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Abstract 
The use of different time-series models to generate forecasts is fairly usual in the fields 
of macroeconomics and financial economics. When the target variable is stationary, 
the use of processes with unit roots may seem counterintuitive. Nevertheless, in this paper 
we demonstrate that forecasting a stationary variable with forecasts based on driftless 
unit-root processes generates bounded mean squared prediction errors at every single 
horizon. We also show that these forecasts are unbiased. In addition, we show via simula-
tions that persistent stationary processes may be better predicted by driftless unit-root-
based forecasts than by forecasts coming from a model that is correctly specified but is 
subject to a higher degree of parameter uncertainty. Finally, we provide an empirical 
illustration of our findings in the context of CPI inflation forecasts for a sample of indus-
trialized economies. 

1. Introduction 
Some of the univariate models used to predict macroeconomic time series, 

such as inflation or GDP growth, involve the explicit presence of a unit root. Under 
the assumption of stationarity of the target variable, this may seem counterintuitive. 
In principle, one could think that unit-root-based forecasts may not be appropriate to 
predict a stationary process. This is so for a number of reasons. First, unit-root-based 
forecasts would have been generated from a model that is misspecified and over-
differenced. Second, unit-root-based forecasts may have a deterministic trend 
approaching infinity (or minus infinity) as the forecasting horizon lengthens, which is 
clearly in conflict with a stationary process. Third, the optimal forecasts of a unit-root 
process display a divergent mean squared prediction error (MSPE) as the forecasting 
horizon approaches infinity. This may lead one to think that a similar property might 
hold true when forecasting a stationary process with unit-root-based forecasts. 

Despite these arguments, results in Atkeson and Ohanian (2001), Giacomini 
and White (2006), Elliot and Timmermann (2008), Stock and Watson (2008), Groen, 
Kapetanios and Price (2009) and Capistrán, Constandse and Ramos-Francia (2010), 
among others, show that unit-root-based forecasts perform well when forecasting 
inflation or GDP growth, which are variables that may be considered stationary in 
a number of countries. It is in the context of these findings that we pose the three 
following questions: When predicting a stationary variable with unit-root-based fore-
casts, does the MSPE diverge as the forecasting horizon lengthens? Are these unit-
root-based forecasts biased? Is it possible that unit-root-based forecasts for a per-
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sistent stationary process perform better than forecasts generated from a correctly 
specified model in finite samples? In this paper, we aim to answer these three 
questions. 

In order to do so, in Section 2 we analyze the behavior of the MSPE of unit-
root-based forecasts for stationary variables as the forecast horizon lengthens. We 
also analyze the bias of unit-root-based forecasts. In Section 3 we report Monte Carlo 
simulations evaluating the ability of unit-root-based forecasts to predict a stationary 
process. An empirical illustration based on year-on-year (YoY) Consumer Price 
Index (CPI) inflation for Canada, Sweden, Switzerland, the US and the UK is 
presented in Section 4. Finally, Section 5 concludes the paper.1  

2. Forecasting with a Unit-Root Process 
To set forth some preliminary ideas, let us consider that the true model of 

variable tY  is the following Gaussian stationary AR(1) process, 1 1t t tY Y , 
where 1t  is white noise with variance 2 , 0 , and 0 1 . By iterating 
forward, it is possible to show that for an arbitrary horizon h  we have 
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Suppose now that we forecast t hY , assuming that the true data generating 
process (DGP) is a driftless random walk (RW) that delivers the following forecast, 

RW
tY h , and forecast error, RW

te h : 
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The MSPE thus is given by 
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1 We would like to point out here that the focus of our paper is on global measures of forecasts accuracy. 
In other words, we are concerned with the average relative performance between two forecasting strategies. 
Recent literature has placed attention on the stability of different forecasting methods. See, for instance, 
Giacomini and Rossi (2009, 2010). While the question about stability is very important, we will leave it as 
an extension for further research. 
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Thus, because tY  is stationary, forecast errors coming from an RW-based 
forecast do not display explosive behavior as the forecasting horizon lengthens. 
Furthermore, RW-based forecasts display another interesting property: they are 
unbiased. To see this, let us consider the expected value of the forecast error: 
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Note that for these two implications, the “no-drift” assumption (denoted as 
0 ) plays a key role. In fact, if we had assumed that the true DGP is an RW with 

drift, 1t t tY Y , we would have ended with forecasts RWD
tY h  and cor-

responding forecast errors RWD
t h  according to 
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In this case, showing that the MSPE satisfies is straightforward: 

              
2 2lim lim 2 limD th h h

MSPE h MSPE h h Y h  

and the drift will generate a divergent MSPE. Similarly, with a little algebra it is 
possible to show that the drift will generate biased forecasts: 

                        
RWD RWD

D t t h tBias h e h Y Y h h  

So, again, the “no-drift” assumption is key for keeping the forecasts unbiased. 
Now, let us assume that the true DGP is the same AR(1) but with 1 . 

Accordingly: 
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and the optimal MSPE diverges as the horizon lengthens: 
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This last result is general to unit-root processes. Their optimal forecasts have 
increasing confidence bands (see Box, Jenkins and Reinsel, 2008). Nevertheless, 
when used to predict stationary variables, driftless RW-based forecasts display 
a bounded MSPE h  sequence as the forecasting horizon goes to infinity. The next 
proposition generalizes the previous AR(1) example to a broader class of stationary 
processes. 
Proposition 1: Let tY  be a stationary process, then driftless RW-based forecasts are 
unbiased and display a bounded MSPE as the forecasting horizon goes to infinity. 

Proof: Suppose that we forecast t hY , assuming that the true DGP is a driftless RW 

that delivers the following forecast RW
tY h  and forecasting errors RW

t h : 
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t tY h Y  
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Because of the stationarity of t hY  we have 
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and therefore, driftless RW-based forecasts are unbiased. The MSPE is given by 
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So, 

                               
2 2 2 2t h t hMSPE h Y Y  
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and 
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and then MSPE h  is a bounded sequence.  

