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Abstract 

In this paper, the results of an investigation into the relationship between the illiquidity and 
realized volatility of the time series of stocks listed on the Warsaw Stock Exchange (WSE) 
and Vienna Stock Exchange (VSE) are presented. The first measure of illiquidity is the well-
known Amihud ratio (Amihud, 2002) called 𝐴𝐴𝐴𝐴𝐴𝐴, and the second is a transformation of the 
Liquidity Index (Danyliv et al., 2014) called 𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼. In the study, the results of the detection 
of the structural breaks (and their removal), the calculation of long memory, and finally 
the dependence structure of the illiquidity and realized volatility by the copulas are also 
demonstrated. Both types of series exhibit structural breaks and long-memory properties. 
Despite the similarities in the illiquidity measures, their associations with the realized 
volatility is different. The dependence structures described by the copulas for the 𝐴𝐴𝐴𝐴𝐴𝐴-
realized volatility pairs show a dependence in the upper tails; i.e., the high values of 
illiquidity are related to the high volatility. However, in the case of the 𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼-realized 
volatility pairs, the dependence was detected in the lower tail; i.e., the low 𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼 is 
accompanied by the low realized volatility. 

1. Introduction 
The liquidity of an asset is a property that is difficult to define or measure. 

However, a commonly accepted definition of liquidity assumes that an asset is liquid 
if large quantities of this asset can be traded in a short period of time without a 
significant decline in the price. Therefore, the price impact of trading is frequently used 
as a measure of liquidity. Accurate measures of liquidity are very important in 
empirical research. In the framework of a market’s microstructure, liquidity is the most 
important measure of market quality.  

Liquidity affects the price of an asset in the market. Many contributors stress 
that the liquidity of an asset determines its expected rate of return. The buyer of the 
stock is expected to have some future cost in case they sell the asset at a future point 
in time. Higher transaction costs result in lower prices for the assets; therefore, the 
expected returns must increase. This is important with respect to the cost of the capital 
of the issuer. The more-liquid asset will have a higher price for which it can be sold. 
This is true because investors will have a high rate of return. It should compensate for 
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taking risks (including liquidity risks). 
It is not possible to avoid all of the risks associated with an asset irrespective of 

the diversification opportunities. 
A very important topic in corporate finance is the detection of channels 

determining the interrelations of liquidity and corporate decisions with respect to 
financing. 

The common measures of liquidity are quoted as effective bid-ask spreads. To 
determine the spread intraday data, the bid and ask prices are necessary. In addition, 
the transaction prices must be known in order to estimate the effective spread. 
However, this data is often unavailable. It is necessary to underline that, even in the 
case of the availability of data, the direct estimation of the spread is not an easy task. 
The background has seen a huge increase in trading and quotation activity in recent 
years. This is the reason why contributors have developed and applied various methods 
for estimating the spread from daily data.  

Investors in well-known stock exchanges are not as worried about stock 
liquidity as they are in small stock exchanges; hence, it is very important to also 
investigate smaller stock exchanges with respect to liquidity.  

In the literature, contributors pay much attention to the different properties of 
new EU markets, especially taking intraday data into account (Hanousek et al., 2009; 
Gurgul and Wójtowicz, 2015). 

Since stock liquidity is one of the major concerns of investors in both the 
Warsaw and Vienna stock exchanges, it is important to investigate this issue. Along 
with liquidity, we also used its opposite notion (called illiquidity). In our paper, we are 
concerned with the properties of the chosen illiquidity measures; i.e., Amihud 
illiquidity (Karolyi et al., 2012) and modified liquidity (defined by Danyliv et al., 
2014). We check the statistical properties, long memory, and dependence structures of 
these measures with respect to the realized volatility. For comparison purposes, we 
used data from similar stock exchanges with respect to their size; the Warsaw Stock 
Exchange (WSE) and Vienna Stock Exchange (VSE).  

The main goal of our paper is to investigate the relationship between illiquidity 
and realized volatility time series by copulas. Since it requires the transformation of an 
original series to a uniformly distributed series, it also includes the detection of 
structural breaks (and their removal) as well as the calculation and removal of their 
long memory properties (to obtain the stationary series used in Vector Autoregressive 
models). 

To the best of our knowledge, this is the first contribution that explores the tail 
dependence between illiquidity and the realized volatility.  

In the next chapter, a general literature review is conducted. In Section 3, the 
measures of the illiquidity and realized volatility is described based on specific 
literature methodology along with long memory and copulas. 

In Chapter 4, the data and stock exchanges under study are presented. In Section 
5, the empirical results are listed and discussed. Section 6 concludes the paper. 

2. Literature Review 
Different aspects of liquidity and liquidity risks are considered in Amihud and 

Mendelson (1986), Pastor and Stambaugh (2003), Goyenko et al. (2009), Holden 
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(2009), Corwin and Schultz (2012), Roll (1984), and Acharya and Pedersen (2005). 
Moreover, liquidity and liquidity risk are considered as factors in an asset pricing 
model in these studies. Amihud and Mendelson (1986) modeled the expected returns 
as a function of the bid-ask spreads and showed (not only theoretically but also 
empirically) that stocks with larger spreads outperform stocks with smaller spreads. 
This result is known in the financial literature as illiquidity premium. 

It is widely accepted that liquidity has an effect on the expected returns and 
capital structure. Research by Giot et al. (2003) demonstrated that an important 
determinant of liquidity is volatility. This means that higher stock return volatility is 
associated with higher illiquidity. 

In a more recent study, Blau and Whitby (2015) tested whether the volatility of 
bid-ask spreads is positively related to the expected returns. The authors found that the 
average risk-adjusted excess return for stocks in the highest spread volatility quintile 
amounts to 50 basis points per month. Applying multivariate tests, they found robust 
evidence of a return premium associated with spread volatility. This occurred to be 
statistically significant and economically meaningful. The results of Blau and Whitby 
(2015) were robust with respect to a variety of stock characteristics, different tick-size 
regimes, and other measures of liquidity volatility. 

Akbas et al. (2010) established a positive relationship between illiquidity (the 
opposite notion of liquidity) and a stock’s expected return. Lei et al. (2013b) found 
that company liquidity and market liquidity are directly related to stock excess returns.  

Shieh et al. (2012) established that liquidity and the stock momentum effect 
were the most important factors of stock price changes. The contributors stated that 
stock market value and the book-to-market ratio do not play significant roles in stock 
price changes. Lei et al. (2013a) detected a positive relationship between capital gains 
and a stock’s expected returns. In addition, they also found that there is a positive 
relationship between illiquidity and a stock’s expected returns. 

In a recent study, Amiram et al. (2016) determined the important factors with 
respect to the relationship between total volatility and illiquidity based on stocks listed 
on the NYSE and NASDAQ between 2002 and 2011. They decomposed the total 
volatility into its diffusive and jump components. They demonstrated that it is jump 
volatility that drives the positive relationship. On the other hand, diffusive volatility 
has a negative contribution. The authors found that the negative contribution of 
diffusive volatility is completely channeled through its impact on increased trading 
activity (turnover). This, in return, decreases the illiquidity. The contributors found 
that the volatility component maintains its type of impact on the liquidity risk and 
liquidity risk premiums. In this way, they found the determinants of liquidity, 
particularly with respect to volatility. The findings help us to understand the 
mechanisms that drive liquidity risk and liquidity risk premiums.  

The paper by Valenzuela et al. (2015) checked the interrelation between two 
central concepts in the financial markets: liquidity and volatility. The authors stressed 
that understanding the effects of the liquidity provision on market dynamics had gained 
increased attention from regulators, market participants, and academics alike. 
Information on volatility and changes in trade prices is very important in assessing the 
risk-return trade-off for portfolio valuation and derivatives pricing models. In addition, 
knowledge of volatility is important for calibrating the execution probability of limit 
orders. The contributors proposed a new way of summarizing the distribution of 
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liquidity in a limit order book. They investigated and checked its informativeness on 
future volatility. 

Chung et al. (2009) tested day-trading activities for 540 stocks traded on the 
Korean Stock Exchange using transaction data for the period of 1999 through 2000. 
The cross-sectional analysis supports the opinion that day traders prefer lower-priced, 
more-liquid, and more-volatile stocks. Using bivariate VAR models with intraday data, 
the contributors found that greater day activity leads to greater return volatility. In 
addition, the impact of a day-trading shock dissipated gradually within one hour. Past 
return volatility also positively affected the future day-trading activity. We also found 
that past day-trading activity negatively affected the bid-ask spreads, while the past 
bid-ask spreads had a negative impact on the future day-trading activity. According to 
the authors, day traders used short-term contrarian strategies, and their ordered 
imbalance had a positive effect on the future returns. This result is in line with the 
cyclical behavior of day traders. The traders concentrated their buy or sell trades at the 
bottoms or peaks of short-term price cycles, respectively.  

