and analytic formulas for PD and LGD 
distributions, the main advantage of our model in comparison with Pesaran et al. 
(2006) is that our model integrates its sub-model describing the factors with the part 
which transforms the factors into the losses more closely. While they estimate 
parameters of both the sub-models separately, we estimate them jointly.4 Moreover, 
the number of parameters in our model is lower; there is no need to estimate the 
variance of the individual factor underlying PD, because it is combined with the 
parameters of the sub-model for factors. Contrary to them, we give analytic formulas 
for the predictions and confidence intervals of the losses. Last but not least, the 
dynamics of PDs is endogenous in our model with non-trivial dependence of the 

 
4 The only exception is the variance of the individual collateral factor, which, however, the other model 
does not treat at all. 
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corresponding factors on their past, while it is exogenous, estimated only by averaging 
of the past values, in Pesaran et al. (2006).  

On the other hand, we cannot compete with the empirical results of Pesaran et 
al. (2006). While they adopt a well-established GVAR model for the international 
macroeconomic environment, we technically construct an ad hoc one for a single 
economy (for which, as we believe. that VECM is sufficient). While Pesaran et al. 
(2006) bring valid empirical results, we regard our empirical part rather as an 
illustration of our approach. Nevertheless, even these limited empirical results 
demonstrate a promising potential of our approach because, despite the simplicity of 
our macroeconomic sub-model, it gives quite meaningful results. It should be also 
noted our empirical study is rather preliminary and it serves mainly as a demonstration 
of our approach, which can, in principle, be used with any other macroeconomic VAR 
sub-model including a GVAR one.  
The paper is organized as follows. In the next section, we provide a description of the 
model´s methodology. In Section 3, we describe the dataset used. Section 4 describes 
our empirical analysis and its results. Finally, Section 5 concludes. More technical 
parts of the text and some detailed empirical results are postponed into the Appendix. 

2. The Model 
Similar to Vasicek O. A. (2015a), we say that a loan defaults when 

𝐴𝐴 < 𝐵𝐵 (1) 

where 𝐴𝐴 is the value the debtor’s (hypothetical) assets and 𝐵𝐵 is the value of his debts. 
Here, 

𝐴𝐴 = exp{𝑌𝑌𝐴𝐴 + 𝑍𝑍𝐴𝐴},  𝐵𝐵 = exp{𝑌𝑌𝐵𝐵 + 𝑍𝑍𝐵𝐵}, (2) 

where  𝑌𝑌𝐴𝐴,𝑌𝑌𝐵𝐵  are factors, common to all the loans in the portfolio, and 𝑍𝑍𝐴𝐴,𝑍𝑍𝐵𝐵 are 
jointly normal individual factors.5 

The relative recovery is, in line with Pykhtin (2003), computed as 

𝑅𝑅 =
min(𝑃𝑃, 𝑝𝑝)

𝑝𝑝 = min(𝑝𝑝−1𝑃𝑃, 1)  𝑃𝑃 = exp{𝑋𝑋 + 𝐸𝐸}, (3) 

where 𝑝𝑝 is the outstanding principal of the loan, 𝑃𝑃 is the price of the collateral, 𝑋𝑋 is 
another common factor and 𝐸𝐸 is a normally distributed individual factor, independent 
of (𝑍𝑍𝐴𝐴,𝑍𝑍𝐵𝐵).6 

Now, consider an infinitely large portfolio of loans and define three important 
quantities: the default rate, usually called (conditional) probability of default (PD): 

 

 
5 In the credit risk literature, 𝐵𝐵 is usually assumed to be deterministic. If this is the case, then we can put 
𝑌𝑌𝐵𝐵 = log(𝐵𝐵) ,𝑍𝑍𝐵𝐵 = 0 without affecting our future results.  
6 Dependence could be assumed for the price of losing analytical expression for LGD, see Pykhtin (2003). 
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𝑄𝑄 = 𝑝𝑝lim# of loans→∞  
# of defaults in the portolio

# of loans in the portolio  (4) 

the loss given default, abbreviated as LGD:  

𝐺𝐺 = 𝑝𝑝lim# of loans→∞  
total loss of the portfolio

# of defaults  (5) 

and the charge-off rate (relative loss): 

𝐿𝐿 = 𝑝𝑝lim# of loans→∞  
total loss of the portfolio

# of loans  (6) 

Here, 𝑝𝑝lim denotes limit in probability. Not surprisingly, 

𝐿𝐿 = 𝑄𝑄𝐺𝐺. (7) 

(see Kallenberg, 2002, Corollary 4.5.) 
Assume further, that the portfolio is homogeneous in the sense that its loans have the 
same principal 𝑝𝑝 and their individual factors are independent between the loans. Then 
it follows that 

𝑄𝑄 = 𝜑𝜑(−𝑌𝑌),  𝑌𝑌 =
𝑌𝑌𝐴𝐴 − 𝑌𝑌𝐵𝐵

𝜌𝜌 , (8) 

where 𝜑𝜑 is a standard normal c.d.f. and 𝜌𝜌 is the standard deviation of 𝑍𝑍𝐴𝐴 − 𝑍𝑍𝐵𝐵, and 

𝐺𝐺 = ℎ(𝐼𝐼;𝜎𝜎),  𝐼𝐼 = 𝑋𝑋 − log𝑝𝑝,  ℎ(𝜄𝜄;𝜎𝜎)

= 𝜑𝜑(−
𝜄𝜄
𝜎𝜎)− exp{𝜄𝜄 +

1
2𝜎𝜎

2}𝜑𝜑(−
𝜄𝜄
𝜎𝜎 − 𝜎𝜎) 

(9) 

where 𝜎𝜎 is the standard deviation of 𝐸𝐸 (see Proposition 1, Appendix A.1. for the proof 
within a more general setting discussed below). Thanks to the strict monotonicity of 𝜑𝜑 
and ℎ (see Appendix of Gapko & Šmíd, 2012 for the latter), the correspondence 
between (𝑄𝑄,𝐺𝐺) and (𝑌𝑌, 𝐼𝐼) is one-to-one. 

Now consider 𝑛𝑛 homogeneous portfolios evolving in time and assume that the 
𝑗𝑗-th loan from the 𝑖𝑖-th portfolio defaults at time  𝑡𝑡  in the case that 𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡 < 𝐵𝐵𝑖𝑖,𝑗𝑗,𝑡𝑡, where 

𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡 = exp�𝑌𝑌𝑖𝑖,𝑡𝑡𝐴𝐴 + 𝑍𝑍𝑖𝑖,𝑗𝑗,𝑡𝑡
𝐴𝐴 � ,  𝐵𝐵𝑖𝑖,𝑗𝑗,𝑡𝑡 = exp�𝑌𝑌𝑖𝑖,𝑡𝑡𝐵𝐵 + 𝑍𝑍𝑖𝑖,𝑗𝑗,𝑡𝑡

𝐵𝐵 � ,  1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, 𝑗𝑗
≥ 1, 𝑡𝑡 ≥ 1, 

(10) 

and that the corresponding relative recovery is 𝑅𝑅𝑖𝑖,𝑗𝑗,𝑡𝑡 = min(𝑝𝑝𝑖𝑖,𝑡𝑡−1𝑃𝑃𝑖𝑖,𝑗𝑗,𝑡𝑡 , 1) where 𝑝𝑝𝑖𝑖 ,𝑡𝑡 is 
the outstanding principal and 

𝑃𝑃𝑖𝑖 ,𝑗𝑗,𝑡𝑡 = exp{𝑋𝑋𝑖𝑖,𝑡𝑡 + 𝐸𝐸𝑖𝑖,𝑗𝑗,𝑡𝑡},  1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, 𝑗𝑗 ≥ 1, 𝑡𝑡 ≥ 1. (11) 

Here, 𝑌𝑌𝑖𝑖𝐴𝐴,𝑌𝑌𝑖𝑖𝐵𝐵 ,𝑋𝑋𝑖𝑖 are general stochastic processes and, for each 𝑖𝑖, vectors 
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�𝑍𝑍𝑖𝑖,1,1
𝐴𝐴 ,𝑍𝑍𝑖𝑖,1,1

𝐵𝐵 ,𝐸𝐸𝑖𝑖,1,1�, �𝑍𝑍𝑖𝑖,1,2
𝐴𝐴 ,𝑍𝑍𝑖𝑖,1,2

𝐵𝐵 ,𝐸𝐸𝑖𝑖,1,2�, … (12) 

 
�𝑍𝑍𝑖𝑖,2,1

𝐴𝐴 ,𝑍𝑍𝑖𝑖,2,1
𝐵𝐵 ,𝐸𝐸𝑖𝑖,2,1�, �𝑍𝑍𝑖𝑖,2,2

𝐴𝐴 ,𝑍𝑍𝑖𝑖,2,2
𝐵𝐵 ,𝐸𝐸𝑖𝑖,2,2�, … (13) 

are Gaussian i.i.d. with (𝑍𝑍𝑖𝑖,𝑗𝑗,𝑡𝑡
𝐴𝐴 ,𝑍𝑍𝑖𝑖,𝑡𝑡𝐵𝐵 ) independent of 𝐸𝐸𝑖𝑖,𝑗𝑗,𝑡𝑡 . Note that we did not assume 

the independence of individual factors from different portfolios, so our model can 
handle the situations when different portfolios consist of the same subjects, having 
taken different types of loans. 