Remark: If, in addition to stationarity, we assume that the process tY  has absolutely 
summable autocovariances, which is to say 

                                                           0
 i

i
                                                    (1) 

where 1 1i t t t tY Y Y Y , and t t iY Y , for all i , 
then we can achieve tighter bounds, because (1) implies 

                                                 
lim lim 0h ih h i h

 

Therefore, 

                         
lim lim 2 2 lim 2t h th h h

MSPE h Y Y  

and the sequence MSPE h  is not only bounded but also convergent. 

Unit-root-based forecasts are commonly used in the literature. For instance, 
Atkeson and Ohanian (2001) show that a simple RW model for inflation in the US is 
very competitive when predicting 12 months ahead. Giacomini and White (2006), 
also for the US, present an empirical application in which several CPI forecasts are 
compared to those generated by an RW with drift and an autoregression (AR) whose 
lag length is selected according to the Bayesian information criterion (BIC). Another 
article using simple univariate benchmarks for the US is Ang, Bekaert and Wei 
(2007). Among the many methods the authors use, they include an RW. Stock and 
Watson (1999, 2008) also consider integrated processes of order one when evaluating 
inflation forecasts for the US. They mention that modeling inflation as I(1) is usual 
in the literature. In addition, Croushore (2010) makes use of an integrated moving 
average IMA(1,1) model as a benchmark when evaluating survey-based inflation 
forecasts for the US. Similarly, Stock and Watson (2007a) make use of a time-varying 
IMA(1,1) process when analyzing inflation in the US, concluding that inflation 
in that country has become both easier and harder to forecast depending on one’s 
point of view.2  
2 On the one hand, it has become harder to forecast in the sense that the value added of traditional Phillips 
curve models has declined relative to simple univariate benchmarks. On the other hand, it has become 
easier to forecast because the MSPE of the forecast has fallen. 
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The use of unit-root-based forecasts for macro variables is fairly usual in other 
countries as well. Groen, Kapetanios and Price (2009), for instance, evaluate 
the accuracy of the Bank of England inflation and GDP growth forecasts using 
several univariate models, including an AR(p) and the RW as benchmarks. 
Capistrán, Constandse and Ramos-Francia (2010) make use of seasonal unit-root 
models to forecast inflation in Mexico. Similarly, Pincheira and Medel (2015) also 
make use of unit-root-based forecasts to predict YoY CPI inflation for twelve 
countries both at short and long horizons. 

Next, we show another proposition that goes in the same line as Proposition 1. 
The new aspect is that now we allow for more general types of unit-root-based 
forecasts coming from the ,1,ARIMA p q  family. 

Proposition 2: Let Yt be a stationary process as in Proposition 1. Let us also 
consider a white noise process 1t t  with variance 2 , so that the moments 

,t j t iY  for all ,i j  are well defined. Then optimal linear forecasts coming 

from a driftless ARIMA(p,1,q) process using 1t t  as innovations and MA 
terms, with 0 ,p q , will display a bounded MSPE  sequence as the forecasting 
horizon approaches infinity. 
Proof: See Appendix A (on the website of this journal).  

So far we have shown that the construction of driftless unit-root-based 
forecasts for stationary variables does not imply explosive behavior of the MSPE as 
the forecast horizon lengthens. Nevertheless, to some extent this is a weak result. It 
is saying that driftless unit-root-based forecasts for stationary variables are not 
extremely bad in the long run. The next proposition shows a more powerful result. It 
shows that, in general, unit-root-based forecasts are unbiased. 

Proposition 3: Let Yt be a stationary process as in Proposition 1. Let us also 
consider a white noise process 1t t

 with variance 2 . Then optimal linear 

forecasts coming from a driftless ,1,ARIMA p q  process using 1t t
 as inno-

vations and MA terms, with 0 ,p q , are unbiased at every forecasting horizon. 

Proof: See Appendix B (on the website of this journal). 

In the next section, we will show with simulations that parameter uncertainty 
in combination with persistence may generate a high degree of noise in the ordinary 
least squares (OLS) estimates of simple stationary processes. Under this scenario, 
we will provide evidence that driftless unit-root-based forecasts may offer more 
accuracy than correctly specified forecasts in small and moderate samples. This may 
be particularly relevant at long horizons. 
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3. Monte Carlo Simulations 
3.1 AR(1) and AR(2) Models 

We generate 5,000 replications of two stationary processes: an AR(1) and 
an AR(2) model, first setting the drift to zero and later setting it to one. We generate 
these four processes from independent zero-mean homoskedastic Gaussian shocks 
with variance equal to 2 1 . Thus, the models appear as follows: 

                                           1 11 : t t tAR Y Y  

                                                
2 1  0 1and  

                                     1 1 2 1 12 : t t t tAR Y Y Y  

                                                
2

1 21  0 1and  

We will be interested in the persistence of the processes. We will use  and 

1 2  as measures of persistence in the AR(1) and AR(2) models respectively.  

In each replication, we generate a total of R P l  observations, where R 
represents the estimation sample size used in our simulations. We consider different 
exercises with R taking three different values: 50, 100 and 200. The parameter l takes 
the values 1 or 2 depending on the process we are considering—AR(1) or AR(2). We 
do this because we drop one observation to estimate an AR(1) model and we drop 
two observations when estimating the AR(2) model. P represents the number of one-
step-ahead predictions. In all our simulations, we set 500P . We are not interested 
only in one-step-ahead forecasts, so we engage in an out-of-sample h-step ahead 
evaluation, with  h {1;12;24;36;48;96;120}, where the parameters of the processes 
are estimated with rolling OLS. 

The construction of multistep-ahead forecasts is done using the iterative 
method. This means that h-step-ahead forecasts are built as a recursive function 
of forecasts built for shorter horizons. An alternative way to construct multistep-
ahead forecasts is the so-called “direct method”. This approach differs from the itera-
tive method in that a direct relationship between the target variable t hY  and the set 
of predictors known at time t is established and there is no need to construct short 
horizon forecasts in order to build long horizon forecasts.3 Although in the tables we 
present next we make use of the iterative method for multistep forecasts, we have 
also constructed tables using the direct method. For the sake of brevity, we do not 
report these tables in the paper, but they are available upon request. Generally 
speaking, the same point that we will see in Table 1 holds for the direct method: 
driftless unit-root-based forecasts may outperform forecasts coming from the true 
DGP in small and moderate samples when the process is stationary but persistent. 