Long memory is important topic in theoretical and empirical research. The 
financial literature is especially focused on the memory length of return volatility 
expressed by the absolute values of the returns or, alternatively, by the squared returns 
and trading volume (e.g., Baillie, 1996; Barkoulas and Baum, 1996; Barkoulas et al., 
1997; Bollerslev and Mikkelsen, 1996; McKenzie and Faff, 2003). Due to importance 
of this topic, many different estimators of the long-memory parameter that includes 
parametric and semi-parametric approaches (Phillips and Shimotsu, 2004, 2005, 2006; 
Shimotsu, 2010) have been developed. 

Realized volatility (RV) is based on high-frequency data information. It has 
been demonstrated that this measure, calculated from the sum of intraday squared 
returns, is a better approximation of ex-post volatility than squared daily (or absolute) 
returns. Nowadays, many estimators of realized volatility are available, including the 
jump robust and microstructure noise robust methods. It is widely known that RV time 
series exhibit a strong serial dependence. This is documented in Andersen et al. (2001), 
Andersen et al. (2007), and Martens et al. (2009), for example. For this reason, long-
memory models such as the ARFIMA model (autoregressive fractionally integrated 
moving average) are frequently applied to RV data.  

In Andersen et al. (2001), the contributors checked the “realized” daily equity 
return volatilities listed in the DIJA index. The authors demonstrated that the 
unconditional distributions of the realized variances and covariances exhibited 
essential right-skewness. However, the realized logarithmic standard deviations and 
correlations underlined the Gaussian distribution. This observation concerns the 
distributions of the returns scaled by the realized standard deviations. The empirical 
findings are that realized volatilities and correlations not only exhibit strong temporal 
dependence but also show long-memory properties.  

Rossi and Magistris (2013) showed the relationship between the volatility 
(measured by realized volatility) and trading volume of 25 NYSE stocks. They found 
that volume and volatility exhibit long memory but are not fractionally cointegrated in 
general. The contributors also found right-tail dependence in the volatility and volume 
innovations. Tail dependence is an important source of information on volatility and 
volume in the case when unexpected important news comes to the market. A 
fractionally integrated VAR model with shock distributions was described by a 
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mixture of copula functions. Other papers about the dependencies between time series 
(e.g., return volatility and trading volume) include Bollerslev and Jubinski (1999), 
Lobato and Velasco (2000), and Gurgul and Syrek (2013). 

In a recent contribution, Bhattacharya (2017) investigated the long-memory 
properties in the liquidity measures of the Indian Stock Market. It is clear that the long-
range dependence structure indicates that these measures can be predicted. However, 
as the author of the study stressed, problems follow from this fact with respect to a 
number of issues, such as the linear modeling, forecasting, statistical testing of 
liquidity models based on standard statistical methods, and theoretical and econometric 
modeling of asset pricing involving liquidity. Based on the data from the Bombay 
Stock Exchange, the contributor tested the long-range dependence in the breadth, 
depth, resiliency, tightness, and immediacy characteristics of the market by means of 
a Hurst Estimate and Lo’s Rescaled Range Statistics. In addition, semi-parametric 
GPH statistics were used as well as the modified GPH statistics of Robinson (1995). 
The empirical findings are not in favor of long memory in all of the liquidity 
parameters; this suggests that liquidity may not be predictable in the Bombay Stock 
Exchange. 

In recent years, a lot of attention in the financial literature has been paid to the 
topic of the relationship between long memory and structural breaks. In the literature, 
it is well-known that the detection of long memory can be due to neglected structural 
breaks. On the contrary, long-memory processes may cause a spurious detection of 
these breaks. It is not easy to distinguish between long memory and structural breaks; 
see Diebold and Inoue (2001), Granger and Hyung (2004), and Smith (2005), among 
others. If a time series exhibits some structural breaks, then the series has the respective 
number of discontinuities in the data-generating process. In this case, a structural-break 
method will report the number of breaks that will divide the series into regimes that 
are of different subpopulations. The statistical properties of these subpopulations 
within the regimes will need to be estimated. One of the methods is the selection 
procedure of Bai and Perron (1998, 2003) based on a sequence of tests. There is a 
growing number of contributions on the tests to distinguish between true long memory 
and various spurious long-memory models. Berkes et al. (2006) and Shao (2011) 
elaborated a testing procedure to discriminate a stationary long-memory time series 
from a short-range-dependent time series with change points in the mean. In these 
contributions, a null hypothesis corresponds to changes in the mean; their alternative 
is that the series is stationary with long memory.  

Yang and Chen (2014) investigated the properties of the realized volatility of 
the Shanghai Stock Exchange Composite Index and four individual stocks from the 
Shanghai and Shenzhen stock exchanges. Among other things, they found that the 
realized volatility exhibited long-term memory and structural breaks in the mean. The 
structural breaks explain the long memory only to some extent. In a time series with a 
long-memory property, the autocorrelation function tails off hyperbolically. The long-
memory property is related to the nonlinearities in the financial data (Gurgul and 
Syrek, 2013) and is not easy to detect. 

A number of empirical studies have argued for the importance of tail 
dependence (not only in financial applications). The paper of Poulin et al. (2007) 
emphasized the importance of taking tail dependence into account in the context of 
bivariate frequency analyses based on copulas. Rossi and Magistris (2013) presented 
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the importance of modeling both long memory and tail dependence to capture extreme 
events based on simulation and forecasting exercises.  

The property of long memory in realized volatility is a stylized fact of financial 
econometrics nowadays. In many contributions, the occurrence of structural breaks in 
the realized volatility is analyzed. Taking these features into account is an important 
issue when forecasting realized volatility (Yang and Chen, 2014; Martens et al., 2009). 

Since volume and volatility exhibit long memory, we may expect that 
(il)liquidity measures also have long-memory properties based on them. Wang (2010) 
used a modified version of the Amihud illiquidity measure for 12 markets. Applied to 
the daily data, he found that the null hypothesis of no long memory was strongly 
rejected in all of them.  

Tail dependence is an important issue in finance due to its practical 
implications. Some examples are diversification and portfolio selection, hedging, 
instrument pricing, and value at risk forecasting. Therefore, the literature about 
modeling extreme dependencies using copulas is very extensive. Fortin and Kuzmics 
(2002) analyzed a set of European stock indices and found that asymmetric tail-
dependent distributions are favored instead of normal or Student-t dependence. Patton 
(2002) found asymmetry in the conditional dependence between the exchange rate 
returns of the Deutsche Mark-U.S. dollar and Yen-U.S. dollar pairs. Lee and Long 
(2009) compared their new C-MGARCH models with the corresponding conventional 
MGARCH models using exchange rates and found that the results from the in-sample 
and out-of-sample analysis outperforms standard MGARCH models. Okimoto (2008) 
combined the copula theory and Markov switching model to model the asymmetric 
dependence for the U.S.-UK market and G7 countries. Chollete et al. (2009) 
constructed a multivariate regime-switching model of vine copulas to model the 
asymmetric dependence in the international financial returns from the G5 and Latin 
American regions. Rossi and de Magistris (2012) and Gurgul and Syrek (2013) found 
asymmetric tail dependence in the realized volatility and trading volume.  

The last two contributions contain descriptions of the econometric tools used in 
the computations (which are briefly reiterated in the following chapter). 

3. Methodology  
In the following three subsections of this chapter, we review the basic 

methodology used in our computations (which are highlighted in the fourth chapter). 

3.1 Measures of Illiquidity and Realized Volatility 
 The realized volatility is computed from the high-frequency prices using the 

method presented in Ait-Sahalia et al. (2005). We use a microstructure noise robust 
average subsampled realized variance estimator aligned at one-minute returns at five 
subgrids. The detailed description given in this seminal paper is quite complex. 
Therefore, we advise the reader to study it from the original source. Finally, we take 
the logarithm of the realized volatility and denote the results for day 𝑡𝑡 as 𝑅𝑅𝑅𝑅𝑡𝑡. 