Analogously to the static case, we have 

𝑄𝑄𝑖𝑖,𝑡𝑡 = 𝑝𝑝lim 
# of defaults in 𝑖𝑖 − th portfolio at 𝑡𝑡 

#of loans in 𝑖𝑖 − th portfolio at 𝑡𝑡 = 𝜑𝜑(−𝑌𝑌𝑖𝑖 ,𝑡𝑡 ), 𝑌𝑌𝑖𝑖 ,𝑡𝑡

=
𝑌𝑌𝑖𝑖,𝑡𝑡𝐴𝐴 − 𝑌𝑌𝑖𝑖 ,𝑡𝑡𝐵𝐵

𝜌𝜌𝑖𝑖
, 

(14) 

 

𝐺𝐺𝑖𝑖,𝑡𝑡 = 𝑝𝑝lim 
total loss of  𝑖𝑖 − th portfolio at 𝑡𝑡 

#of defaults in 𝑖𝑖 − th portfolio at 𝑡𝑡 = ℎ�𝐼𝐼𝑖𝑖,𝑡𝑡;𝜎𝜎𝑖𝑖�,  𝐼𝐼𝑖𝑖,𝑡𝑡
= 𝑋𝑋𝑖𝑖,𝑡𝑡 − log𝑝𝑝𝑖𝑖,𝑡𝑡 , 

(15) 

 

𝐿𝐿𝑖𝑖 ,𝑡𝑡 = 𝑝𝑝lim 
total loss of  𝑖𝑖 − th portfolio at 𝑡𝑡 
#of loans in 𝑖𝑖 − th portfolio at 𝑡𝑡 = 𝑄𝑄𝑖𝑖,𝑡𝑡𝐺𝐺𝑖𝑖,𝑡𝑡

= 𝜑𝜑�−𝑌𝑌𝑖𝑖,𝑡𝑡�ℎ�𝐼𝐼𝑖𝑖,𝑡𝑡;𝜎𝜎𝑖𝑖�, (1) 
(16) 

where 𝜌𝜌𝑖𝑖 = stdev(𝑍𝑍𝑖𝑖,𝑡𝑡), 𝑍𝑍𝑖𝑖,𝑡𝑡 = 𝑍𝑍𝑖𝑖,𝑡𝑡𝐴𝐴 − 𝑍𝑍𝑖𝑖,𝑡𝑡𝐵𝐵  and 𝜎𝜎𝑖𝑖 is the standard deviation of 𝐸𝐸𝑖𝑖,𝑡𝑡 – for 
the proof, see Proposition 1, Appendix A.1. 

Further, assume that the common factors follow a VAR model, i.e. 

(𝑌𝑌1,𝑡𝑡
𝐴𝐴 , …𝑌𝑌𝑛𝑛,𝑡𝑡

𝐴𝐴 ,𝑌𝑌1,𝑡𝑡
𝐵𝐵 , … ,𝑌𝑌𝑛𝑛,𝑡𝑡

𝐵𝐵 ,𝑋𝑋1,𝑡𝑡 , … ,𝑋𝑋𝑛𝑛,𝑡𝑡)𝑇𝑇 = 𝛤𝛤𝑈𝑈𝑡𝑡 + ℰ𝑡𝑡  𝑡𝑡 = 1,2, … (17) 

where 𝛤𝛤 is a deterministic matrix, ℰ𝑡𝑡 is a Gaussian white noise and 𝑈𝑈𝑡𝑡  is a matrix of 
regressors possibly including trend, constants, lagged values of 𝑌𝑌𝑖𝑖𝐴𝐴 ,𝑌𝑌𝑖𝑖𝐵𝐵 ,𝑋𝑋𝑖𝑖, their 
differences, and exogenous variables. Consequently, the dynamics of 𝑄𝑄s and 𝐺𝐺s is 
given by 

𝑄𝑄𝑖𝑖,𝑡𝑡 = 𝜑𝜑(−𝑌𝑌𝑖𝑖 ,𝑡𝑡) = 𝜑𝜑�−�𝛤𝛤𝑄𝑄𝑈𝑈𝑡𝑡 + 𝜖𝜖𝑡𝑡��, (18) 
 

𝐺𝐺𝑖𝑖,𝑡𝑡 = ℎ�𝐼𝐼𝑖𝑖,𝑡𝑡;𝜎𝜎� = ℎ�𝛤𝛤𝐺𝐺𝑈𝑈𝑡𝑡
𝑝𝑝 + 𝜂𝜂𝑡𝑡;𝜎𝜎𝑖𝑖� (19) 

where 𝛤𝛤𝑄𝑄 = 1
𝜌𝜌
⋆ (𝛤𝛤1 − 𝛤𝛤2), 𝛤𝛤𝐺𝐺 = (𝛤𝛤3, ℐ𝑛𝑛), 𝑈𝑈𝑡𝑡

𝑝𝑝 = (𝑈𝑈𝑡𝑡𝑇𝑇 , log𝑝𝑝1,𝑡𝑡 , … log𝑝𝑝𝑛𝑛,𝑡𝑡)𝑇𝑇 and (𝜖𝜖,𝜂𝜂) is 
a Gaussian white noise. Here, 𝜌𝜌 = (𝜌𝜌1, … ,𝜌𝜌𝑛𝑛)𝑇𝑇 , 𝜎𝜎 = (𝜎𝜎1, … , 𝜎𝜎𝑛𝑛)𝑇𝑇 , ⋆ is component-
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wise multiplication, ℐ𝑛𝑛 is 𝑛𝑛 × 𝑛𝑛 identity matrix, and 𝛤𝛤𝑗𝑗, 𝑗𝑗 = 1,2,3, is the matrix 
consisting of the 𝑗𝑗-th third of rows of 𝛤𝛤. 

As (𝑄𝑄1,𝑡𝑡 , … ,𝑄𝑄𝑛𝑛,𝑡𝑡 ,𝐺𝐺1,𝑡𝑡 , … ,𝐺𝐺𝑛𝑛 ,𝑡𝑡) are uniquely determined by the common factors 
and the parameters (𝜌𝜌, 𝜎𝜎, 𝑝𝑝𝑡𝑡), their distribution depends only on these values and the 
parameters of the factors’ distribution; in particular, it does not depend on either 
corr�𝑍𝑍𝑖𝑖,𝑡𝑡 ,𝑍𝑍𝑗𝑗,𝑡𝑡� or  corr�𝐸𝐸𝑖𝑖,𝑡𝑡 ,𝐸𝐸𝑗𝑗,𝑡𝑡�, 1 ≤ 𝑖𝑖 < 𝑗𝑗 ≤ 𝑛𝑛, i.e. mutual inter-portfolio correlations 
of individual factors. Thus, for example, if  two portfolios consist of loans of the same 
debtors, the first of mortgages secured by houses, the second of leasing loans secured 
by cars, and with corr�𝑍𝑍1,𝑡𝑡 ,𝑍𝑍2,𝑡𝑡� = 1  and corr�𝐸𝐸1,𝑡𝑡 ,𝐸𝐸2,𝑡𝑡� > 0, then the distribution of 
(𝑄𝑄1,𝑡𝑡 , ,𝐺𝐺1,𝑡𝑡 ,𝑄𝑄2,𝑡𝑡 , ,𝐺𝐺2,𝑡𝑡) is the same as if the debtors from the portfolios were not related 
at all and their individual factors were independent. 