For each of the processes we construct forecasts using two different method-
ologies. First, we generate optimal forecasts assuming that we know the specification 
of the models, but also assuming that the parameters of these models are unknown 
 

3 See Jordà (2005) and Marcellino, Stock and Watson (2006) for a discussion of the advantages of the direct
method and a comparison between direct and iterative multistep forecasts. 
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Table 1  MSPE Ratios between Driftless RW-Based Forecasts 
and DGP-Based Forecasts 

 AR(1)  AR(2) 

ρ 0.50 0.90 0.95 0.98 0.99 ϕ1 0.40 0.50 0.50 0.50 0.50 
- - - - - ϕ2 0.10 0.40 0.45 0.48 0.49 

   α = 1 

   R = 50 

h = 1 1.278 0.996 0.965 0.951 0.946 1.312 1.200 1.209 1.218 1.227 
h = 12 1.886 1.211 0.956 0.836 0.790 1.877 1.098 0.905 0.830 0.803 
h = 24 1.885 1.297 0.913 0.720 0.637 1.881 1.094 0.769 0.672 0.631 
h = 36 1.888 1.219 0.715 0.455 0.320 1.881 0.801 0.142 0.345 0.329 
h = 48 1.887 0.686 0.307 0.102 0.035 1.881 0.124 0.001 0.038 0.053 
h = 96 1.886 0.000 0.000 0.000 0.000 1.882 0.000 0.000 0.000 0.000 
h = 120 1.887 0.000 0.000 0.000 0.000 1.880 0.000 0.000 0.000 0.000 

    R = 100 

h = 1 1.306 1.027 0.997 0.981 0.973 1.355 1.252 1.261 1.268 1.274 
h = 12 1.942 1.373 1.097 0.944 0.870 1.937 1.255 1.032 0.927 0.878 
h = 24 1.942 1.573 1.213 0.959 0.831 1.939 1.413 1.074 0.897 0.816 
h = 36 1.945 1.642 1.279 0.955 0.785 1.938 1.494 1.095 0.864 0.755 
h = 48 1.941 1.665 1.309 0.923 0.718 1.938 1.528 1.085 0.806 0.674 
h = 96 1.942 1.677 1.141 0.272 0.166 1.939 1.446 0.486 0.170 0.112 
h = 120 1.941 1.671 0.687 0.025 0.018 1.937 1.000 0.070 0.014 0.010 

    R = 200 

h = 1 1.320 1.041 1.013 0.998 0.989 1.378 1.276 1.290 1.296 1.301 
h = 12 1.970 1.459 1.189 1.031 0.933 1.968 1.344 1.123 1.005 0.939 
h = 24 1.970 1.703 1.363 1.095 0.921 1.970 1.557 1.222 1.015 0.898 
h = 36 1.971 1.789 1.482 1.154 0.919 1.970 1.673 1.311 1.038 0.879 
h = 48 1.970 1.815 1.555 1.204 0.916 1.969 1.728 1.379 1.060 0.862 
h = 96 1.972 1.831 1.655 1.297 0.857 1.968 1.772 1.497 1.079 0.759 
h = 120 1.970 1.832 1.662 1.293 0.789 1.968 1.771 1.511 1.039 0.671 

Note: Figures below unity favor RW based forecasts. 

Source: Authors' elaboration. 
 
and must be estimated with rolling OLS.4 Second, we generate optimal forecasts 
under the assumption that the processes are driftless RW. In each replication, we 
compute the sample MSPE of the forecasts. Then, using 5,000 replications, we 
compute the average across the entire sample MSPE to get a good estimate of 
the population MSPE. In Table 1, under the columns “AR(1)” and “AR(2)”, we 
report the MSPE-ratio defined as 

                                            
 

RW

AR

MSPE h
MSPE Ratio

MSPE h  

4 We always estimate the processes including a constant in our regressions. 
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We report these ratios for the three values of R {50;100;200} and several 
choices of the parameters that define the AR(1) and AR(2) models. In particular, we 
consider AR(1) specifications with the following parameter values: 

                                           0.5;0.9;0.95;0.975;0.99  

For the AR(2) model we consider the following parameter values:5  

         1 2, 0.4, 0.1 ; 0.5, 0.4 ; 0.50, 0.45 ; 0.500, 0.475 ; 0.50, 0.49         (2) 

An MSPE ratio below unity implies that RW-based forecasts outperform 
those coming from the correctly specified model. 

For the sake of brevity, in Table 1 we only present results for the case 
in which the drift α is set to one. Results when the drift is set to zero are qualitatively 
similar and are available upon request. Table 1 shows three salient features that are 
worth mentioning: 
1. As the estimation sample size gets larger, all the ratios become larger as well. 

This is easy to understand, because a larger estimation sample implies more 
precise parameter estimation. With little estimation noise, we should expect 
better performance of correctly over incorrectly specified forecasts. 

2. As the persistence of the processes increases, all the ratios show a tendency to 
decrease (with only a few exceptions). In fact, most of the ratios are below one 
when persistence equals 0.99 in Table 1. In the case of the AR(1) process, we 
detect two major drivers behind these results. First, as ρ gets larger, the process 
approaches an RW. Therefore, the RW becomes closer to the correct specifica-
tion. Second, as ρ gets larger, the small sample bias of the OLS estimates of ρ 
gets worse. These two forces point in the same direction and help to explain 
the good behavior of RW-based forecasts over correctly specified forecasts 
when ρ is close to one and sample sizes are not large. For the AR(2) process, 
the first reason stated above might not be very compelling, as when 1 2  is 
close to 1 with our choice of parameters in (2), the AR(2) process is still 
an AR(2) and does not approach an RW. Nevertheless, the second reason holds 
perfectly well in this scenario. These two salient features are relatively well 
known in the literature. Actually, Stock and Watson (2007a) and Hamilton 
(1994) provide interesting discussions regarding OLS estimation of parameters 
from persistent process. Furthermore, the development of out-of-sample tests 
of Granger causality such as those in Clark and West (2006, 2007) are based 
on the problems that non-vanishing parameter uncertainty may generate when 
performing out of sample inference. 