Among the many definitions of the (il)liquidity measure, we apply two: the 
Amihud illiquidity ratio and Liquidity Index. In most cases, the Amihud illiquidity 
ratio (Amihud, 2002) is obtained using averaging over a month or year. We follow 
Karolyi et al. (2012) and define the daily Amihud illiquidity measure as follows: 
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𝐴𝐴𝐴𝐴𝐴𝐴𝑡𝑡 = ln �1 + |𝑅𝑅𝑡𝑡|
𝑃𝑃𝑡𝑡∙𝑉𝑉𝑡𝑡

�, (1) 

where 𝑅𝑅𝑡𝑡, 𝑃𝑃𝑡𝑡, and 𝑅𝑅𝑡𝑡 are the return, closing price, and volumes on day 𝑡𝑡, respectively. 
The added constant and taken logs reduce the impact of outliers.  
The second measure we use is the 𝐼𝐼𝐴𝐴𝐼𝐼 liquidity measure proposed in Danyliv et al. 
(2014). We multiply the original definition by -1 to get the illiquidity measure, and we 
obtain the following: 

𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼𝑡𝑡 = − log10 �
𝑉𝑉𝑡𝑡∙𝑃𝑃𝑡𝑡

𝑃𝑃𝐻𝐻,𝑡𝑡−𝑃𝑃𝐿𝐿,𝑡𝑡
�, (2) 

where 𝑃𝑃𝐻𝐻,𝑡𝑡 is the highest price on day 𝑡𝑡 and 𝑃𝑃𝐿𝐿,𝑡𝑡 is the lowest. Danyliv et al. (2014) list 
some differences of 𝐼𝐼𝐴𝐴𝐼𝐼 and the Amihud illiquidity ratio (from the original definition). 
First, (𝐴𝐴𝐼𝐼)𝐼𝐼𝐴𝐴𝐼𝐼 uses “high minus low” as a measure of volatility instead of absolute 
return. It eliminates the currency from the calculations and is easy to calculate. It 
decays almost linearly from the most-illiquid stocks (with values at around 5) to the 
most-liquid (with values at around 10). Some of these differences disappear when 
comparing 𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼. Both measures are defined on daily data and do not use 
averaging. Taking the minus logs in the original definition of 𝐼𝐼𝐴𝐴𝐼𝐼 has one important 
advantage: considering illiquidity instead of liquidity allows us to calculate the tail 
dependence coefficients directly from the estimated copulas. 

In the empirical part, we conduct causality testing based on the VAR models 
that are defined for stationary time series. The 𝑅𝑅𝐴𝐴𝑅𝑅(𝑘𝑘) model (Vector Autoregressive) 
for vector 𝑷𝑷𝒕𝒕 = (𝑿𝑿𝒕𝒕 𝒀𝒀𝒕𝒕) is given by 

𝑷𝑷𝒕𝒕 = 𝚽𝚽𝟎𝟎 + ∑ 𝚽𝚽𝒊𝒊𝑷𝑷𝒕𝒕−𝒊𝒊 + 𝜺𝜺𝒕𝒕𝑘𝑘
𝑖𝑖=1 , (3) 

where 𝚽𝚽𝟎𝟎 is vector of intercepts, 𝚽𝚽𝒊𝒊 = �
𝜙𝜙11,𝑖𝑖 𝜙𝜙12,𝑖𝑖
𝜙𝜙21,𝑖𝑖 𝜙𝜙22,𝑖𝑖

� is the matrix of the parameters 

for lags 𝑖𝑖 = 1, … , 𝑘𝑘 and 𝜺𝜺𝒕𝒕 is vector of error terms. 

3.2 Long Memory 
Process 𝐼𝐼𝑡𝑡 has degree of fractional integration 𝑑𝑑 (we write 𝐴𝐴(𝑑𝑑)) when: 

(1 − 𝐼𝐼)𝑑𝑑𝐼𝐼𝑡𝑡 = 𝑢𝑢𝑡𝑡, (4) 

Here, 𝐼𝐼 is a lag operator (𝐼𝐼𝐼𝐼𝑡𝑡 = 𝐼𝐼𝑡𝑡−1), and 𝑢𝑢𝑡𝑡 is a process with short memory. 
Expression (1 − 𝐼𝐼)𝑑𝑑 can be written in the form of a series expansion. 

For parameter 0 < |𝑑𝑑| < 0.5, this process is stationary and invertible, and the 
autocorrelation function exhibits a hyperbolic decay. In addition, if 𝑑𝑑 ∈ (0; 0.5), the 
process has long memory, and if 𝑑𝑑 ∈ (−0.5; 0), the process is antipersistent and has 
intermediate memory. 

For 𝑑𝑑 ∈ [0.5; 1), the variance of 𝐼𝐼𝑡𝑡 is infinite. In this case, the process is 
covariance nonstationary but still mean-reverting. 

In the empirical part, we use the exact local Whittle estimator (Phillips and 
Shimotsu, 2005) of long-memory parameter 𝑑𝑑.  
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Simplifying – if 𝑑𝑑0 is the value of the true parameter of long-memory 
parameter 𝑑𝑑 and the assumed 𝑚𝑚 is such that 1

𝑚𝑚
+ 𝑚𝑚(log𝑚𝑚)1/2

𝑛𝑛
+ log𝑛𝑛

𝑚𝑚𝛾𝛾 → 0  for any 𝛾𝛾 > 0 
as 𝑛𝑛 → ∞, then the ELW estimator is consistent and the following holds true: 

�𝑚𝑚(�̂�𝑑𝐸𝐸𝐿𝐿𝐸𝐸 − 𝑑𝑑0)
𝑑𝑑
→𝑁𝑁 �0,

1
4
� . (5) 

3.3 Copulas and Tail Dependence  
Assume that random variables 𝐼𝐼 and 𝑌𝑌 have continuous distribution functions 

𝐹𝐹 and 𝐺𝐺, respectively. Let their joint distribution function be 𝐻𝐻(𝑥𝑥,𝑦𝑦). According to 
Sklar’s theorem (1959) (comp. Nelson, 2006), function 𝐶𝐶 (called the copula) exists 
such that 𝐻𝐻(𝑥𝑥,𝑦𝑦) = 𝐶𝐶(𝑢𝑢, 𝑣𝑣) with 𝑢𝑢 = 𝐹𝐹(𝑥𝑥) and 𝑣𝑣 = 𝐺𝐺(𝑦𝑦). The copulas are then 
multivariate cumulative distribution functions with univariate margins uniformly 
distributed on interval [0, 1]. Sklar’s theorem allows us to separately model the 
marginal distribution and dependence structure described by the copula (which joins 
the marginal distributions). Given the many families of univariate distributions and 
copulas, the latter are very useful in modeling the dependence structures between 
random variables. One of the properties of the copulas is their invariance for strictly 
monotone transformations of random variables. Moreover, the dependence measures 
can be expressed in terms of copulas and do not depend on marginal distributions. 

A very important issue is the dependence of random variables in the tails. For 
a given 𝛼𝛼, the lower tail dependence is defined as 𝑃𝑃[𝑌𝑌 < 𝐺𝐺−1(𝛼𝛼)|𝐼𝐼 < 𝐹𝐹−1(𝛼𝛼)]. The 
dependence in the upper tail is given as 𝑃𝑃[𝑌𝑌 > 𝐺𝐺−1(𝛼𝛼)|𝐼𝐼 > 𝐹𝐹−1(𝛼𝛼)]. Taking the limit, 
we obtain the following lower tail dependence 𝜏𝜏𝐿𝐿 between 𝐼𝐼 and 𝑌𝑌: 

𝜏𝜏𝐿𝐿 = lim
𝛼𝛼→0+

𝑃𝑃[𝑌𝑌 < 𝐺𝐺−1(𝛼𝛼)|𝐼𝐼 < 𝐹𝐹−1(𝛼𝛼)] (6) 

and upper tail dependence 𝜏𝜏𝑈𝑈: 

𝜏𝜏𝑈𝑈 = lim
𝛼𝛼→1−

𝑃𝑃[𝑌𝑌 > 𝐺𝐺−1(𝛼𝛼)|𝐼𝐼 > 𝐹𝐹−1(𝛼𝛼)]. (7) 

From the above definitions, it follows that the tail dependence coefficients measure the 
probability that the margins take extreme (small or large) values. In terms of the 
copulas, they are equal to the following: 

𝜏𝜏𝐿𝐿 = lim
𝑢𝑢→0+

𝐶𝐶(𝑢𝑢,𝑢𝑢)
𝑢𝑢

, (8) 
 

𝜏𝜏𝑈𝑈 = lim
𝑢𝑢→1−

𝐶𝐶̅(𝑢𝑢,𝑢𝑢)
1−𝑢𝑢

, (9) 

where �̅�𝐶 denotes the survival copula of 𝐶𝐶: �̅�𝐶(𝑢𝑢,𝑣𝑣) = 𝑢𝑢 + 𝑣𝑣 − 1 + 𝐶𝐶(1 − 𝑢𝑢, 1 − 𝑣𝑣), for 
𝑢𝑢, 𝑣𝑣 ∈ [0,1]. We say that variables 𝐼𝐼 and 𝑌𝑌 are called asymptotically dependent in the 
lower (upper) tail if 𝜏𝜏𝐿𝐿 ∈ (0,1] (𝜏𝜏𝑈𝑈 ∈ (0,1]) and asymptotically independent if 𝜏𝜏𝐿𝐿 =
0 (𝜏𝜏𝑈𝑈 = 0). From these definitions, it follows that, if copula 𝐶𝐶 has upper-tail 
dependence, then copula �̅�𝐶 has lower-tail dependence and vice versa.  
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The list of copulas that can be used is extensive (see Nelson [2006], for 
example). The most popular are Archimedean copulas, which allow us to model 
asymmetric tail dependence (Gumbel or Clayton, for example), and elliptical copulas, 
which are used in modeling symmetric tail dependence (copula 𝑡𝑡) or tail independence 
(Gaussian copula). An important role in determining correlation is played by Kendall’s 
𝜏𝜏 coefficient. This is one of the most popular rank correlation coefficients. It relies on 
the notion of concordance. Let (𝑥𝑥1,𝑦𝑦1) and (𝑥𝑥2,𝑦𝑦2) be two observations of random 
vector (𝐼𝐼,𝑌𝑌). We say that the pair is concordant whenever (𝑦𝑦1 − 𝑦𝑦2)(𝑥𝑥1 − 𝑥𝑥2) > 0 
and discordant whenever (𝑦𝑦1 − 𝑦𝑦2)(𝑥𝑥1 − 𝑥𝑥2) < 0. Intuitively, a pair of random 
variables are concordant if large values of one variable are more likely to occur with 
large values of the other variable. For random variables 𝐼𝐼 and 𝑌𝑌, Kendall’s 𝜏𝜏 is the 
difference between the probabilities of concordance and discordance: 