Once (𝑄𝑄𝑖𝑖,𝑡𝑡 ,𝐺𝐺𝑖𝑖,𝑡𝑡)𝑖𝑖≤𝑛𝑛,𝑡𝑡≤𝜏𝜏 and (𝑈𝑈𝑡𝑡
𝑝𝑝)𝑖𝑖≤𝑛𝑛,𝑡𝑡≤𝜏𝜏 (i.e. the PD, LGD, the exogenous 

variables, and the outstanding principals in the individual portfolios) are observed, it 
is easy to estimate the dynamics of 𝑄𝑄𝑖𝑖 and 𝐺𝐺𝑖𝑖, provided that the parameters 𝜎𝜎𝑖𝑖 (the 
standard deviations of the collateral individual factors) are known. The estimation 
procedure consists of two steps. First, the adjusted factors 𝑌𝑌 and 𝐼𝐼 are retrieved by 
inverse relations 

𝑌𝑌𝑖𝑖 ,𝑡𝑡 = −𝜑𝜑−1�𝑄𝑄𝑖𝑖,𝑡𝑡�,  𝐼𝐼𝑖𝑖,𝑡𝑡 = ℎ−1�𝐺𝐺𝑖𝑖,𝑡𝑡;𝜎𝜎𝑖𝑖�   (20) 

and, second, the parameters 𝛤𝛤𝑄𝑄 , 𝛤𝛤𝐺𝐺 and var(𝜖𝜖, 𝜂𝜂)  are estimated from the equations 

𝑌𝑌𝑡𝑡 = 𝛤𝛤𝑄𝑄𝑈𝑈𝑡𝑡 + 𝜖𝜖𝑡𝑡, 𝐼𝐼𝑡𝑡 = 𝛤𝛤𝐺𝐺𝑈𝑈𝑡𝑡
𝑝𝑝 + 𝜂𝜂𝑡𝑡 (21) 

by standard techniques. Note that the knowledge of  𝜌𝜌𝑖𝑖 (the standard deviations of the 
wealth individual factors] is not necessary for the estimation, as they ``melt ‘’ with the 
parameter 𝛤𝛤𝑄𝑄. This, actually, is one of the main advantades of our model in comparison 
with Pesaran et al. (2006) who estimate the risk models separately from the 
econometrical ones, so they cannot ``spare ‘’ the variability of the risk model 
parameters as we do. The knowledge of  𝜎𝜎𝑖𝑖, on the other hand, is necessary for the 
procedure, as the transformation of the LGD into its corresponding factor is non-linear 
in 𝜎𝜎𝑖𝑖; once it is unknown, however, the estimation procedure may be performed for 
various its values and the version of the model, exhibiting the best fit, may be chosen.  

As for the outstanding principals 𝑝𝑝𝑖𝑖,𝑡𝑡, their value usually known; if it is not the 
case, then an approximation, log𝑝𝑝𝑖𝑖,𝑡𝑡 = 𝜋𝜋𝑖𝑖 +𝜛𝜛𝑖𝑖𝑡𝑡, may be used. Given this 
approximation, the parameters 𝜋𝜋𝑖𝑖 and  𝜛𝜛𝑖𝑖 become the trend coefficients of the VAR 
model. 

Forecasting of 𝑄𝑄 and 𝐺𝐺 is a relatively easy task because analytical formulas for 
conditional distributions of 𝑄𝑄𝑖𝑖,𝑇𝑇  and 𝐺𝐺𝑖𝑖 ,𝑇𝑇 given the information up to 𝜏𝜏 < 𝑇𝑇 may be 
derived. Namely, as 

𝑌𝑌𝑖𝑖,𝑇𝑇|𝒰𝒰𝜏𝜏 ∼ 𝒩𝒩(𝜇𝜇, 𝑣𝑣2),  𝒰𝒰𝜏𝜏 = (𝑈𝑈𝑡𝑡)𝑡𝑡≤𝜏𝜏 , (22) 

for some (𝒰𝒰𝜏𝜏-measurable) 𝜇𝜇 and 𝑣𝑣 in the VAR model, we have, according to 
Proposition 2, Appendix A.1, 
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ℙ[𝑄𝑄𝑖𝑖,𝑇𝑇 < 𝜃𝜃|𝒰𝒰𝜏𝜏] = 𝜑𝜑�
𝜑𝜑−1(𝜃𝜃) + 𝜇𝜇

𝑣𝑣 � ,  𝜃𝜃 ∈ (0,1), (23) 

with the point forecast given by 

𝔼𝔼�𝑄𝑄𝑖𝑖,𝑇𝑇�𝒰𝒰𝜏𝜏� = ℙ�𝐴𝐴𝑖𝑖,𝑇𝑇 < 𝐵𝐵𝑖𝑖,𝑇𝑇�𝒰𝒰𝜏𝜏� = 𝜑𝜑 �
−𝜇𝜇

√𝑣𝑣2 + 1
�. (24) 

Similarly, as 

𝐼𝐼𝑖𝑖,𝑇𝑇|𝒰𝒰𝜏𝜏 ∼ 𝒩𝒩(𝜈𝜈,𝑤𝑤2) (25) 

for some 𝜈𝜈, 𝑤𝑤, we have 

ℙ[𝐺𝐺𝑖𝑖,𝑇𝑇 < 𝜃𝜃|𝒰𝒰𝜏𝜏] = 𝜑𝜑�
ℎ−1(𝜃𝜃;𝜎𝜎𝑖𝑖)− 𝜈𝜈

𝑤𝑤 �. (26) 

 

𝔼𝔼(𝐺𝐺𝑖𝑖 ,𝑇𝑇|𝒰𝒰𝜏𝜏) = ℎ(𝜈𝜈;�𝜎𝜎𝑖𝑖2 + 𝑤𝑤2) (27) 

the mean loss of a loan given (see Proposition 3 in Appendix A.2). 
Moreover, as we may equivalently express, 

ℙ[𝑄𝑄𝑇𝑇 < 𝜃𝜃|𝛺𝛺𝑡𝑡] = 𝜑𝜑�
1
√𝜗𝜗

�√1− 𝜗𝜗𝜑𝜑−1(𝜃𝜃)−𝜑𝜑−1(ℙ[𝐴𝐴𝑖𝑖,1,𝑇𝑇 < 𝐵𝐵𝑖𝑖,1,𝑇𝑇|𝒰𝒰𝑡𝑡])�� ,

𝜗𝜗 =
𝑣𝑣2

𝑣𝑣2 + 1 ,

 (28) 

we see that our formula generalizes the well known Vasicek’s formula for the 
distribution loss (Vasicek O. A., 2015b). To see it, note that, by (3), 𝜇𝜇 =
−√𝑣𝑣2 + 1𝜑𝜑−1�ℙ�𝐴𝐴𝑖𝑖,1,𝑇𝑇 < 𝐵𝐵𝑖𝑖,1,𝑇𝑇�𝒰𝒰𝜏𝜏��. The second equality of the second line follows 
from the fact that log𝐴𝐴𝑖𝑖,𝑗𝑗,𝑇𝑇 − log𝐵𝐵𝑖𝑖,𝑗𝑗,𝑇𝑇 = 𝑌𝑌𝑖𝑖 ,𝑡𝑡𝐴𝐴 − 𝑌𝑌𝑖𝑖,𝑡𝑡𝐵𝐵 + 𝑍𝑍𝑖𝑖,𝑗𝑗,𝑡𝑡

𝐴𝐴 − 𝑍𝑍𝑖𝑖,𝑗𝑗,𝑡𝑡
𝐵𝐵 = 𝜌𝜌𝑖𝑖𝑌𝑌𝑖𝑖,𝑡𝑡 + 𝑁𝑁(0, 𝜌𝜌𝑖𝑖). 

Thanks to strict monotonicity of the functions transforming the factors to the 
rates, the confidence intervals for 𝑄𝑄 and G may be obtained by the same 
transformations by which we are getting the losses from the factors. In particular, once 
[𝑌𝑌𝑖𝑖,𝑇𝑇𝐿𝐿 ,𝑌𝑌𝑖𝑖 ,𝑇𝑇𝐻𝐻 ], [𝐼𝐼𝑖𝑖,𝑇𝑇𝐿𝐿 , 𝐼𝐼𝑖𝑖,𝑇𝑇𝐻𝐻 ] are confidence intervals for future values of 𝑌𝑌𝑖𝑖,𝑇𝑇 , 𝐼𝐼𝑖𝑖,𝑇𝑇 , the intervals 
[𝜑𝜑(−𝑌𝑌𝑖𝑖 ,𝑇𝑇𝐻𝐻 ),𝜑𝜑(−𝑌𝑌𝑖𝑖 ,𝑇𝑇𝐿𝐿 )], [ℎ(𝐼𝐼𝑖𝑖,𝑇𝑇𝐻𝐻 ;𝜎𝜎𝑖𝑖),ℎ(𝐼𝐼𝑖𝑖,𝑇𝑇𝐿𝐿 ;𝜎𝜎𝑖𝑖)], may serve as confidence sets for 𝑄𝑄𝑖𝑖,𝑡𝑡 ,𝐺𝐺𝑖𝑖,𝑡𝑡 , 
respectively. 