3. Table 1 shows an interesting interaction between persistence, sample size and 
forecasting horizon. We see that given a sample size of R, there is a persistence 
threshold beyond which the MSPE ratios do not increase with the forecasting 
horizon. For instance, for R = 50 and the AR(1), when ρ is greater or equal to 
0.95, we get these non-increasing patterns. Of course, as R gets larger, these 
non-increasing patterns are smoother. All this means that the problem of noisy 
 

5 These values belong to the stationarity region for an AR(2) process, which is characterized by the fol-
lowing expressions: 1 2 1 , 2 1 1, and 2 1.  
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Table 2  MSPE Ratios between OLS-Based Forecasts  
and Forecasts Made with the True Parameters 

AR(1) AR(2) 

ρ 0.50 0.90 0.95 0.98 0.99 ϕ1 0.40 0.50 0.50 0.50 0.50 
- - - - - ϕ2 0.10 0.40 0.45 0.48 0.49 

   α = 1 

   R = 50 

h = 1 1.044 1.057 1.063 1.067 1.062 1.067 1.082 1.086 1.087 1.084 
h = 12 1.061 1.288 1.356 1.379 1.342 1.065 1.317 1.372 1.366 1.327 
h = 24 1.061 1.432 1.688 1.806 1.757 1.064 1.572 1.85 1.818 1.732 
h = 36 1.061 1.610 2.409 3.154 3.683 1.064 2.337 11.131 3.799 3.429 
h = 48 1.061 2.910 5.983 15.284 35.252 1.064 15.634 1326 36.83 22.123 
h = 96 1.061 175258 285031 11M 102M 1.063 896773 1337M 202M 32M 
h = 120 1.061 81M 149M 158M 246M 1.063 532M 442M 6531MM 761M 

    R = 100 

h = 1 1.020 1.027 1.028 1.033 1.033 1.031 1.037 1.040 1.042 1.041 
h = 12 1.029 1.133 1.182 1.219 1.224 1.032 1.154 1.201 1.221 1.216 
h = 24 1.029 1.175 1.277 1.352 1.350 1.032 1.221 1.317 1.359 1.342 
h = 36 1.029 1.187 1.350 1.496 1.500 1.032 1.258 1.431 1.518 1.499 
h = 48 1.029 1.190 1.406 1.674 1.717 1.032 1.276 1.557 1.736 1.734 
h = 96 1.030 1.190 1.734 6.763 8.666 1.032 1.385 3.969 9.865 11.801 
h = 120 1.030 1.191 2.891 76.00 85.39 1.032 2.006 27.85 128.8 141.5 

    R = 200 

h = 1 1.010 1.011 1.013 1.015 1.016 1.014 1.017 1.018 1.021 1.024 
h = 12 1.016 1.070 1.090 1.118 1.135 1.014 1.079 1.102 1.128 1.142 
h = 24 1.015 1.090 1.131 1.182 1.216 1.014 1.107 1.160 1.205 1.225 
h = 36 1.016 1.096 1.156 1.235 1.283 1.014 1.121 1.202 1.268 1.294 
h = 48 1.016 1.098 1.171 1.283 1.348 1.014 1.128 1.234 1.327 1.363 
h = 96 1.016 1.098 1.191 1.426 1.680 1.014 1.130 1.298 1.566 1.748 
h = 120 1.015 1.096 1.190 1.481 1.934 1.014 1.129 1.311 1.720 2.084 

Note: Figures greater than unity indicate that OLS-based forecasts inflate the MSPE of correct specified 
models. 

Source: Authors' elaboration. 

estimates may be much more serious when forecasting persistent series at long 
horizons than at short horizons. Under these circumstances, a parsimonious 
RW-based forecast may be a much more accurate strategy to use in the long 
run.6  

The results in Table 2 reinforce the arguments given above. In this table, we 
show the ratio between the MSPE of the optimal forecasts constructed with estimated 
parameters and the MSPE of the optimal forecasts constructed with the true para-
meters. All figures in Table 2 are above unity, indicating that estimation noise inflates 
the MSPE. As expected, Table 2 shows the smaller the sample size, the higher 

5 Clements and Hendry (2001) show a similar result using a somewhat different environment. 
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the ratios. Similarly, there is a tendency to observe higher ratios when the persistence 
of the processes is higher, although there are some departures from this tendency 
when the sample size is either small or moderate. Interestingly, there is an increasing 
pattern in the ratios across the diagonals on each block in Table 2. In other words, 
higher ratios are achieved when both the forecasting horizon and the persistence 
of the processes grow. This pattern is sharper when the sample size is low. 

The results in Tables 1 and 2 are important. They provide evidence in favor 
of using unit-root-based forecasts to predict stationary variables when the parameters 
of the correctly specified models are not properly estimated due, for instance, to data 
restrictions. Interestingly, this recommendation may also be convenient if long-run 
forecasts are needed. 

Tables 1 and 2 were constructed using rolling OLS. This means that in each 
replication a sequence of h-step-ahead forecasts is built estimating the parameters 
of the models using rolling windows of fixed size R. A common alternative approach 
uses windows of expanding size and considers more information as time goes by. For 
stationary processes, this strategy provides more accurate forecasts. We have also 
used an expanding-window approach to build tables similar to Tables 1 and 2.7 
While we do not report these tables in order to save space, there are two main 
features to point out from these expanding-window exercises: 
1. Reinforcing our argument, persistent stationary processes are better predicted 

using driftless unit-root-based forecasts in small samples. 
2. The level of persistence required for the previous result to hold true is higher 

than in the exercise with rolling windows. 
The intuition is simple: when we compare the exercise using rolling windows 

of fixed size R with the exercise using expanding windows in which the sample  
size of the first window is R, then we are comparing exercises in which the noise 
in the estimation of the parameters is totally different, being much lower in 
the expanding-window approach. As estimation noise offers an opportunity for fore-
casts from misspecified models to outperform forecasts generated using the true 
DGP, it is easier to beat the forecasts from the true model in strategies with higher 
parameter uncertainty, such as the rolling-window strategy.  