𝜏𝜏 = 𝑃𝑃[(𝑦𝑦1 − 𝑦𝑦2)(𝑥𝑥1 − 𝑥𝑥2) > 0] − 𝑃𝑃[(𝑦𝑦1 − 𝑦𝑦2)(𝑥𝑥1 − 𝑥𝑥2) < 0]. (10) 

For the pair of random variables 𝐼𝐼 and 𝑌𝑌 and its copula 𝐶𝐶, Kendall’s 𝜏𝜏 has a 
very closed form given by the following: 

𝜏𝜏 = 4� 𝐶𝐶(𝑢𝑢, 𝑣𝑣)𝑑𝑑𝐶𝐶(𝑢𝑢, 𝑣𝑣) − 1
[0,1]2

. (11) 

Since a copula is invariant with respect to any monotonic transformation, 
Kendall’s 𝜏𝜏 also has this property. In the next chapter, we describe the stock exchanges 
under study. 

4. Data from Vienna and Warsaw Stock Exchanges  
Our dataset contains the tick data of 11 individual stocks from the ATX 

(covering the period of January 2, 2006, through April 8, 2016) and 20 stocks from the 
WSE (January 3, 2011, through March 28, 2017). From the data, we collected the daily 
prices and volumes along with the high-frequency prices.1 

The Warsaw Stock Exchange (WSE) began operation on April 16, 1991. This 
was the first trading day of the listing; intensive development on the exchange occurred 
after Poland’s EU accession in 2004. The most important index on the Warsaw Stock 
Exchange is the WIG20. 

The WIG20 index is a price index that is calculated on the basis of the 20 largest 
and most-liquid companies. Since March 19, 2007, the WIG20 index has been 
published every 15 seconds during the session; before this date, the value of this index 
was published every 30 seconds based on the prices of the 20 largest and most-liquid 
companies. 

The stocks of the companies from the Vienna Stock Exchange (VSE) analyzed 
in this study are listed on the Austrian Traded Index (ATX). The Vienna Stock 
Exchange (Wiener Börse AG) was created in 1771, making it one of the oldest stock 
exchanges in the world. Since November 5, 1999, trading on the VSE has been 
conducted via the Xetra® (Exchange Electronic Trading) system. This is the same 

                                                            
1 Computations were conducted in R and Matlab environments. 
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system that is used on the Frankfurt Stock Exchange.  
The ATX index is like the WIG20 – a price index. Its value is calculated based 

on the prices of the 20 largest and most-liquid companies listed on the Vienna Stock 
Exchange. During continuous trading, the values of the ATX index are published 
immediately after each transaction of every company included in this index. 

Nowadays, the stock exchanges in Warsaw and Vienna are the largest capital 
markets in Central and Eastern Europe. They exhibited a similar capitalization in 2004; 
the number of daily transactions in Warsaw and Vienna amounted to 142,500 and 
32,200, respectively. The daily turnover in Warsaw was €56.1 million; in Vienna, this 
amounted to €76.7 million.  

However, the WSE overtook the VSE in 2008 with respect to capitalization. In 
addition, we can observe different models of development in both stock exchanges. In 
the case of the WSE, development is stimulated by new offers; we can observe an 
increase in the number of listed companies. Development of the Vienna Stock 
Exchange, however, is focused on the creation of a capital group that  includes capital 
markets from southeastern Europe. The WSE and VSE were local competitors at one 
time; however, they once considered a merger. There was a discussion about different 
forms of cooperation; however, these discussions were not successful. Unfortunately, 
the WSE announced that talks about a potential merger with the VSE were cut off in 
2014. In the opinion of many investors from both exchanges, this was not a good 
decision. In this way, a large and strong stock exchange in Central and Eastern Europe 
was not created – one that could attract many new investors from neighboring countries 
like Ukraine and the Balkans.  

In spite of the similar capitalization, the WSE and VSE are quite different with 
respect to the number of listed companies. In the case of the WSE, the number of 
companies continuously increased, while one can observe a reduction in the number 
of companies in the case of the VSE.  

Different patterns of listing are utilized in both markets. During the years after 
2004, the schedule of the WSE sessions changed several times. During this time, the 
WARSET transaction system (existing on the WSE since 2001) was changed. This 
system was replaced on April 15, 2013, by the UTP (Universal Trading Platform) 
system, which is also used by the stock exchanges of other groups (the NYSE and 
Euronext, among others). As compared to the WARSET system, UTP can handle about 
20,000 offers a second, while the WARSET system can handle up to 850 offers per 
second. Also, time has been shortened due to the UTP; this fact has made high-
frequency trading possible. 

Since November 5, 1999, transactions on the VSE have been handled by the 
Xetra® system. As compared to the WSE, one can notice fewer changes in the 
schedule of the session on the VSE. Through the end of 2008, the continuous listing 
of companies from the ATX started at 9:20; however, since January 1, 2009, 
continuous listing has commenced at 9:01. The most important difference between the 
scheduling of sessions in Vienna and Warsaw is the intraday auction (which starts at 
12:00). In addition, the duration of this part of the listing is not the same on all days. 
On most days, the intraday auction occurs between 12:00 and 12:03 (or it takes place 
at 12:05:30 on expiration days on the future market). 
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In the next chapter, we present our results of our computations using the 
methodology outlined in this section. At very beginning of the next section, we will 
provide descriptive statistics of the data under study. 

5. Empirical Findings  
In the table below, we present the descriptive statistics of the companies under 

study (to save space, quantiles of the main descriptive statistics are presented).  

Table 1 Descriptive Statistics of ATX Companies 
𝑨𝑨𝑨𝑨𝑨𝑨 

  mean s.d. kurtosis skewness 
minimum 7.38 1.61 5.34 -2.60 
1st quartile 7.49 1.82 6.34 -1.53 
median 8.59 1.86 7.08 -1.19 
3rd quartile 9.64 2.00 8.72 -0.97 
maximum 10.71 2.25 13.28 -0.80 

𝑨𝑨𝑰𝑰𝑰𝑰𝑨𝑨𝑿𝑿 
  mean s.d. kurtosis skewness 
minimum -7.52 0.21 2.92 -0.44 
1st quartile -7.20 0.24 3.15 -0.32 
median -6.98 0.28 3.53 -0.21 
3rd quartile -6.65 0.30 3.75 -0.01 
maximum -6.45 0.37 5.47 0.65 

𝑹𝑹𝑹𝑹 
 mean s.d. kurtosis skewness 

minimum 0.61 0.85 3.31 -0.79 
1st quartile 1.01 0.87 3.59 0.34 
median 1.10 0.96 3.81 0.46 
3rd quartile 1.29 1.00 3.96 0.53 
maximum 1.57 1.15 5.26 0.66 

Table 2 Descriptive statistics of WIG companies 
𝑨𝑨𝑨𝑨𝑨𝑨  

 mean s.d. kurtosis skewness 
minimum 3.80 1.79 1.98 -3.04 
1st quartile 7.35 2.06 6.77 -2.64 
median 9.03 2.30 9.41 -1.92 
3rd quartile 10.93 2.91 10.61 -1.62 
maximum 12.89 3.68 16.21 0.57 

𝑨𝑨𝑰𝑰𝑰𝑰𝑨𝑨𝑿𝑿 
 mean s.d. kurtosis skewness 
minimum -8.25 0.20 3.03 -0.93 
1st quartile -7.60 0.26 3.57 -0.52 
median -7.13 0.33 3.88 -0.13 
3rd quartile -6.91 0.46 4.49 0.19 
maximum -5.75 0.81 6.88 0.91 

𝑹𝑹𝑹𝑹 
 mean s.d. kurtosis skewness 
minimum 0.43 0.69 3.60 -1.14 
1st quartile 0.92 0.77 3.91 -0.23 
median 1.03 0.84 4.70 0.24 
3rd quartile 1.25 0.91 7.04 0.58 
maximum 1.58 1.22 18.82 2.68 

The computed descriptive statistics are similar for both markets. The values of 
skewness and/or kurtosis indicate a departure from normality. This is confirmed by the 
Jarque-Bera tests (we reject the null at a 1% significance level in all cases). The results 
of the Ljung-Box tests along with the slow decay of the autocorrelation function leads 
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us to the conclusion that the series of illiquidity and realized volatility exhibit long 
memory.  