Contrary to 𝑄𝑄𝑖𝑖 ,𝑇𝑇 and 𝐺𝐺𝑖𝑖,𝑇𝑇 , the distribution of 𝐿𝐿𝑖𝑖,𝑇𝑇  is not generally analytically 
tractable. In particular, an analytical formula for ℙ[𝐺𝐺𝑖𝑖,𝑇𝑇 < 𝜃𝜃|𝒰𝒰𝜏𝜏] exists only when 𝑌𝑌𝑖𝑖 ,𝑇𝑇 
and 𝐼𝐼𝑖𝑖,𝑇𝑇   are conditionally independent given 𝒰𝒰𝜏𝜏, which is generally not true in a VAR 
model. However, the distribution of 𝐿𝐿𝑖𝑖,𝑇𝑇  may be efficiently computed by a Monte Carlo 
simulation. 
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3. Data 
Detailed loan portfolios data are usually a subject of the banking secret and thus 

strictly confidential, therefore extremely difficult to obtain. Due to this restriction we 
decided to apply our model to two US nationwide portfolios: the residential and 
commercial real estate loans (mortgages), for which loss data are publicly available. 
For both portfolios, we used delinquency rates, which are proportions of loans more 
than 30 days past due (30+) on the total balance, as proxies for 𝑄𝑄 and charge off rates, 
which are proportions of loans charged off (net of recoveries) on the average total 
balance, as proxies for 𝐿𝐿.  Consequently, we computed 𝐺𝐺 as the ratio of 𝐿𝐿 and 𝑄𝑄. The 
datasets are available at the United States Federal Reserve System. The time period 
covered ranges from 1991 to 2016 in a quarterly frequency.  

Table 1 and Figure 1 summarize descriptive statistics and display the time series 
of the delinquency rates and charge-off rates of the residential and commercial 
portfolios. The Figure 1 clearly points at the fact that the time series are correlated. 
Also, the recent economic crisis, which started in the US in late 2007 and impacted the 
US mortgage and real estate markets excessively is visible, as all the time series 
rocketed up to multiples of their preceding values between 2007 and 2010. 

Table 1 Descriptive Statistics of Input Data 

Statistic 30+ delinquency 
rate residential 

Charge-off rate 
residential 

30+ 
delinquency 

rate commercial 
Charge-off rate 

commercial 

Mean value 0.041 0.005 0.038 0.009 
Median                      0.023 0.002 0.023 0.003 
Minimum                     0.013 0.001 0.009 0.0001 
Maximum                      0.110 0.027 0.121 0.036 
Standard deviation 0.031 0.007 0.031 0.011 
Variance 0.748 1.386 0.815 1.162 
Skewness                       1.115 1.840 1.131 1.185 
Excess kurtosis -0.332 2.134 0.091 -0.082 
5% percentile               0.011 0.001 0.016 0.001 
95% percentile               0.111 0.031 0.107 0.022 

Having the 𝑄𝑄s and 𝐺𝐺s, we extracted the factors by (2) with the values of 𝜎𝜎 =
0.135 for the commercial loans and   𝜎𝜎 = 0.056  for mortgages; the values were 
computed from the series of the residential and commercial house price indices the 
way described in Appendix A.3. The resulting time series of the extracted common 
factors 𝑌𝑌 (PD) and 𝐼𝐼 (LGD) for both commercial (𝑌𝑌𝑐𝑐, 𝐼𝐼𝑐𝑐) and residential (𝑌𝑌𝑟𝑟, 𝐼𝐼𝑟𝑟) 
mortgage portfolios are illustrated in Figure 2. As we obtained the factors from a 
monotone transformation of the loss rates, there is again a strong visual correlation, 
especially between 𝑌𝑌𝑟𝑟and 𝑌𝑌𝑐𝑐, and 𝐼𝐼𝑟𝑟and 𝐼𝐼𝑐𝑐. On the other hand, the correlation matrix 
calculated on first differences of the four factors, summarized in the Table 2, showed 
a strong correlation only between 𝑌𝑌𝑟𝑟 and 𝑌𝑌𝑐𝑐. 
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Figure 1 Development of the 30+ Delinquency Rates (𝑸𝑸𝒓𝒓 = Residential, 𝑸𝑸𝒄𝒄 = 
Commercial) and Charge-Off Rates (𝑮𝑮𝒓𝒓 = Residential, 𝑮𝑮𝒄𝒄= Commercial) 

 

Figure 2 The Development of the Extracted Common Factors 𝒀𝒀𝒓𝒓and 𝑰𝑰𝒓𝒓 (Left Axis), and 
𝒀𝒀𝒄𝒄and 𝑰𝑰𝒄𝒄 (Right Axis) 

 
Table 2 The Correlation Matrix of First Differences Of 𝑰𝑰𝒓𝒓 , 𝑰𝑰𝒄𝒄, 𝒀𝒀𝒓𝒓,𝒀𝒀𝒄𝒄, Sample Size 𝒏𝒏 = 𝟏𝟏𝟏𝟏𝟏𝟏 

 𝒅𝒅𝑰𝑰𝒄𝒄 𝒅𝒅𝒀𝒀𝒄𝒄 𝒅𝒅𝑰𝑰𝒓𝒓 𝒅𝒅𝒀𝒀𝒓𝒓 
𝑑𝑑𝐼𝐼𝑐𝑐 1.0000 0.2680*** 0.1182 0.2420** 
𝑑𝑑𝑌𝑌𝑐𝑐  1.0000 0.2869*** 0.7268*** 
𝑑𝑑𝐼𝐼𝑟𝑟   1.0000 0.1198 
𝑑𝑑𝑌𝑌𝑟𝑟    1.0000 
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Our choice of the set of explanatory macroeconomic variables was inspired by  
Pesaran et al. (2006), who used the output (GDP), inflation, equity prices, foreign 
exchange rate, interest rate and real money balances as explanatory variables in their 
factor sub-model. Similarly to them, we chose the output (GDP), industrial production 
(IP), residential and commercial HPI indices as the representatives for the asset value 
(instead of the equity indices in Pesaran et al., 2006), FED base interest rate (FEDR), 
unemployment (U) and finally personal income (PI). We ignored the foreign exchange 
rate as our analysis is based purely on the US domestic indicators and the instabilities 
in the economy are represented by the remaining variables. We used the CPI to obtain 
real indicators from nominal. The commercial HPI index was subsequently dropped as 
it did not prove to have a significant effect in the final model. Except for FEDR, 
logarithms of all the variables were used in the actual estimation.  

4. Results 
First, we tested all factors and exogenous variables for unit roots. Using the 

Augmented Dickey-Fuller (ADF) test, we could not reject the unit root except for 
FEDR. Thus, we treated all exogenous variables (𝐼𝐼𝑃𝑃,𝑃𝑃𝐼𝐼,𝑈𝑈,𝐻𝐻𝑃𝑃𝐼𝐼𝑟𝑟 ,𝐺𝐺𝐺𝐺𝑃𝑃) and the four 
factors (𝐼𝐼𝑟𝑟 , 𝐼𝐼𝑐𝑐 ,𝑌𝑌𝑟𝑟 ,𝑌𝑌𝑐𝑐) as integrated with order one. The detailed results of the ADF 
tests can be found in the Appendix in Table A.4.1. 

In line with common practice, we continued with tests for cointegration 
between the integrated variables. As the first step, we tested the cointegration among 
all exogenous variables  𝐼𝐼𝑃𝑃,𝑃𝑃𝐼𝐼,𝑈𝑈,𝐻𝐻𝑃𝑃𝐼𝐼𝑟𝑟 and 𝐺𝐺𝐺𝐺𝑃𝑃. This test produced mixed results, 
as the Engle-Granger test did not confirm the cointegration while the Johansen test 
suggested cointegration rank one. In the next step, we tested the cointegration between 
the pairs of factors, namely 𝐼𝐼𝑟𝑟 , 𝐼𝐼𝑐𝑐  and 𝑌𝑌𝑟𝑟 ,𝑌𝑌𝑐𝑐 .  The cointegration was confirmed 
between 𝐼𝐼𝑟𝑟 , 𝐼𝐼𝑐𝑐 , but not between  𝑌𝑌𝑟𝑟 ,𝑌𝑌𝑐𝑐 . Then, we examined the cointegration among 
all the four factors, where the Johansen test suggested the cointegration rank two. Next, 
we tested the cointegration between individual factors and the set of exogenous 
variables. The cointegration was found between 𝐼𝐼𝑟𝑟  and exogenous variables, between 
𝐼𝐼𝑐𝑐  and exogenous variables, but not between 𝑌𝑌𝑟𝑟 ,𝑌𝑌𝑐𝑐  and exogenous variables. The 
resulting relations may be found in Table A.5.1. Finally, we performed the test for all 
variables altogether. The Johansen test suggested cointegration rank 3 (by the Lmax 
test) or higher (by the trace test). Consequently, we decided to continue with the 
cointegration rank 3. See the Appendix A.5 for more details of all cointegration tests. 