Table 2 shows the pervasive effect of estimating the parameters of a persistent 
stationary process in small samples using rolling OLS. This effect is even more 
noticeable when forecasting at longer horizons. It is natural to look for the existence 
of other estimators with better predictive performance than OLS. After all, there is 
a vast literature reporting the good predictive behavior of models estimated either 
with shrinkage estimators or with methods aimed at reducing the small sample bias 
of OLS. 

One such method is the median-unbiased estimator proposed by Andrews 
(1993) for the AR(1) process. By means of simulations, we also explore the out-of-
sample predictive behavior of driftless unit-root-based forecasts against those coming 
from the true AR(1) model in which parameters are estimated using the median-
unbiased estimator proposed by Andrews (see Medel and Pincheira, 2016). As 
expected, the performance of forecasts constructed with the median-unbiased esti-

7 These tables are available upon request. 
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mator is generally much better than that of OLS-based forecasts. This is especially 
noticeable at longer horizons. In fact, the ratio of MSPE between median-unbiased 
forecasts and OLS-based forecasts is always lower than or equal to one, indicating 
that median-unbiased-based forecasts are never outperformed by OLS-based fore- 
casts. We also constructed the ratio of MSPE between driftless RW-based forecasts 
and median-unbiased-based forecasts when the true DGP is an AR(1) model. Despite 
the relatively good performance of median-unbiased-based forecasts, they are out-
performed at short horizons by driftless RW-based forecasts when persistence is high 
( 0.975 ) and samples are either small or moderate. Reductions of up to 10% 
in MSPE are obtained using the driftless RW. These reductions are generally much 
smaller than those in Table 1. In another related article, Kim and Durmaz (2012) 
show via simulations that some other bias-correction methods can outperform OLS-
based forecasts in out-of-sample exercises when the true DGP is persistent but still 
stationary. A thorough comparison between unit-root-based forecasts and forecasts 
generated using the vast range of alternative estimators is beyond the scope of this 
paper, but it certainly should be the subject of further research.  

Tables 1 and 2 are useful for showing the relationship between parameter 
uncertainty, estimation sample size and forecasting horizon in the case of the simple 
AR(1) and AR(2) models. In the next subsection we explore whether the same 
general pattern found for the simple AR(1) and AR(2) models holds true when 
working with more general and realistic processes. 

3.2 AR(12) and SARIMA Models 
We estimate four simple models for monthly YoY CPI inflation, which is 

a persistent time series. We focus on the sample period October 1990–December 
2011 for Canada, Sweden, Switzerland, the UK and the US. We consider the fol-
lowing four models: 

12 12
1 11. 1 : t t tAR  
2

12 12

1
2. 2 : t i t i t

i
AR  

12
12 12

1
3. 12 : t i t i t

i
AR  

12 12
1 1 1 12 12 1 12 134. : t t t t t tSARIMA  

We have used the abbreviation SARIMA to denote the Seasonal ARIMA 
model with the following parameters , , , , 1,0,1 0,0,1p d q P D Q  

Variations of this model have received a lot of attention in the forecasting 
literature. In particular, Ghysels, Osborn and Rodrigues (2006) point out the good 
forecasting performance of such models when applied to seasonal time series.  

As mentioned before, our models are estimated using YoY CPI inflation rates, 
defined as: 

                                            

12

12
100 100t

t
t

CPI
CPI
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Table 3  In-Sample Diagnostic Statistics for Inflation Models 

October 1990–December 2011 

Canada Sweden Switzerland UK US 

  AIC 
AR(1) 1.305 1.625 0.559 0.591 1.106 
AR(2) 1.289 1.630 0.562 0.588 0.924 
AR(12) 1.201 1.405 0.508 0.625 0.912 
SARIMA 0.724 0.986 0.285 0.331 0.156 
  BIC 
AR(1) 1.333 1.653 0.581 0.619 1.134 
AR(2) 1.331 1.672 0.604 0.630 0.965 
AR(12) 1.385 1.589 0.692 0.809 1.095 
SARIMA 0.780 1.042 0.341 0.387 0.211 
  Adjusted R2 
AR(1) 0.953 0.961 0.883 0.945 0.866 
AR(2) 0.952 0.959 0.900 0.942 0.867 
AR(12) 0.931 0.940 0.889 0.914 0.810 
SARIMA 0.966 0.971 0.954 0.974 0.925 
  Durbin-Watson statistic 
AR(1) 1.932 1.820 1.229 1.773 1.679 
AR(2) 2.019 2.027 1.903 1.996 1.983 
AR(12) 1.966 1.969 2.053 2.212 1.942 
SARIMA 1.994 1.981 1.910 1.978 1.994 

Source: Authors' elaboration. 
 

In Table 3 we show the Akaike information criterion (AIC) and Bayesian 
information criterion (BIC), the adjusted R2 and the Durbin-Watson statistic for all 
the models and countries in our exercise. 

According to Table 3, if a researcher decided to pick the best model using 
either the AIC, BIC or the adjusted R2 statistic, he or she would pick the SARIMA 
model for all five countries in our sample. The second best model depends both on 
the country and the specific information criterion. For instance, the second best 
model for Sweden is the AR(12), for the US it is the AR(12) when AIC is used, but 
the AR(2) when BIC is considered instead. All in all, we detect a slight edge in favor 
of the AR(12) model as the second best model. Accordingly, it seems reasonable to 
explore via simulations the forecasting behavior of driftless unit-root-based forecasts 
when the DGP corresponds to either a SARIMA or an AR(12) model.  