Preliminarily, we computed sample linear and Kendall correlation coefficients 
for the 𝐴𝐴𝐴𝐴𝐴𝐴–𝑅𝑅𝑅𝑅 and 𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼–𝑅𝑅𝑅𝑅 pairs. For the companies from both markets, the values 
of the linear coefficients are greater than Kendall on average. The dependence is 
stronger for ATX companies for both coefficients. With one exception, the correlation 
coefficients between the 𝐴𝐴𝐴𝐴𝐴𝐴–𝑅𝑅𝑅𝑅 pair are greater than in the case of the 𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼–𝑅𝑅𝑅𝑅 
pair. For the WIG, this is not the case summary for 13 companies. 

Figure 1 Structural Breaks of AND (top) and ACP (bottom) 

  

  
Notes: Figure 1 Illustrates the optimal partition from the structural break estimation for Austrian stock AND (top) 

and Polish stock ACP (bottom). The green lines represent the mean value of the series, and the blue 
lines represent the mean values in each segment. The 𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼 illiquidity series are presented on the left 
side, and the realized volatility is on the right. 

At first, we investigate the occurrence of structural breaks as a source of long 
memory, and we adopt multiple breaks in the mean estimation of Bai and Perron (1998, 
2003), which are similar to Yang and Chen (2014). Let 𝑦𝑦𝑡𝑡 = 𝑚𝑚𝑖𝑖 + 𝜀𝜀𝑡𝑡 be the series 
under study, with mean 𝑚𝑚𝑖𝑖 and error term 𝜀𝜀𝑡𝑡 for 𝑡𝑡 = 𝑇𝑇𝑖𝑖−1 + 1,𝑇𝑇𝑖𝑖−1 + 2, … . ,𝑇𝑇𝑖𝑖 and 𝑖𝑖 =
1,2, … . ,𝐴𝐴 + 1. The unknown break dates (or optimal partition) 𝑇𝑇1,𝑇𝑇2, … . ,𝑇𝑇𝑀𝑀 are 
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estimated using the least squares estimation, and their number is determined via the 
Bayesian Information Criterion. We observe that the volatility and illiquidity series 
contain multiple structural changes in the mean, which can explain the long-memory 
property in the time series (exceptions are the 𝐴𝐴𝐴𝐴𝐴𝐴 illiquidity series of the ACP, CPS, 
and MIL companies)2. In Figure 1, we present an optimal partition of the 𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼 
illiquidity and realized volatility series for Austrian stock AND (four breakpoints in 
illiquidity and five in realized volatility) and Polish stock ACP (two and three 
breakpoints in illiquidity and realized volatility, respectively). 

After removing the structural breaks in the mean (by subtracting component 
𝑚𝑚𝑖𝑖 from series), we estimate the long-memory parameters. During the estimation, we 
use the 𝐸𝐸𝐼𝐼𝐸𝐸 estimator described in Section 3.2 with 𝑚𝑚 = 𝑛𝑛0.6 and 𝑚𝑚 = 𝑛𝑛0.55 (where 
𝑛𝑛 is the series length). The results of this estimation are presented in Tables 3 and 4. 
Table 3 Long-Memory Parameters of ATX Companies after Removing sStructural 

Breaks  
𝒎𝒎 = 𝒏𝒏𝟎𝟎.𝟔𝟔 𝒎𝒎 = 𝒏𝒏𝟎𝟎.𝟓𝟓𝟓𝟓 

company 𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼 𝑅𝑅𝑅𝑅 𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼 𝑅𝑅𝑅𝑅 
VOE 0.489 

(0.394;0.584) 
0.594 

(0.499;0.689) 
0.562 

(0.467;0.657) 
0.542 

(0.427;0.657) 
0.594 

(0.499;0.689) 
0.514 

(0.401;0.627) 

AND 0.371 
(0.278;0.464) 

0.482 
(0.389;0.575) 

0.577 
(0.484;0.670) 

0.348 
(0.235;0.461) 

0.482 
(0.389;0.575) 

0.459 
(0.346;0.572) 

ERST 0.419 
(0.326;0.512) 

0.358 
(0.265;0.451) 

0.632 
(0.539;0.725) 

0.413 
(0.300;0.526) 

0.358 
(0.265;0.451) 

0.586 
(0.473;0.699) 

VERB 0.428 
(0.335;0.521) 

0.629 
(0.536;0.722) 

0.339 
(0.246;0.432) 

0.503 
(0.390;0.616) 

0.629 
(0.536;0.722) 

0.437 
(0.324;0.550) 

OMV 0.316 
(0.223;0.409) 

0.394 
(0.301;0.487) 

0.522 
(0.429;0.615) 

0.336 
(0.223;0.449) 

0.394 
(0.301;0.487) 

0.496 
(0.383;0.609) 

VIGR 0.292 
(0.199;0.385) 

0.390 
(0.297;0.483) 

0.558 
(0.465;0.651) 

0.349 
(0.236;0.462) 

0.390 
(0.297;0.483) 

0.540 
(0.427;0.653) 

RIBH 0.428 
(0.335;0.521) 

0.373 
(0.280;0.466) 

0.595 
(0.502;0.688) 

0.390 
(0.277;0.503) 

0.373 
(0.280;0.466) 

0.501 
(0.388;0.614) 

RHI 0.221 
(0.128;0.314) 

0.426 
(0.333;0.519) 

0.428 
(0.335;0.521) 

0.220 
(0.107;0.333) 

0.426 
(0.333;0.519) 

0.437 
(0.324;0.550) 

WBSV 0.305 
(0.212;0.398) 

0.347 
(0.254;0.440) 

0.443 
(0.350;0.536) 

0.277 
(0.164;0.390) 

0.347 
(0.254;0.440) 

0.466 
(0.353;0.579) 

TELA 0.293 
(0.200;0.386) 

0.604 
(0.511;0.697) 

0.596 
(0.503;0.689) 

0.335 
(0.222;0.448) 

0.604 
(0.511;0.697) 

0.602 
(0.489;0.715) 

POST 0.188 
(0.095;0.281) 

0.410 
(0.317;0.503) 

0.323 
(0.230;0.416) 

0.207 
(0.094;0.320) 

0.410 
(0.317;0.503) 

0.276 
(0.163;0.389) 

Notes: This table reports the results of the estimation of the long-memory parameter using the ELW estimator 
for two choices of bandwidths (𝑚𝑚 = 𝑛𝑛0.6 and 𝑚𝑚 = 𝑛𝑛0.55). The asymptotic 95% confidence intervals are 
constructed by adding and subtracting 1.96 ∙ 1/√4𝑚𝑚 to the estimates. The method is applied to the series 
after removing the structural breaks in the mean. 

From these results, we conclude that the long memory parameters are generally 
larger for the ATX companies. For the WIG companies, all but one (BZW) are in a 
stationary region, whereas for ATX companies, there are a few cases (for some of 
them, the left boundary of the confidence interval is also greater than 0.5). For EUR 
and TPE, we can observe negative values of the estimates (but insignificantly different 
from zero for the 5% significance level). We notice that removing the structural breaks 
leads to a reduction in the variances of the realized volatility and illiquidity series. 
From now on, we apply a method similar to Rossi and de Magistris (2013) and Gurgul 
and Syrek (2013). We apply fractional differencing to the series of illiquidity and 
realized volatility and apply Vector Autoregressive models. The maximum lag length 
is chosen using the Bayesian Information Criterion and does not exceed four. To 
explore the dependence structure, we apply the copulas presented in Chapter 3 of our 
study. Rossi and de Magistris (2013) estimate the parameters of the marginal 

                                                            
2 Full information about the dates of the breaks are available from the authors upon request. 
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distributions using the maximum likelihood method along with the parameters of the 
copulas; we instead apply the canonical maximum likelihood method (Cherubini et al., 
2004). The residuals from the VAR models are transformed into uniformly distributed 
𝑈𝑈(0,1) variables using the empirical cumulative distribution function; then, the 
parameters of the copulas are estimated with the maximum likelihood method. The 
selection of the copulas that fit the best are based on the Bayesian Information 
Criterion. During the estimation procedure, we fit numerous families of copulas. The 
most often chosen copulas are the Archimedean copulas: Gumbel (G), Clayton (C), 
Joe (J), BB1 and BB7 (along with their survival versions with prefix “S”) as well 
elliptical copulas 𝑡𝑡 and Gaussian (N). Descriptions of these copulas are given in the 
appendix. In Figure 2, we present the scatter plots of the (𝑈𝑈,𝑅𝑅) pairs for the ERST and 
ACP companies (𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑅𝑅𝑅𝑅 on the left, 𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼 − 𝑅𝑅𝑅𝑅 on the right). When using 𝐴𝐴𝐴𝐴𝐴𝐴 
as the illiquidity measure, we observe a concentration of points in the top-right corner, 
whereas for the 𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼 a concentration is shown in the bottom-left corner. 
Table 4 Long-Memory Parameters of WIG Companies after Removing Structural 