Consequently, we constructed the final model.  First, we estimated a nine-
equation VECM model for 𝐼𝐼𝑐𝑐 , 𝐼𝐼𝑟𝑟 ,𝑌𝑌𝑐𝑐 ,𝑌𝑌𝑟𝑟 , 𝐼𝐼𝑃𝑃,𝑃𝑃𝐼𝐼,𝑈𝑈,𝐻𝐻𝑃𝑃𝐼𝐼𝑟𝑟 ,𝐺𝐺𝐺𝐺𝑃𝑃  with rank 3 and 2 lags 
and with 𝐹𝐹𝐸𝐸𝐺𝐺𝑅𝑅 as exogenous variable. The cointegration matrix 𝛽𝛽 was restricted to 
reflect the relations tested by the EG tests, see Table A.3.1 for the results of re-
estimation. Finally, we removed insignificant variables and re-estimated the four 
equations with factors on the right hand side.7 The results are summarized in Table 3. 
𝐸𝐸𝐸𝐸𝑛𝑛 represents the error correction term of the 𝑛𝑛-th cointegration equation.  

  

 
7 Thus, our final model is not a VECM but rather a restricted VAR model with exogeneous variables 
including the three error correction terms from the original VECM. 
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Table 3 Results of the VECM Estimation (Significance: * - 90%, ** - 95%, *** - 99%) 
Variable ∆Ic ∆Ir ∆Yc ∆Yr 
Constant -1.944 *** 1.117 ** -0.719 ** -2.437 *** 
∆Ic (lag1) -0.369 *** - - 0.061 * 
∆Ir (lag1) - - - -0.138 *** 
∆Yc (lag1) 0.658 *** 0.779 *** 0.348 *** - 
∆HPI (lag1) -1.355 *** - 0.719 *** - 
∆U (lag1) - - -0.184 *** -0.222 *** 
FEDR (lag1) -0.006 *** 0.009 *** -0.005 *** -0.009 *** 
∆IP (lag1) - - -0.365 ** - 
EC1 -0.103 *** 0.073 *** 0.072 *** -0.039 *** 
EC2 - -0.657 *** 0.087 * 0.199 *** 
EC3 0.335 *** 0.229 *** -0.087 ** 0.161 *** 
Adjusted R-square 31 % 36 % 82 % 73 % 

The predicting power of the model is strong at 𝑌𝑌𝑐𝑐 ,𝑌𝑌𝑟𝑟, but quite weak at 𝐼𝐼𝑟𝑟 , 𝐼𝐼𝑐𝑐. 
This is evident from the R-square values and also visible in Figure 3, which shows the 
fan charts of the mean predictions of 𝑄𝑄𝑟𝑟, 𝑄𝑄𝑐𝑐 , 𝐺𝐺𝑟𝑟 and 𝐺𝐺𝑐𝑐 for four periods, compared 
with the actual values of the respective delinquency rates and LGDs. Our results, 
similarly to Virolainen (2004) or Pesaran et al. (2006) show that credit risk is 
significantly dependent on interest rates. Moreover, in all the mentioned works, the 
coefficient sign of the interest rate was negative. This means that periods with low 
interest rates tend to overlap with those with high default rates. 

Figure 3 The Comparison of the Predictions (Dotted Line) of 𝑸𝑸𝒓𝒓, 𝑸𝑸𝒄𝒄, 𝑮𝑮𝒓𝒓 and 𝑮𝑮𝒄𝒄 
(From Top) with the Actuals (Solid Line) and the 95% Prediction 
Confidence Intervals (Light Area) 
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A clear distinction between the default rate and LGD factors emerges from our 
results. The LGD factors are cointegrated with the macroeconomic environment, but 
more imprecisely predicted, while the default rate factors are predicted well, but not 
significantly cointegrated with the macroeconomic environment. This suggests that the 
LGDs are determined by the macroeconomic development whereas the default rates 
exhibit stronger inertia. In other words, the default rates are dependent more on the pas 
while the LGDs depend on the present.  

In order to test whether it is worth to treat the two portfolios simultaneously 
instead of their separate modelling, we made a likelihood ratio (LR) test of the final 
model with respect to its version without mutual dependence. In particular, 𝐸𝐸𝐸𝐸2 was 
removed from the equation for ∆𝐼𝐼𝑐𝑐, further,  𝐸𝐸𝐸𝐸1, ∆𝑌𝑌𝑐𝑐 were removed from the equation 
for  ∆𝐼𝐼𝑟𝑟, and 𝐸𝐸𝐸𝐸1, ∆𝐼𝐼𝑐𝑐  were removed from the equation for  ∆𝑌𝑌𝑟𝑟. Even though the 
“mutual” term 𝐸𝐸𝐸𝐸3 was not removed for simplicity, the high value LR=59.52 of the 
statistics suggests for the interconnectedness of the two portfolios beyond the 
explanation by the macro variables.  

Finally, we computed the amount of hypothetical regulatory capital for both 
portfolios and compared it to the amount prescribed by the IRB approach. According 
to usual practice, the amount was computed as the 99.9% quantile of the yearly loss 𝐿𝐿. 
In the case of our model, we computed the value by Monte Carlo (MC) simulation (see 
the end of Section 2) while the IRB regulatory capital was computed in a standard way, 
by Vasicek’s formula for loss distribution with fixed correlation of 15 % between log-
assets; as the (fixed) LGD, is latest observed value was used. The results of the two 
models is summarized in Table 4. In both cases, our model recommends lower 
economic capital than the standard approach. This, together with the fact that our 
model appears to be quite realistic, suggests that the IRB approach may be too 
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conservative, and using our model may lead to savings by not requiring excessively 
high economic capital. 

Table 4 Comparison of the Predictions of IRB Vs. our Model – 12 Month Loss on the 
99.9% Probability Level 

Segment/Model IRB Our 
Retail 0.47% 0.40% 
Commercial 0.12% 0.07% 

The correlations of the underlying factors, computed by the second formula of 
(4), came out 0.25% for the commercial loans and 0.12% for the residential ones. If 
we used these correlations instead of the IRB prescribed 15%, then the retail IRB 
charge would be 0.09% and the commercial one 0.01%. Lower values of the 
correlations might be expected because the common factors are explained by the 
VECM model, hence their (conditional) variances are lower than the unconditional 
ones.8 On the other hand, the resulting values of the IRB charges, being substantially 
lower than these given in Table 4, might rise doubts about the internal consistency of 
our approach. This discrepancy, however, may be explained by the facts that, contrary 
to the IRB formula, we take the uncertainty of the LGDs into account and that this 
uncertainty is much greater than that of the PDs in our model. These results may 
suggest that, in banking practice, the factor correlations are being overestimated in 
order to substitute for the stochasticity of LGD. The detailed procedure replicating the 
empirical part of our paper may be found at https://github.com/utia-
econometrics/GS2017.  

5. Conclusion 
We constructed a multi-period multi-portfolio dynamic model of credit losses 

and applied it to two US national loan portfolios. Our model is unique; except for 
Pesaran et al. (2006), no comparable model has been published to our knowledge. In 
comparison with Pesaran et al. (2006), our model has several advantages: it’s compact 
in the sense that most of its parameters are estimated jointly, it requires less parameters 
while being comparably general, and it models the LGD explicitly. Compared to our 
approach, the advantage of Pesaran et al. (2006) is a concrete well estimated 
macroeconomic model; however, our approach is flexible enough to possibly adopt 
their macroeconomic sub-model while preserving our advantages. 

We applied our model to real-life data, namely to two nationwide US loan 
portfolios. Although we proceeded purely technically when calibrating our model, we 
achieved relatively high accuracy of forecasts, especially in case of the PDs. 

Finally, we made a thought experiment where we constructed hypothetical 
economic capital charges to two nationwide portfolios. For both portfolios, the 
economic capital recommended by our model, which was calculated on regulatory 
probability level, was lower compared to the IRB regulatory approach. This suggests 
that applying our model might lead to economic capital savings. Moreover, as our 
model results can be compared to those of IRB and as our model enables to calculate 
credit risk under various settings of macroeconomic conditions on various probability 

 
8 The correlations, computed from the sample (unconditional) variances of the factors, are 8.7%, 11.0%, 
respectively. 
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levels, it can be used in internal processes within financial institutions, such as 
calculation of loan loss allowances under IFRS9 and/or stress testing of credit risk. 