Differing from the results in Table 1, where we use the driftless RW model to 
generate unit-root-based forecasts, we now compare the predictive behavior of the true 
models with estimated parameters against forecasts coming from the very same 
models in which two restrictions are imposed: the drift is set to zero and a unit root is 
imposed on the autoregressive component of the model. We do this to generate a fair 
comparison between the forecasts: the only difference between them will come from 
the drift and the imposition of a unit root. Everything else is kept the same. 
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3.2.1 SARIMA Model 
As the first step, we estimate a SARIMA model for the US with the following 

results:8  

                         1 1 1 12 12 1 12 13ˆ ˆUS US
t t t t t t                           (3) 

where 

                         1 120.16; 0.94; 0.47; 0.92; 0.27ˆ ˆ  
We notice also that during our sample period US inflation displays an average 

of 2.44US  
For the design of the Monte Carlo experiments, we generate 5,000 replications 

of the following SARIMA specification: 

                    1 1 1 12 12 1 12 131  US
t t t t t ty y u u u u                    (4) 

2~ 0, ˆtu N . 

We notice that the only free parameter in (4) is the persistence parameter ρ. 
Consequently, as this parameter changes so does the drift: 

                                               1USDrift  

We use this strategy to generate processes with the same average of US 
inflation. We consider the following values for ρ: 

                                        0.50;0.90;0.95;0.975;0.99  

We then estimate each of the processes and generate 500 h -step-ahead fore-
casts using a rolling non-linear LS method. We consider h {1;12;24;36} and three 
different rolling windows of size R {50;100;200}. In Table 4 we report the fol-
lowing ratio: 

                                       

 
UR

SARIMA

MSPE h
MSPE Ratio

MSPE h  

where SARIMAMSPE h  stands for the out-of-sample MSPE of the SARIMA model 

in (4) and URMSPE h  for the out-of-sample MSPE when forecasting the same 
process but assuming that ρ is equal to one. In other words, we generate the forecasts 
estimating the following misspecified model: 

                                1 1 1 12 12 1 12 13  t t t t t ty y                                (5) 

From Table 4 we see that the three main features that we point out for 
the AR(1) and AR(2) processes hold true. First, as the sample size gets larger, all 
the ratios become larger as well. Second, as the persistence of the process increases, 
all the ratios show a tendency to decrease (with only a few exceptions). Finally, we 
see that given a sample size R, there is a persistence threshold beyond which 
the MSPE ratios decrease with the forecasting horizon. For instance, for 100R  
when ρ is greater or equal to 0.95, we get this decreasing pattern. In other words, we 
 

8 We picked the US inflation process simply because of the size and relevance of the US economy. 
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Table 4  Ratio of MSPE between an Unrestricted SARIMA Specification  
and a Restricted One Imposing a Unit Root and No Drift 

ρ: 0.50 0.90 0.95 0.98 0.99 
R = 50 

h = 1 1.131 0.898 0.870 0.860 0.860 
h = 12 1.692 0.746 0.603 0.560 0.554 
h = 24 0.967 0.338 0.166 0.126 0.086 
h = 36 0.074 0.005 0.000 0.000 0.000 

R = 100 
h = 1 1.223 0.994 0.965 0.953 0.947 
h = 12 2.021 1.153 0.906 0.810 0.776 
h = 24 1.039 1.042 0.940 0.835 0.783 
h = 36 1.038 1.020 0.924 0.786 0.663 

R = 200 
h = 1 1.257 1.030 1.003 0.988 0.980 
h = 12 2.102 1.371 1.093 0.950 0.879 
h = 24 1.014 1.057 1.053 0.989 0.923 
h = 36 1.014 1.021 1.025 0.991 0.930 

Note: A figure below unity favors driftless unit-root-based forecasts. 
Source: Authors' elaboration. 
 
can also see that in this environment, forecasts generated by a driftless unit-root 
process that is nested in the true DGP can have greater accuracy in small and 
moderate samples when the persistence of the process is high. 

3.2.2 AR(12) Model 
First we estimate an AR(12) model for the US with the following results: 

                               1 1 2 2 12 12
ˆUS US US US

t t t t tw                              (6) 
where: 

                            1 2 3 40.34; 1.39; 0.66; 0.20; ˆ 0.10                         (7) 

                        5 6 7 8 90.28; 0.25; 0.06; 0.09; 0.08   

                             10 11 120.06; 0.13; 0.00; 0.63  w  

To explain the design of the Monte Carlo experiment, it is useful to recall that 
the AR p  model 

                                1 1 2 2t t t p t p tY Y Y Y  

can be alternatively represented as 

                     1 1 1 2 2 1 1Δ Δ Δt t t t p t p tY Y Y Y Y  

where 

                                                           
1

p

i
i
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                                1 2 ; 1, , 1j j j p j p  

(see Hamilton, 1994). In a stationary AR p  we have 

                                                          
1

1
p

i
i

 

In the particular case in which ρ = 1 the process will have a unit-root and 
could be written as 

                  1 1 2 2 3 3 1 1Δ Δ Δ Δ Δt t t t p t p tY Y Y Y Y  

For our simulations, we generate 1,000 replications of the following 12AR  
specification: 

                                  

12

1 1
2

1US
t t i t i t

i
y y y v

                                  (8) 

                                                   
2~ 0, ˆt vv N  

                                                   

12

1
2

i
i

 

We notice that the only free parameter in (8) is the persistence parameter ρ 
Consequently, changes in ρ will also affect the drift: 

                                               1USDrift  

and the 1  coefficient: 

                                                   

12

1
2

i
i  

We use this strategy to generate processes with the same average of US 
inflation. We consider the following values for ρ: 

                                      0.50;0.90;0.95;0.975;0.99  
We then estimate each of the processes and generate 500 h-step-ahead 

forecasts using a rolling OLS method. We consider h  {1;12;24;36} and three 
different rolling windows of size R {50;100;200}. In Table 5 we report the fol-
lowing ratio: 