Breaks 
 𝒎𝒎 = 𝒏𝒏𝟎𝟎.𝟔𝟔 𝒎𝒎 = 𝒏𝒏𝟎𝟎.𝟓𝟓𝟓𝟓 
  𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼 𝑅𝑅𝑅𝑅 𝐴𝐴𝐴𝐴𝐴𝐴 𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼 𝑅𝑅𝑅𝑅 
ACP 0.135 

(0.027;0.243) 
0.286 

(0.178;0.394) 
0.255 

(0.147;0.363) 
0.135 

(0.005;0.265) 0.190 (0.06;0.320) 0.322 
(0.192;0.452) 

BZW 0.301 
(0.193;0.409) 

0.683 
(0.575;0.791) 

0.377 
(0.269;0.485) 

0.274 
(0.144;0.404) 

0.74  
(0.61;0.87) 

0.426 
(0.296;0.556) 

CCC 0.096  
(-0.012;0.204) 

0.246 
(0.138;0.354) 

0.105  
(-0.003;0.213) 

0.076  
(-0.054;0.206) 

0.359 
(0.229;0.489) 

0.108  
(-0.022;0.238) 

CPS 0.098  
(-0.01;0.206) 

0.156 
(0.048;0.264) 

0.222 
(0.114;0.330) 

0.143 
(0.013;0.273) 

0.160  
(0.03;0.29) 

0.211 
(0.081;0.341) 

ENA 0.179 
(0.071;0.287) 0.378 (0.27;0.486) 0.355 

(0.247;0.463) 
0.078  

(-0.052;0.208) 
0.332 

(0.202;0.462) 
0.360  

(0.23;0.49) 

EUR -0.045  
(-0.153;0.063) 

0.292  
(0.184;0.4) 

0.345 
(0.237;0.453) 

0.075  
(-0.055;0.205) 

0.299 
(0.169;0.429) 

0.430  
(0.3;0.56) 

GTC 0.168 
(0.06;0.276) 0.212 (0.104;0.32) 0.387 

(0.279;0.495) 
0.212 

(0.082;0.342) 
0.275 

(0.145;0.405) 
0.418 

(0.288;0.548) 

ING 0.110 
(0.002;0.218) 

0.266 
(0.158;0.374) 

0.163 
(0.055;0.271) 

0.158 
(0.028;0.288) 

0.265 
(0.135;0.395) 

0.128  
(-0.002;0.258) 

KER 0.140 
(0.032;0.248) 

0.314 
(0.206;0.422) 

0.361 
(0.253;0.469) 

0.090  
(-0.04;0.22) 

0.219 
(0.089;0.349) 

0.349 
(0.219;0.479) 

KGH 0.205 
(0.097;0.313) 

0.169 
(0.061;0.277) 

0.360 
(0.252;0.468) 

0.302 
(0.172;0.432) 

0.171 
(0.041;0.301) 

0.41  
(0.28;0.54) 

LTS 0.224 
(0.116;0.332) 

0.279 
(0.171;0.387) 

0.369 
(0.261;0.477) 

0.262 
(0.132;0.392) 

0.191 
(0.061;0.321) 

0.429 
(0.299;0.559) 

MIL 0.189 
(0.081;0.297) 

0.201 
(0.093;0.309) 

0.379 
(0.271;0.487) 

0.167 
(0.037;0.297) 

0.066  
(-0.064;0.196) 

0.476 
(0.346;0.606) 

PEO 0.248 
(0.14;0.356) 

0.200  
(0.092;0.308) 

0.409 
(0.301;0.517) 

0.251 
(0.121;0.381) 

0.242 
(0.112;0.372) 

0.491 
(0.361;0.621) 

PGE 0.140 
(0.032;0.248) 

0.264 
(0.156;0.372) 

0.396 
(0.288;0.504) 

0.069  
(-0.061;0.199) 

0.205 
(0.075;0.335) 

0.38  
(0.25;0.51) 

PGN 0.133 
(0.025;0.241) 

0.283 
(0.175;0.391) 

0.279 
(0.171;0.387) 

0.205 
(0.075;0.335) 

0.238 
(0.108;0.368) 

0.287 
(0.157;0.417) 

PKN 0.166 
(0.058;0.274) 

0.186 
(0.078;0.294) 

0.311 
(0.203;0.419) 

0.153 
(0.023;0.283) 

0.279 
(0.149;0.409) 

0.313 
(0.183;0.443) 

PKO 0.104  
(-0.004;0.212) 

0.219 
(0.111;0.327) 

0.449 
(0.341;0.557) 

0.133 
(0.003;0.263) 

0.11  
(-0.02;0.24) 

0.436 
(0.306;0.566) 

PZU 0.154 
(0.046;0.262) 0.238 (0.13;0.346) 0.309 

(0.201;0.417) 
0.135 

(0.005;0.265) 
0.274 

(0.144;0.404) 
0.315 

(0.185;0.445) 

SNS 0.050  
(-0.058;0.158) 0.342 (0.234;0.45) 0.303 

(0.195;0.411) 
0.052  

(-0.078;0.182) 
0.232 

(0.102;0.362) 
0.247 

(0.117;0.377) 

TPE -0.071  
(-0.179;0.037) 

0.389 
(0.281;0.497) 

0.384 
(0.276;0.492) 

-0.119  
(-0.249;0.011) 

0.177 
(0.047;0.307) 

0.436 
(0.306;0.566) 

Notes: This table reports the results of the estimation of the long-memory parameter using the ELW estimator 
for two choices of bandwidths (𝑚𝑚 = 𝑛𝑛0.6 and 𝑚𝑚 = 𝑛𝑛0.55). The asymptotic 95% confidence intervals are 
constructed by adding and subtracting 1.96 ∙ 1/√4𝑚𝑚 to the estimates. The method is applied to the series 
after removing the structural breaks in the mean. 
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Figure 2 Scatter Plots for ERST (top) and ACP (bottom) 

  

  
Notes: Figure 2 illustrates the scatter plots of the (𝑈𝑈,𝑅𝑅) pairs for the ERST (top) and ACP (bottom) companies. 

The 𝐴𝐴𝐴𝐴𝐴𝐴 − 𝑅𝑅𝑅𝑅 pair is on the left, and the 𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼 − 𝑅𝑅𝑅𝑅 pair is on the right. 

Despite the similarity between the 𝐴𝐴𝐴𝐴𝐴𝐴 and 𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼 mentioned in the previous 
sections, the dependence measures based on the copulas that fit best with respect to the 
markets are very different. The copulas for the 𝐴𝐴𝐴𝐴𝐴𝐴 illiquidity-realized volatility pairs 
are characterized by dependence in the upper tails (high values of illiquidity are 
associated with high values of volatility), whereas the 𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼-realized volatility pairs 
are characterized by dependence in the lower tails at most (the low illiquidity is 
associated with low volatility). For the last case of a few of the WIG companies, we 
observe that the elliptical copulas Gaussian (with tail independence) and t (with 
symmetric dependence) best fit the data. On average, the dependence measured by 
Kendall’s tau is stronger when considering the 𝐴𝐴𝐴𝐴𝐴𝐴 illiquidity measure and are 
stronger for the ATX companies. This is also true when comparing the values of the 
tail dependence coefficient. At the least, we can observe that the computed 𝜏𝜏𝑈𝑈 from 
the 𝐴𝐴𝐴𝐴𝐴𝐴 illiquidity-realized volatility pairs is greater than the 𝜏𝜏𝐿𝐿 from the 𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼-
realized volatility pairs. This is true for both the ATX and WIG companies. It is worth 
mentioning that the sample Kendall coefficients are generally greater than those 
computed from the estimated copulas.  
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Application of the VAR models allows us to analyze the causal dependence. 
The table below presents the numbers of rejections of the null hypothesis of non-
causality (with a 1% significance level; ↛ means “does not Granger cause”). 

Table 7 Copula Estimation Results for ATX Companies 
 

𝑨𝑨𝑨𝑨𝑨𝑨 𝑨𝑨𝑰𝑰𝑰𝑰𝑨𝑨𝑿𝑿 
company copula 𝜏𝜏 𝜏𝜏𝐿𝐿 𝜏𝜏𝑈𝑈 copula 𝜏𝜏 𝜏𝜏𝐿𝐿 𝜏𝜏𝑈𝑈 
VOE G 0.21 0 0.28 SG 0.17 0.22 0.00 
AND G 0.24 0 0.31 C 0.15 0.14 0.00 
ERST SBB7 0.24 0.09 0.28 SG 0.21 0.27 0.00 
VERB G 0.25 0 0.32 SG 0.22 0.28 0.00 
OMV G 0.31 0 0.38 C 0.16 0.17 0.00 
VIGR G 0.30 0 0.37 C 0.14 0.12 0.00 
RIBH G 0.27 0 0.35 BB1 0.19 0.17 0.06 
RHI G 0.25 0 0.32 SG 0.18 0.24 0.00 
WBSV SC 0.21 0 0.28 SG 0.21 0.27 0.00 
TELA G 0.26 0 0.33 SG 0.21 0.27 0.00 
POST G 0.28 0 0.35 SG 0.19 0.25 0.00 

Notes: This table reports the results of the estimation of the copula parameters and dependence measures for 
the illiquidity-realized volatility pairs. The estimated copulas are Gumbel (G), Clayton (C),  BB1 and BB7. 
The “S” prefix denotes their survival versions. 