Finally, our model is a straightforward generalization of the widely used 
Vasicek-Merton approach; in particular, both models share the same set of assumptions 
(e.g. the evolution of the borrowers’ assets). Therefore, and for the reasons discussed 
above, our model could be a suitable candidate for a fully-fledged economic capital 
model in a financial institution.  
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APPENDIX 

A.0 Auxiliary Results 
Lemma 1. Let ℛ and 𝒮𝒮 be measurable spaces and let 𝑆𝑆 ∈ 𝒮𝒮, 𝑅𝑅1 ∈ ℛ,𝑅𝑅2 ∈ ℛ2, … be 
random elements such that that 𝑆𝑆 is independent of (𝑅𝑅1,𝑅𝑅2, … ). Let 𝑓𝑓𝑛𝑛:𝒮𝒮 × ℛ𝑛𝑛 → ℝ, 
𝑛𝑛 ∈ ℕ, and 𝑔𝑔:𝒮𝒮 → ℝ be measurable functions. Let plim𝑛𝑛𝑓𝑓𝑛𝑛(𝑠𝑠,𝑅𝑅𝑛𝑛) = 𝑔𝑔(𝑠𝑠) for any 𝑠𝑠 ∈
𝒮𝒮. Then plim𝑛𝑛𝑓𝑓𝑛𝑛(𝑆𝑆,𝑅𝑅𝑛𝑛) = 𝑔𝑔(𝑆𝑆). 
Proof. By (Kallenberg, 2002), p.63, random variables 𝑋𝑋1,𝑋𝑋2, … converge to a random 
variable 𝑋𝑋 in probability iff 𝔼𝔼(|𝑋𝑋𝑛𝑛 − 𝑋𝑋| ∧ 1) → 0. Thus, denoting 𝜙𝜙𝑛𝑛(𝑠𝑠) =
𝔼𝔼(|𝑓𝑓𝑛𝑛(𝑠𝑠,𝑅𝑅𝑛𝑛)− 𝑔𝑔(𝑠𝑠)| ∧ 1), we have 𝜙𝜙𝑛𝑛(𝑠𝑠) → 0 for any 𝑠𝑠 ∈ 𝒮𝒮. To prove the Lemma, 
note that, for any 𝑛𝑛, 

𝔼𝔼(|𝑓𝑓𝑛𝑛(𝑅𝑅𝑛𝑛,𝑆𝑆)− 𝑔𝑔(𝑆𝑆)| ∧ 1) = 𝔼𝔼(𝔼𝔼(|𝑓𝑓𝑛𝑛(𝑅𝑅𝑛𝑛,𝑆𝑆)− 𝑔𝑔(𝑆𝑆)| ∧ 1|𝑆𝑆)) = 𝔼𝔼(𝜙𝜙𝑛𝑛(𝑆𝑆)) (29) 

by the Law of Iterated Expectation, 6.8.14. of (Hoffmann-Jorgensson, 1994), 
respectively, and that 

𝔼𝔼(𝜙𝜙𝑛𝑛(𝑆𝑆)) = ∫ 𝜙𝜙𝑛𝑛(𝑠𝑠)𝑑𝑑ℙ𝑆𝑆(𝑠𝑠) → 0 (30) 

by the Dominated Convergence Theorem (with the integrable upper bound equal to 
one). Q,E,D, 
Lemma 2. (i) Denote 𝑘𝑘(𝑒𝑒, 𝜄𝜄) = 1− min(exp{𝜄𝜄 + 𝑒𝑒},1). For any deterministic 𝜄𝜄 and 
normal 𝐸𝐸, 

𝔼𝔼𝑘𝑘(𝐸𝐸, 𝜄𝜄) = ℎ�𝜄𝜄; stdev(𝐸𝐸)�. (31) 

(ii) If 𝐼𝐼 = 𝐼𝐼1 + 𝐼𝐼2, where 𝐼𝐼1 is 𝛺𝛺-measurable for some sigma field 𝛺𝛺, and where 
𝐼𝐼2|𝛺𝛺 ∼ 𝒩𝒩(0, 𝑠𝑠2) for some 𝑠𝑠 > 0, then, for any 𝜎𝜎 > 0, 

𝔼𝔼(ℎ(𝐼𝐼;𝜎𝜎)|𝛺𝛺) = ℎ �𝐼𝐼1;�𝑠𝑠2 + 𝜎𝜎2�. (32) 

Proof. (i) For any 𝜄𝜄, 

𝔼𝔼𝑘𝑘(𝐸𝐸, 𝜄𝜄) = 1 − ∫ min(exp{𝑒𝑒 + 𝜄𝜄},1)𝑑𝑑ℙ𝐸𝐸(𝑒𝑒)

= 1−� exp
−𝜄𝜄

−∞
{𝑒𝑒 + 𝜄𝜄}𝑑𝑑ℙ𝐸𝐸(𝑒𝑒) +� 𝑑𝑑

∞

−𝜄𝜄
ℙ𝐸𝐸(𝑒𝑒)

= ℙ[𝐸𝐸 ≤ −𝜄𝜄] − exp{𝜄𝜄}� exp
−𝜄𝜄

−∞
{𝑒𝑒}𝑑𝑑ℙ𝐸𝐸(𝑒𝑒) = ℎ(𝜄𝜄;𝜎𝜎)

 (33) 

where the last equality follows by a straightforward calculation (for details, see e.g. 
Gapko & Šmíd, 2012 or Pykhtin, 2003). 

(ii) By Kallenberg (2002), Proposition 6.8., 𝐼𝐼2 is independent of 𝛺𝛺, which 
implies that 

(𝐼𝐼1, 𝐼𝐼2)is conditionally independent of 𝛺𝛺 given 𝐼𝐼1. (34) 
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(see (Kallenberg, 2002), Propositions 6.6 and 6.8). 
Let 𝐸𝐸 ∼ 𝒩𝒩(0,𝜎𝜎2) be independent of (𝐼𝐼2,𝛺𝛺). By the Chain Rule (Kallenberg, 

2002, 3.8), then 

𝐸𝐸, 𝐼𝐼2,𝛺𝛺, are mutually independent.  (35) 

Further, put 

𝜂𝜂1(𝜄𝜄1, 𝜄𝜄2) = ℎ(𝜄𝜄1 + 𝜄𝜄2;𝜎𝜎). (36) 

As ℎ(𝐼𝐼1 + 𝐼𝐼2;𝜎𝜎) is 𝜎𝜎(𝐼𝐼1, 𝐼𝐼2) measurable, 

𝔼𝔼(ℎ(𝐼𝐼1 + 𝐼𝐼2;𝜎𝜎)|𝐼𝐼2, 𝐼𝐼2) = 𝜂𝜂(𝐼𝐼1. 𝐼𝐼2).      (7) 

Further, we have 

𝜂𝜂1(𝜄𝜄1, 𝜄𝜄2) =
(𝑖𝑖)
𝔼𝔼(𝑘𝑘(𝐸𝐸, 𝜄𝜄1 + 𝜄𝜄2)) =

ℎ.𝑗𝑗
𝔼𝔼(𝑘𝑘(𝐸𝐸, 𝐼𝐼1 + 𝐼𝐼2)|𝐼𝐼1 = 𝜄𝜄1, 𝐼𝐼2 = 𝜄𝜄2) (37) 

where “h.j.” stands for 6.8.14 of Hoffmann-Jorgensson (1994). Finally, abbreviating 
the Law of Iterated Expectation as “l.i.e”, 

𝔼𝔼(ℎ(𝐼𝐼1 + 𝐼𝐼2;𝜎𝜎)|𝛺𝛺) =
(5)

𝔼𝔼(ℎ(𝐼𝐼1 + 𝐼𝐼2;𝜎𝜎)|𝐼𝐼1) =𝑙𝑙.𝑖𝑖.𝑑𝑑 𝔼𝔼(𝔼𝔼(ℎ(𝐼𝐼1 + 𝐼𝐼2;𝜎𝜎)|𝐼𝐼1, 𝐼𝐼2)|𝐼𝐼1)

=
(7)

𝔼𝔼(𝜂𝜂(𝐼𝐼1, 𝐼𝐼2)|𝐼𝐼1) = 𝔼𝔼(𝔼𝔼(𝑘𝑘(𝐸𝐸, 𝐼𝐼1 + 𝐼𝐼2)|𝐼𝐼1, 𝐼𝐼2)|𝐼𝐼1))

= 𝔼𝔼(𝔼𝔼(𝑘𝑘(𝐼𝐼2 + 𝐸𝐸, 𝐼𝐼1)|𝐼𝐼1, 𝐼𝐼2)|𝐼𝐼1) =𝑙𝑙.𝑖𝑖.𝑑𝑑 𝔼𝔼(𝑘𝑘(𝐼𝐼2 + 𝐸𝐸, 𝐼𝐼1)|𝐼𝐼1) =
ℎ.𝑗𝑗
𝜇𝜇(𝐼𝐼1)

𝜇𝜇(𝜄𝜄1) = 𝔼𝔼(𝑘𝑘(𝐼𝐼2 + 𝐸𝐸, 𝜄𝜄1)) =
(𝑖𝑖)
ℎ(𝜄𝜄1;�𝑠𝑠2 + 𝜎𝜎2).