                                          
12 

UR

AR

MSPE h
MSPE Ratio

MSPE h  

where 12ARMSPE h  stands for the out-of-sample MSPE of the 12AR  model in (8) 

and URMSPE h  for the same process in (8) but assuming that ρ is equal to 1. In 
other words, we generate these forecasts estimating the following misspecified 
model: 

                       1 1 2 2 3 3 11 11Δ Δ Δ Δ Δt t t t t tY Y Y Y Y                        (9) 
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Table 5  Ratio of MSPE between an Unrestricted AR(12) Specification  
and a Restricted One Imposing a Unit Root and No Drift 

ρ: 0.50 0.90 0.95 0.98 0.99 
R = 50 

h = 1 1.035 0.996 0.963 0.931 0.914 
h = 12 1.279 1.241 0.906 0.680 0.573 
h = 24 1.080 1.466 0.827 0.540 0.386 
h = 36 0.594 1.089 0.026 0.149 0.113 

R = 100 
h = 1 1.070 1.053 1.035 1.013 0.979 
h = 12 1.374 1.790 1.495 1.204 0.880 
h = 24 1.245 2.608 2.386 1.564 0.875 
h = 36 1.275 1.925 3.016 2.203 0.932 

R = 200 
h = 1 1.084 1.070 1.056 1.038 1.015 
h = 12 1.406 2.031 1.756 1.471 1.178 
h = 24 1.254 2.888 2.940 2.107 1.377 
h = 36 1.277 2.091 3.633 3.107 1.680 

Note: A figure below unity favors driftless unit-root-based forecasts. 
Source: Authors' elaboration. 
 

From Table 5, we see that the three main features that we pointed out pre-
viously also hold true with minor differences. First, as the sample size gets larger, all 
the ratios become larger as well. Second, as the persistence of the process increases, 
all the ratios show a tendency to decrease (with only a few exceptions). Third, we see 
that given a sample size of 100R , there is a persistence threshold beyond which 
the out-of-sample MSPE ratios decrease with the forecasting horizon. In other words, 
we see that in this environment driftless unit-root-based forecasts can display higher 
accuracy than forecasts coming from the correct model when samples are small and 
the process is persistent. 

Despite these similarities, Tables 4 and 5 indicate that the use of driftless unit-
root-based forecasts is more advantageous for our SARIMA specifications than for 
our AR(12) models. This is so because percentage reductions in RMSPE, due to 
the imposition of a unit root, are higher in SARIMA relative to AR(12) models. 

Table 6 is also interesting, as it reports the share of the MSPE displayed in 
Tables 4 and 5 that is explained by the variance of the forecasts errors.9 Table 6 
reports this share for driftless unit-root-based forecasts. As we can see, most 
of the MSPE in our previous simulations is due to variance and only a minor part 
of it corresponds to bias. These figures are consistent with our theoretical results 
indicating that driftless unit-root-based forecasts are unbiased. 

Before moving to the empirical section, it is important to mention that Tables 
1, 4 and 5 show a linkage between sample size, persistence, forecasting horizon and 
the relative accuracy of driftless unit-root-based forecasts. These tables suggest that 
given a DGP, a sample size R and a forecasting horizon h, there is an invertible 
 

9 Let us recall the identity: 2.MSPE Variance Bias  
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function between the persistence of the process ρ and the relative performance 
of driftless unit-root-based forecasts against forecasts coming from the true DGP 
with estimated parameters. It could be interesting to exploit this relationship to 
develop a decision rule aimed at determining which type of forecast we should use: 
one based upon a stationary process or one based upon a process with a unit root. 
In Appendix D (on the website of this journal), we shed some light on how to proceed 
in this respect. We focus on the empirical illustration of our findings next. 

4. Empirical Evidence 
In this section, we illustrate, from the point of view of a practitioner, the bene-

fits of driftless unit-root-based forecasts in which different models are used to generate 
inflation forecasts.10 We use this kind of macroeconomic data for two reasons. 
On the one hand, year-on-year inflation rates in many countries exhibit near-unity 
behavior. On the other hand, it is important to forecast inflation, especially in the cur-
rent conditions where a number of developed countries face the threat of deflation. 
We first describe the dataset and then the models. Finally, we evaluate the relative 
accuracy between forecasts using out-of-sample MSPE pairwise comparisons and 
a superior predictive ability test based on Giacomini and White (2006). 

4.1. Data 
We use monthly CPI inflation data for Canada, Sweden, Switzerland, the UK 

and the US. The sources of the dataset are country-specific central banks and 
the Federal Reserve Bank of St. Louis. The inflation data comprises the same data 
that we used in the construction of Table 3. Our models work with YoY CPI inflation 
rates, defined as11  

                                            

12

12
100 100t

t
t

CPI
CPI  

Table 7 shows traditional unit-root tests for the five inflation series for 
the sample period from October 1990 to December 2011. At the 10% significance 
level, these traditional tests reject the presence of a unit root for all the series in our 
sample. Figure 1 shows all the series in their stationary transformation. Some de-
scriptive statistics for different subsamples are available in Appendix C (on the web-
site of this journal). 

10 We also explored the behavior of unit-root-based forecasts with unemployment series for the US, 
Canada and the euro zone. The results are qualitatively similar to those obtained with inflation and are 
available upon request. 
11 We have a very simple justification for the choice of year-on-year inflation as a target variable: to our 
knowledge, most of the inflation-targeting countries in the world define their targets in year-on-year terms.
For instance, the Czech Republic has a target of 2% for the medium term. The UK has the same target but 
it is supposed to be met at all times. In Chile, Thailand and Mexico, the target is 3%. Some countries have 
a target of 2.5%, such as Iceland, Norway, Poland, Romania and North Korea. The list is long but all 
of these countries express their targets in year-on-year terms. Coming from an inflation-targeting country, 
it is absolutely natural for us to focus on the year-on-year inflation rate. Furthermore, the choice of year-
on-year inflation is not uncommon in the literature. For instance, the works of Ciccarelli and Mojon 
(2010), Clark (2001), Atkeson and Ohanian (2001), Pincheira and Medel (2015) and Pincheira and West 
(2016) consider year-on-year inflation as the predicted variable or as an independent variable in a fore-
casting equation. 
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Figure 1  YoY CPI inflation Rate for Selected Economies 

                          
Source: Country-specific central banks and the Federal Reserve Bank of St. Louis. 