Table 8 Copula Estimation Results for WIG Companies 
 𝑨𝑨𝑨𝑨𝑨𝑨 𝑨𝑨𝑰𝑰𝑰𝑰𝑨𝑨𝑿𝑿 
company copula 𝜏𝜏 𝜏𝜏𝐿𝐿 𝜏𝜏𝑈𝑈 copula 𝜏𝜏 𝜏𝜏𝐿𝐿 𝜏𝜏𝑈𝑈 
ACP G 0.23 0 0.29 SG 0.24 0.31 0.00 
BZW SC 0.19 0 0.23 C 0.15 0.13 0.00 
CCC G 0.25 0 0.32 N 0.17 0.00 0.00 
CPS G 0.24 0 0.30 t 0.17 0.05 0.05 
ENA G 0.23 0 0.30 C 0.20 0.25 0.00 
EUR J 0.21 0 0.40 BB7 0.18 0.05 0.21 
GTC SC 0.24 0 0.34 BB1 0.24 0.04 0.22 
ING SC 0.23 0 0.32 SG 0.17 0.22 0.00 
KER G 0.24 0 0.31 SG 0.14 0.18 0.00 
KGH G 0.18 0 0.24 t 0.19 0.02 0.02 
LTS G 0.21 0 0.27 SG 0.14 0.19 0.00 
MIL G 0.24 0 0.31 t 0.15 0.05 0.05 
PEO G 0.19 0 0.24 t 0.22 0.03 0.03 
PGE G 0.23 0 0.30 SG 0.08 0.11 0.00 
PGN G 0.19 0 0.25 SJ 0.12 0.25 0.00 
PKN G 0.26 0 0.33 C 0.17 0.19 0.00 
PKO G 0.27 0 0.34 BB1 0.18 0.07 0.10 
PZU G 0.23 0 0.30 SG 0.20 0.26 0.00 
SNS G 0.25 0 0.32 C 0.14 0.12 0.00 
TPE G 0.22 0 0.28 BB1 0.22 0.08 0.16 

Notes: This table reports the results of the estimation of the copula parameters and dependence measures for 
the illiquidity-realized volatility pairs. The estimated copulas are Gumbel (G), Clayton (C), Joe (J), BB1, 
BB7, t and Gaussian (N). The “S” prefix denotes their survival versions. 

Table 9 Granger Causality Testing Results 
𝑨𝑨𝑨𝑨𝑿𝑿 

  𝐻𝐻0: 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡𝑖𝑖𝑣𝑣𝑖𝑖𝑡𝑡𝑦𝑦 ↛ 𝑖𝑖𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑢𝑢𝑑𝑑𝑖𝑖𝑡𝑡𝑦𝑦 𝐻𝐻0: 𝑖𝑖𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑢𝑢𝑑𝑑𝑖𝑖𝑡𝑡𝑦𝑦 ↛ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡𝑖𝑖𝑣𝑣𝑖𝑖𝑡𝑡𝑦𝑦 
𝐀𝐀𝐀𝐀𝐀𝐀 8 4 
𝐀𝐀𝐈𝐈𝐈𝐈𝐀𝐀𝐈𝐈 2 1 

𝑾𝑾𝑨𝑨𝑾𝑾 
 𝐻𝐻0: 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡𝑖𝑖𝑣𝑣𝑖𝑖𝑡𝑡𝑦𝑦 ↛ 𝑖𝑖𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑢𝑢𝑑𝑑𝑖𝑖𝑡𝑡𝑦𝑦 𝐻𝐻0: 𝑖𝑖𝑣𝑣𝑣𝑣𝑖𝑖𝑖𝑖𝑢𝑢𝑑𝑑𝑖𝑖𝑡𝑡𝑦𝑦 ↛ 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑡𝑡𝑖𝑖𝑣𝑣𝑖𝑖𝑡𝑡𝑦𝑦 

𝐀𝐀𝐀𝐀𝐀𝐀 4 7 
𝐀𝐀𝐈𝐈𝐈𝐈𝐀𝐀𝐈𝐈 1 1 

Notes: This table reports the numbers of rejection of null hypothesis with significance level 1%. Symbol ↛ means 
“does not Granger cause.” 
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The results of the tests are similar when using 𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼 as an illiquidity measure. 
We could conclude that non-causality occurs in both directions. For the ATX 
companies, volatility Granger causes 𝐴𝐴𝐴𝐴𝐴𝐴 illiquidity in 8 out of the 11 cases; however, 
the opposite statement is true in 4 cases. For the WIG companies, the situation is 
different; we more often observe a rejection of the null: illiquidity does not Granger 
cause volatility. For both markets and measures, the percentage of rejected null 
hypotheses is greater for the ATX companies.  

Based on the estimates of the VAR models, we found some similarities in the 
impulse response functions3 The strongest are the responses of AMI illiquidity to the 
realized volatility (RV->AMI) shocks in the first step. For the ATX companies, the 
minimum value of response is equal to 0.04, and the maximum value is 0.31 (with a 
median of 0.16). For the WIG companies, these values are 0.03, 0.41, and 0.19, 
respectively. In the next two steps, the responses ranges from negative values 
(minimum) to positive (maximum), with the median at around zero. The responses of 
the realized volatility to ILLIX shocks have a similar pattern. In the first step for the 
ATX companies, the ranges are found within a minimum of -0.07 to a maximum of 
0.28 (with a median of 0.04), and for the WIG companies, the ranges are found within 
a minimum of -0.18 and a maximum of 0.18 (with a median of 0.07). For either RV-
>ILLIX or AMI->RV relationship, the responses are weak (even for the first steps). 

6. Summary and Conclusions 
Liquidity is the ability to quickly sell or purchase a number of securities at a 

low cost without significantly changing the assets’ prices. There are many known 
alternative variables that stand for liquidity; transaction value, size, volume, turnover, 
and bid–offer spread. Instead of liquidity, we used its opposite notion (called 
illiquidity) in our study. The second most important characteristic of an asset is 
volatility (which stands for risk). The study uses high-frequency data to estimate the 
realized volatility, whereas the illiquidity is based on the daily data. The main goal of 
our empirical part was to check the relationships between illiquidity and realized 
volatility (but also to discover the properties of these series).  

Both the realized volatility and illiquidity exhibit structural changes in the 
mean. We observe that, on average, the estimated long memory parameters are higher 
for the ATX companies. For a few analyzed companies, the estimated values of the 
long memory parameters indicate nonstationarity. 

The copulas are proper tools that determine the dependence structure between 
realized volatility and illiquidity. By mean of copulas, the study provides important 
insights towards understanding these relationships (especially in the tails). 

The structure of the dependence of illiquidity-realized volatility (i.e., 𝐴𝐴𝐴𝐴𝐴𝐴 −
𝑅𝑅𝑅𝑅 and 𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼 − 𝑅𝑅𝑅𝑅) calculated by the copulas give quite different pictures. The 
copulas for the 𝐴𝐴𝐴𝐴𝐴𝐴 illiquidity-realized volatility pairs show a dependence in the upper 
tails. This means that the high values of illiquidity are related to high volatility. Quite 
the opposite is true for the 𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼-realized volatility pairs; they mostly show 
dependence in the lower tails. This means that low illiquidity is accompanied by low 
volatility. In the case of some WIG companies, we observe that the elliptical copulas 

                                                            
3 All results are available from the authors upon request. 
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(i.e., Gaussian or t-copulas) are most adequate with respect to the data. In most cases, 
the dependence measured by Kendall’s tau is stronger for the 𝐴𝐴𝐴𝐴𝐴𝐴 illiquidity measure. 
It is also stronger for the companies included in the ATX as compared to those 
companies included in the WIG. This is also true when comparing the values of the 
tail dependence coefficient. An interesting observation for all of the companies is that 
the 𝜏𝜏𝑈𝑈 for the 𝐴𝐴𝐴𝐴𝐴𝐴 illiquidity-realized volatility pairs outperform the 𝜏𝜏𝐿𝐿 for the 𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼-
realized volatility pairs.  

At last, we can make our conclusions about the Granger causality between the 
realized volatility and illiquidity and reactions to shocks (measured with the impulse 
response functions). 