 (38) 

Q.E.D. 

A.1 Transformation of Factors 
Proposition 1. 
(i) For any 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, 𝑡𝑡 ≥ 1, 𝑄𝑄𝑖𝑖,𝑡𝑡 = 𝜑𝜑(−𝑌𝑌𝑖𝑖 ,𝑡𝑡). 
(ii) For any 1 ≤ 𝑖𝑖 ≤ 𝑛𝑛, 𝑡𝑡 ≥ 1, 𝐺𝐺𝑖𝑖,𝑡𝑡 = ℎ(𝐼𝐼𝑖𝑖,𝑡𝑡;𝜎𝜎). 
Proof. Fix 𝑖𝑖 and 𝑡𝑡. 
(i) For any 𝑗𝑗, denote 

𝐺𝐺𝑖𝑖,𝑗𝑗,𝑡𝑡 = 𝟏𝟏[𝐴𝐴𝑖𝑖,𝑗𝑗,𝑡𝑡 < 𝐵𝐵𝑖𝑖.𝑗𝑗.𝑡𝑡] (39) 

the indicator of the default of the 𝑗𝑗-th loan from the 𝑖𝑖-th portfolio at 𝑡𝑡, and note that 

𝐺𝐺𝑖𝑖,𝑗𝑗,𝑡𝑡 = 𝑑𝑑�𝑍𝑍𝑖𝑖,𝑗𝑗,𝑡𝑡 ,𝑌𝑌𝑖𝑖.𝑡𝑡�,  𝑑𝑑(𝑧𝑧, 𝑦𝑦) = 𝟏𝟏�
𝑧𝑧
𝜌𝜌𝑖𝑖

< −𝑦𝑦�. (40) 

Using this, we can write 

𝑄𝑄𝑖𝑖,𝑡𝑡 = plim𝑛𝑛→∞𝑓𝑓𝑛𝑛(𝑌𝑌𝑖𝑖,𝑗𝑗 ,𝑍𝑍𝑖𝑖,1,𝑡𝑡 , … ,𝑍𝑍𝑖𝑖,𝑛𝑛,𝑡𝑡) (41) 
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where 

𝑓𝑓𝑛𝑛(𝑦𝑦, 𝑧𝑧1, … , 𝑧𝑧𝑛𝑛) =
∑ 𝑑𝑑𝑛𝑛
𝑗𝑗=1 �𝑧𝑧𝑗𝑗 ,𝑦𝑦�

𝑛𝑛 . 
(42) 

As, by the Law of Large Numbers, 

𝑓𝑓𝑛𝑛(𝑦𝑦,𝑍𝑍𝑖𝑖,1,𝑡𝑡 , … ,𝑍𝑍𝑖𝑖,𝑛𝑛,𝑡𝑡) → 𝔼𝔼𝑑𝑑�𝑍𝑍𝑖𝑖,1,𝑡𝑡 ,𝑦𝑦� = ℙ �
𝑍𝑍𝑖𝑖,1,𝑡𝑡

𝜌𝜌𝑖𝑖
< −𝑦𝑦� = 𝜑𝜑(−𝑦𝑦), (43) 

the assertion follows from Lemma 1. 
(ii) For any 𝑗𝑗, denote 

𝐾𝐾𝑖𝑖,𝑗𝑗,𝑡𝑡 = 𝐺𝐺𝑖𝑖,𝑗𝑗,𝑡𝑡(1− 𝑅𝑅𝑖𝑖,𝑗𝑗,𝑡𝑡),  𝑅𝑅𝑖𝑖,𝑗𝑗,𝑡𝑡 = min(𝑝𝑝𝑖𝑖,𝑡𝑡−1𝑃𝑃𝑖𝑖,𝑗𝑗,𝑡𝑡 , 1), (44) 

the relative loss from the 𝑗𝑗-th loan of the 𝑖𝑖-th portfolio at 𝑡𝑡. Alternatively, 

𝐾𝐾𝑖𝑖,𝑗𝑗,𝑡𝑡 = 𝐺𝐺𝑖𝑖,𝑗𝑗,𝑡𝑡(1− min(exp{𝑋𝑋𝑖𝑖,𝑡𝑡 + 𝐸𝐸𝑖𝑖,𝑗𝑗,𝑡𝑡 − log𝑝𝑝𝑖𝑖,𝑡𝑡 , 1))
= 𝑑𝑑�𝑍𝑍𝑖𝑖,𝑗𝑗,𝑡𝑡 ,𝑌𝑌𝑖𝑖 ,𝑡𝑡�𝑘𝑘�𝐸𝐸𝑖𝑖,𝑗𝑗,𝑡𝑡 , 𝐼𝐼𝑖𝑖,𝑗𝑗�,  (45) 

where 𝑘𝑘 is defined at Lemma 2 (i). Using this, we have 

𝐿𝐿𝑖𝑖,𝑡𝑡 = plim𝑛𝑛→∞𝑔𝑔𝑛𝑛((𝐼𝐼𝑖𝑖,𝑡𝑡 ,𝑌𝑌𝑖𝑖 ,𝑡𝑡), (𝐸𝐸𝑖𝑖,1,𝑡𝑡 ,𝑍𝑍𝑖𝑖,1,𝑡𝑡), … , (𝐸𝐸𝑖𝑖 ,𝑛𝑛,𝑡𝑡 ,𝑍𝑍𝑖𝑖,𝑛𝑛,𝑡𝑡)) (46) 

where 

𝑔𝑔𝑛𝑛(𝜄𝜄,𝑦𝑦, (𝑒𝑒1, 𝑧𝑧1), … , (𝑒𝑒𝑛𝑛 ,𝑧𝑧𝑛𝑛)) =
∑ 𝑑𝑑𝑛𝑛
𝑗𝑗=1 (𝑧𝑧𝑗𝑗 , 𝑦𝑦)𝑘𝑘(𝑒𝑒𝑗𝑗 , 𝜄𝜄)

𝑛𝑛 . (47) 

By the Law of Large Numbers and the independence of the factors, we have, for any 
𝜄𝜄,𝑦𝑦, 

plim𝑛𝑛𝑔𝑔𝑛𝑛((𝐸𝐸𝑖𝑖,1,𝑡𝑡 ,𝑍𝑍𝑖𝑖,1,𝑡𝑡), … , (𝐸𝐸𝑖𝑖,𝑛𝑛,𝑡𝑡 ,𝑍𝑍𝑖𝑖,𝑛𝑛,𝑡𝑡)) = 𝔼𝔼(𝑑𝑑(𝑍𝑍𝑖𝑖,1,𝑡𝑡 ,𝑦𝑦)𝑘𝑘(𝐸𝐸𝑖𝑖,1,𝑡𝑡 , 𝜄𝜄))
= 𝔼𝔼𝑑𝑑(𝑍𝑍𝑖𝑖,1,𝑡𝑡 ,𝑦𝑦)𝔼𝔼𝑘𝑘(𝐸𝐸𝑖𝑖,1,𝑡𝑡 , 𝜄𝜄).  (48) 

Further, by Lemma 2 (i), and due to the fact that 𝔼𝔼𝑑𝑑(𝑍𝑍𝑖𝑖,1,𝑡𝑡 ,𝑦𝑦) = 𝜑𝜑(−𝑦𝑦) (see the proof 
of (i)), we have, by Lemma 1, that 𝐿𝐿𝑖𝑖,𝑡𝑡 = 𝜑𝜑(−𝑌𝑌𝑖𝑖 ,𝑡𝑡)ℎ(𝐼𝐼𝑖𝑖,𝑡𝑡;𝜎𝜎𝑖𝑖). The assertion now follows 
from (i) and the fact that 𝐺𝐺𝑖𝑖,𝑡𝑡 = 𝐿𝐿𝑖𝑖,𝑡𝑡

𝑄𝑄𝑖𝑖,𝑡𝑡
 by (see Kallenberg, 2002, Corollary 4.5). Q.E.D. 

A.2 Distribution of Forecasts 
Proposition 2. Let 𝛺𝛺 be a sigma field and let 𝑄𝑄 = 𝜑𝜑(−𝑌𝑌) where 𝑌𝑌|𝛺𝛺 ∼ 𝒩𝒩(𝜇𝜇,𝑣𝑣2) for 
some 𝛺𝛺-measurable 𝜇𝜇,𝑣𝑣. Then 
(i) ℙ[𝑄𝑄 ≤ 𝜃𝜃|𝛺𝛺] = 𝜑𝜑 �𝜑𝜑

−1(𝜃𝜃)+𝜇𝜇
𝑣𝑣

�, 

(ii) 𝔼𝔼[𝑄𝑄|𝛺𝛺] = 𝜑𝜑 � −𝜇𝜇
�𝑣𝑣2+1

� = ℙ[𝑍𝑍 < −𝑌𝑌] for any 𝑍𝑍 ∼ 𝒩𝒩(0,1) independent of 𝑌𝑌. 
Proof. (i) 
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ℙ[𝑄𝑄 ≤ 𝜃𝜃|𝛺𝛺] = ∫ 𝟏𝟏{𝜑𝜑(𝑦𝑦) ≤ 𝜃𝜃}dℙ−𝑌𝑌|𝛺𝛺(𝑦𝑦) = ∫ 𝟏𝟏{𝜑𝜑(𝑦𝑦) ≤ 𝜃𝜃}d𝜑𝜑 �
𝑦𝑦 + 𝜇𝜇
𝑣𝑣

�

= ∫ 𝟏𝟏{𝑧𝑧 ≤ 𝜃𝜃}d𝜑𝜑�
𝜑𝜑−1(𝑧𝑧) + 𝜇𝜇

𝑣𝑣 � = 𝜑𝜑�
𝜑𝜑−1(𝜃𝜃) + 𝜇𝜇

𝑣𝑣 � .
 (48) 

(ii) 

𝔼𝔼(𝑄𝑄|𝛺𝛺) = ∫ 𝑧𝑧d𝜑𝜑�
𝜑𝜑−1(𝑧𝑧) + 𝜇𝜇

𝑣𝑣 � = ∫ 𝜑𝜑(𝑥𝑥)d𝜓𝜓(𝑥𝑥),   (49) 

where 𝜓𝜓(𝑥𝑥) = 𝜑𝜑 �𝑥𝑥+𝜇𝜇
𝑣𝑣
� is the c.d.f. of 𝒩𝒩(−𝜇𝜇, 𝑣𝑣2). The r.h.s. is, however, nothing else 

but the formula for the probability that a difference of independent 𝒩𝒩(0,1) and 
𝒩𝒩(−𝜇𝜇, 𝑣𝑣2) is less than zero, i.e. 

𝔼𝔼(𝑄𝑄|𝛺𝛺) = ℙ[𝒩𝒩(0,1) +𝒩𝒩(𝜇𝜇, 𝑣𝑣2) ≤ 0] = ℙ[𝒩𝒩(𝜇𝜇, 1 + 𝑣𝑣2) ≤ 0]
= 𝜑𝜑 �

−𝜇𝜇
√𝑣𝑣2 + 1

�. 
(50) 

Q.E.D. 

Proposition 3. Let 𝛺𝛺 be a sigma field and let 𝐺𝐺 = ℎ(𝐼𝐼;𝜎𝜎) where for 𝐼𝐼|𝛺𝛺 ∼ 𝒩𝒩(𝜈𝜈,𝑤𝑤2) 
for some 𝛺𝛺-measurable 𝜇𝜇,𝑤𝑤. Then 
(i) ℙ[𝐺𝐺 < 𝜃𝜃|𝛺𝛺] = 𝜑𝜑 �ℎ

−1(𝜃𝜃;𝜎𝜎)−𝜈𝜈
𝑤𝑤

� 
(ii) 𝔼𝔼(𝐺𝐺|𝛺𝛺) = ℎ(𝜈𝜈,√𝜎𝜎2 + 𝑤𝑤2) 
Proof. (i) 

ℙ[𝐺𝐺 < 𝜃𝜃|𝛺𝛺𝑡𝑡] = ∫ 𝟏𝟏{ℎ(𝜄𝜄;𝜎𝜎) < 𝜃𝜃}𝑑𝑑ℙ𝐼𝐼|𝛺𝛺(𝜄𝜄) = ∫ 𝟏𝟏{ℎ(𝜄𝜄;𝜎𝜎) < 𝜃𝜃}𝑑𝑑𝜑𝜑 �
𝜄𝜄 − 𝜈𝜈
𝑤𝑤 �

= ∫ 𝟏𝟏{𝑥𝑥 < 𝜃𝜃}𝑑𝑑𝜑𝜑 �
ℎ−1(𝑥𝑥;𝜎𝜎)− 𝜈𝜈

𝑤𝑤 � = 𝜑𝜑 �
ℎ−1(𝜃𝜃;𝜎𝜎) − 𝜈𝜈

𝑤𝑤 �
 (51) 

(ii) Follows from Lemma 2 (ii) with 𝐼𝐼1 = 𝜈𝜈 and 𝐼𝐼2 ∼ 𝒩𝒩(0,𝑤𝑤2). Q.E.D 

A.3 Determination of 𝝈𝝈  
Assume that, at time 𝑡𝑡, the portfolio contains multiple “generations” of loans 

namely the loans originated at 𝑡𝑡 − 1, 𝑡𝑡 − 2, … , 𝑡𝑡 − 𝑘𝑘 (the loans older than k are no 
longer present in the portfolio). Assume further that the inflow of fresh loans into the 
portfolio is constant in time. Finally, assume that all the collaterals securing loans from 
the generation which started at 𝑠𝑠 have been bought for the same price exp{𝐻𝐻𝑠𝑠} and that 
the price of each of them at 𝑡𝑡 is exp{𝐻𝐻𝑡𝑡 + (𝑆𝑆𝑡𝑡 − 𝑆𝑆𝑠𝑠)} where 𝑆𝑆 is a normal random walk, 
specific to the loan, with variance 𝜃𝜃2,  

Denote 𝐺𝐺𝑡𝑡  the age of a loan randomly chosen at 𝑡𝑡. Clearly, after 𝑘𝑘 periods, the 
ratio of the generations within the portfolio is: (1 − 𝑞𝑞): … : (1 − 𝑞𝑞)𝑘𝑘−1, which uniquely 
determines 𝜋𝜋𝑖𝑖 = ℙ[𝐺𝐺𝑡𝑡 = 𝑖𝑖].  
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Let 𝑃𝑃𝑡𝑡  be the price of a randomly chosen collateral. By the Law of Iterated 
Variance, we then get  

𝜎𝜎�2 = 𝑣𝑣𝑣𝑣𝑣𝑣(log𝑃𝑃𝑡𝑡 |𝐻𝐻) = 𝑣𝑣𝑣𝑣𝑣𝑣(𝔼𝔼(log𝑃𝑃𝑡𝑡|𝐺𝐺𝑡𝑡 ,𝐻𝐻)|𝐻𝐻) + 𝔼𝔼(𝑣𝑣𝑣𝑣𝑣𝑣(log𝑃𝑃𝑡𝑡|𝐺𝐺𝑡𝑡 ,𝐻𝐻)|𝐻𝐻) 
=  𝑣𝑣𝑣𝑣𝑣𝑣(𝔼𝔼(𝑆𝑆𝑡𝑡 − 𝑆𝑆𝐺𝐺|𝐺𝐺,𝐻𝐻)|𝐻𝐻) + 𝔼𝔼(𝑣𝑣𝑣𝑣𝑣𝑣(𝑆𝑆𝑡𝑡 − 𝑆𝑆𝐺𝐺|𝐺𝐺,𝐻𝐻)|𝐻𝐻) = 𝜃𝜃2 𝔼𝔼𝐺𝐺𝑡𝑡 =
𝜃𝜃2 ∑ 𝑖𝑖𝜋𝜋𝑖𝑖𝑘𝑘

𝑖𝑖=1 , 
(52) 

Even though the ℒ(log𝑃𝑃𝑡𝑡 |𝐻𝐻) is a mixture of normal distributions rather than a 
normal distribution, it is thin tailed so it will not make a big harm to approximate it by 
𝑁𝑁(𝐻𝐻𝑡𝑡,𝜎𝜎𝜎2). 

A.4 Results of the ADF Tests and the Engle-Granger Cointegration Tests for 
Individual Factors 

Table A.4.1 Results of the ADF Unit Root Tests 
Variable P-value of the ADF unit 

root test 
Ic 0.87 
Ir 0.52 
Yc 0.19 
Yr 0.11 
U (unemployment) 0.97 
PI (personal income) 0.79 
IP (industrial production) 0.83 
GDP 0.93 
HPI 0.97 
FEDR (FED interest rate) 0.005 
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A.5 Cointegration Relations 
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