When using 𝐴𝐴𝐼𝐼𝐼𝐼𝐴𝐴𝐼𝐼 as an illiquidity measure, the results are similar for both 
markets; non-causality exists in both directions. For most of the ATX companies, 
volatility Granger causes AMI illiquidity. The opposite statement is true in four cases. 
For most of the WIG companies, the rejection of the null hypothesis that illiquidity 
does not Granger cause volatility is observed. Regarding the impulse response 
function, we can observe some similarities; the strongest are the responses of AMI 
illiquidity to the realized volatility and responses of the realized volatility to ILLIX 
shocks. 
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APPENDIX 

Gaussian Copula (N) 
The distribution function of the bivariate Gaussian copula is given by 

𝐶𝐶𝜌𝜌𝐺𝐺𝐺𝐺(𝑢𝑢1,𝑢𝑢2)

= � �
1

2𝜋𝜋(1 − 𝜌𝜌2)1/2 𝑒𝑒𝑥𝑥𝑒𝑒 �
−�𝑠𝑠12 − 2𝜌𝜌𝑠𝑠1 𝑠𝑠2 + 𝑠𝑠22�

2(1 − 𝜌𝜌2)
�

Φ−1(𝑢𝑢2)

−∞

Φ−1(𝑢𝑢1)

−∞
𝑑𝑑𝑠𝑠1𝑑𝑑𝑠𝑠2, (12) 

where Φ−1 denotes the inverse cumulative distribution of the standard normal, and 𝜌𝜌 
is the linear correlation coefficient of the corresponding bivariate normal distribution. 
The Gaussian copulas has zero upper and lower tail dependence (one exception is the 
case of perfect dependence 𝜌𝜌 = 1). Kendall’s tau is simply given by 2

𝜋𝜋
arcsin (𝜌𝜌). 

t copula (t) 
The distribution function of bivariate t copula is defined as  

𝐶𝐶𝜈𝜈,𝜌𝜌
𝑡𝑡 (𝑢𝑢1,𝑢𝑢2)

= � �
1

2𝜋𝜋(1 − 𝜌𝜌2)
1
2
�1 +

𝑠𝑠12 − 2𝜌𝜌𝑠𝑠1 𝑠𝑠2 + 𝑠𝑠22

𝜈𝜈(1 − 𝜌𝜌2) �

−𝜈𝜈+22𝑡𝑡𝜈𝜈−1(𝑣𝑣)

−∞

𝑡𝑡𝜈𝜈−1(𝑢𝑢)

−∞
𝑑𝑑𝑠𝑠1𝑑𝑑𝑠𝑠2, (13) 

where 𝑡𝑡𝜈𝜈−1 is the inverse cumulative distribution of the univariate t with 𝜈𝜈 > 2 degrees 
of freedom, whereas 𝜌𝜌 ∈ (−1,1) is the linear correlation coefficient of the 
corresponding bivariate t distribution. Because of the radial symmetry, the tail 
dependence coefficient of the t copula equals 

𝜏𝜏𝐿𝐿 = 𝜏𝜏𝑈𝑈 = 2𝑡𝑡𝜈𝜈+1 �−√𝜈𝜈 + 1�1−𝜌𝜌
1+𝜌𝜌

�. (14) 

The relationship between Kendall’s tau and the linear correlation coefficient is the 
same as in the case of the Gaussian copula. 

Clayton Copula 
The Clayton copula is given by 

𝐶𝐶(𝑢𝑢1,𝑢𝑢2;𝜃𝜃) = max ([𝑢𝑢1−𝜃𝜃 + 𝑢𝑢2−𝜃𝜃 − 1]−
1
𝜃𝜃, 0), (15) 

with 𝜃𝜃 ∈ [−1,∞)\{0}. For positive values of 𝜃𝜃, we have: 

𝐶𝐶(𝑢𝑢1,𝑢𝑢2;𝜃𝜃) = (𝑢𝑢1−𝜃𝜃 + 𝑢𝑢2−𝜃𝜃 − 1)−
1
𝜃𝜃. (16) 
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The Clayton copula is an asymmetric copula and exhibits only lower tail dependence: 
𝜏𝜏𝐿𝐿 = 2−1 𝜃𝜃� . The coefficient of Kendall’s tau is given by 𝜏𝜏 = 𝜃𝜃

𝜃𝜃+2
. 

Gumbel Copula 
For parameter 𝜃𝜃 ∈ [1,∞), the distribution function of the Gumbel copula is given by 

𝐶𝐶(𝑢𝑢1,𝑢𝑢2;𝜃𝜃) = exp (−�(−𝑣𝑣𝑛𝑛𝑢𝑢1)𝜃𝜃 + (−𝑣𝑣𝑛𝑛𝑢𝑢2)𝜃𝜃�
1
𝜃𝜃). (17) 

The Gumbel copula exhibits only upper tail dependence: 𝜏𝜏𝑈𝑈 = 2 − 21/𝜃𝜃. The 
Kendall’s tau measure is calculated as 𝜏𝜏 = 1 − 𝜃𝜃−1. 

Joe Copula 
Defined for parameter 𝜃𝜃 ∈ [1,∞), the distribution function of the Joe copula is given 
by 

𝐶𝐶(𝑢𝑢1,𝑢𝑢2;𝜃𝜃) = 1 − �(1 − 𝑢𝑢1)𝜃𝜃 + (1 − 𝑢𝑢2)𝜃𝜃 − (1 − 𝑢𝑢1)𝜃𝜃(1 − 𝑢𝑢2)𝜃𝜃�
1
𝜃𝜃. (18) 

The Joe copula exhibits only upper tail dependence: 𝜏𝜏𝑈𝑈 = 2 − 21/𝜃𝜃. The Kendall’s tau 
measure is calculated as 𝜏𝜏 = 1 + 4

𝜃𝜃2 ∫ 𝑥𝑥 log(𝑥𝑥)(1 − 𝑥𝑥)2(1−𝜃𝜃)/𝜃𝜃𝑑𝑑𝑥𝑥1
0 . 

BB1 Copula 
The two parameter BB1 copula is given by 

𝐶𝐶(𝑢𝑢1,𝑢𝑢2;𝜃𝜃, 𝛿𝛿) = �1 + �(𝑢𝑢1−𝜃𝜃 − 1)𝛿𝛿 + (𝑢𝑢2−𝜃𝜃 − 1)𝛿𝛿�1/𝛿𝛿�
−1/𝜃𝜃

, (19) 

where 𝜃𝜃 > 0, 𝛿𝛿 ≥ 1. The tail dependence coefficient are given by 𝜏𝜏𝑈𝑈 = 2 − 21/𝛿𝛿 and 
𝜏𝜏𝐿𝐿 = 2−1/(𝛿𝛿𝜃𝜃). The coefficient of Kendall’s tau is calculated by 𝜏𝜏 =1- 2/(𝛿𝛿(𝜃𝜃 + 2)). 

BB7 Copula 
This family is given by 

𝐶𝐶(𝑢𝑢, 𝑣𝑣;𝜃𝜃,𝛿𝛿) = 1 − �1 − ��1 − 𝑢𝑢�𝜃𝜃�−𝛿𝛿 + �1 − �̅�𝑣𝜃𝜃�−𝛿𝛿 − 1�
−1𝛿𝛿�

1
𝜃𝜃

, (20) 

where 𝑢𝑢� = 1 − 𝑢𝑢, �̅�𝑣 = 1 − 𝑣𝑣 and 𝜃𝜃 ≥ 1, 𝛿𝛿 > 0. The tail dependence coefficients are 
simply given by 𝜏𝜏𝑈𝑈 = 2 − 21/𝜃𝜃 and 𝜏𝜏𝐿𝐿 = 2−1/𝛿𝛿. The coefficients of Kendall’s tau are 
computed by the following formula: 
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𝜏𝜏 = �
1 + 2

𝛿𝛿(𝜃𝜃−2)
+ 4(𝛿𝛿+1)

𝜃𝜃𝛿𝛿(𝜃𝜃−2)
𝐵𝐵 �2

𝜃𝜃
, 𝛿𝛿 + 1� ,    𝜃𝜃 ≠ 2 

1 + 1
𝛿𝛿
− 1

𝛿𝛿
�𝜓𝜓(𝛿𝛿 + 2) − 𝜓𝜓(1)�,         𝜃𝜃 = 2

, (21) 

where 𝐵𝐵(𝑥𝑥,𝑦𝑦) = ∫ 𝑡𝑡𝑥𝑥−1(𝑡𝑡 − 1)𝑦𝑦−1𝑑𝑑𝑡𝑡1
0  for 𝑥𝑥,𝑦𝑦 > 0 is the Beta function, Γ(𝑥𝑥) =

∫ 𝑡𝑡𝑥𝑥−1𝑒𝑒−𝑡𝑡𝑑𝑑𝑡𝑡∞
0  is the Gamma function, and 𝜓𝜓(𝑥𝑥) = Γ′(𝑥𝑥)

Γ(𝑥𝑥)
 for 𝑥𝑥 > 0. 
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