 
Table 7  Unit-Root Test for YoY CPI Inflation 

Levels First differences 

ADF PP ADF PP 
Canada -4.149   -3.582 -7.994   -14.003 
(p-value)  
{lag} [exog.] (0.001) {12} [C]   (0.007) {3} [C] (0.000) {11} [N]   (0.000) {1} [N] 

Sweden -4.950   -3.952 -7.908   -14.317 
(p-value)  
{lag} [exog.] (0.000) {12} [C]   (0.002) {5} [C] (0.000) {11} [N]   (0.000) {5} [N] 

Switzerland -2.704   -2.819 -6.536   -15.442 
(p-value)  
{lag} [exog.] (0.075) {0} [C]   (0.057) {6} [C] (0.000) {11} [N]   (0.000) {6} [N] 

United Kingdom -3.159   -3.169 -14.50   -14.494 
(p-value)  
{lag} [exog.] (0.024) {0} [C]   (0.023) {3} [C] (0.000) {0} [N]   (0.000) {1} [N] 

United States -3.107   -4.032 -9.399   -10.452 
(p-value)  
{lag} [exog.] (0.027) {12} [C]   (0.002) {4} [C] (0.000) {11} [N]   (0.000) {3} [N] 

Notes: Null Hypothesis: The series has a unit root. p-value in (.). Regression lag order or bandwidth in {.}. Lag 
length chosen according to BIC; maximum lag length = 18. Bandwidth chosen according to Newey-
West (1994) using the Bartlett kernel. Exogenous regressors: C = Constant, N = None. Inflation series 
sample: October 1990–December 2011. 

Source: Authors' elaboration. 
 

We are aware that the results in Table 7 provide no mathematical proof of sta-
tionarity in the series. These results come from statistical tests that suffer from both 
type-I and type-II errors. In particular, unit-root tests display low power against 
persistent stationary alternatives, as mentioned by Andrews and Chen (1994) and 
Cochrane (1991). Low power means that it is hard for the tests to reject the null 
hypothesis of a unit root. 

The fact that the tests reject the null hypothesis in spite of this low power 
is somewhat reassuring. Nevertheless, we prefer to work with the assumption 
of stationarity rather than with certainty about it. Our tests in Table 7 provide support 
to this assumption for all the series. Bearing this in mind, we will use the following 
models to generate out-of-sample forecasts for these five series: 
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The first model is a simple AR(12); the second model is the same AR(12) 
without drift and with the restriction that all the autoregressive coefficients must sum 
to one. Model 3 is the SARIMA model introduced in the section on simulations and 
Model 4 is the same SARIMA but with no drift and the restriction of a unit root.  
This model is labeled as the airline model by Box and Jenkins (1970).12 Differing  
from the direct autoregressions of Stock and Watson, our models have 12

t  both 
on the right-hand side and on the left-hand side. 

We estimate the models with a fixed-size rolling window of length R. We 
consider two values for R: 30 and 100 observations. The first estimation sample with 
R = 30 covers the period from August 1996 to January 1999, whereas with 100R  
it covers the period from October 1990 to January 1999. The remaining sample 
is used for evaluation of the forecasts, covering the period from February 1999 to 
December 2011. 

4.2 Forecast Evaluation 
We focus on comparing the predictive performance of unit-root-based fore-

casts versus forecasts coming from models in which no unit roots are imposed 
a priori. In Table 8 we report estimates of the sample RMSPE for all the forecasts 
under consideration. This sample estimate is calculated as follows: 

                             

1
1 221 R P h

f
h t h t

t R
RMSPE y y h

P h
 

where f
ty h  is the h-step-ahead forecast of the generic variable ty , and P h  

represents the total number of out-of-sample forecast errors available for a given 
methodology and forecasting horizon.  

The superior performance of driftless unit-root-based forecasts reported 
in Table 8 is outstanding. The lowest MSPE is almost always reached by one 
of the models restricted to having a unit root—either AR(12)-UR or SARIMA-UR. 
Actually, there are only three exceptions, all of them occurring when rolling windows 
of size 100 are used: the case of Sweden when forecasting inflation 24 months ahead 
and the cases of US inflation when forecasting two and three years ahead. In all 
the remaining cases, driftless unit-root-based forecasts take the lead. 

12 As Ghysels, Osborn and Rodrigues (2006) point out, this specification has proven to be very useful
for forecasting monthly time series with seasonal patterns. 
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Table 8  Multi-Horizon RMSPE of Forecasts for Selected Economies 

  Rolling-window size: 30 Rolling-window size: 100 

  h = 1 h = 12 h = 24 h = 36 h = 1 h = 12 h = 24 h = 36 

 Inflation: Canada 

1. AR(12) 0.576 1.717 2.128 2.806 0.518 1.307 1.271 1.047 
2. AR(12)-UR 0.571 1.747 1.686 1.617 0.533 1.517 1.384 1.126 
3. SARIMA 0.465 1.576 1.778 1.564 0.375 1.221 1.102 1.110 
4. SARIMA-UR 0.426 1.260 1.217 1.008 0.368 1.114 1.075 0.957 
Lowest RMSPE 0.426 1.260 1.217 1.008 0.368 1.114 1.075 0.957 

 Inflation: Sweden 

1. AR(12) 0.581 4.171 6.669 31.150 0.430 1.511 1.342 1.338 
2. AR(12)-UR 0.520 2.472 3.608 5.392 0.449 2.003 2.449 1.977 
3. SARIMA 0.410 3.098 31.420 435.400 0.337 1.632 1.620 1.591 
4. SARIMA-UR 0.353 1.549 1.710 1.539 0.322 1.299 1.351 1.319 
Lowest RMSPE 0.353 1.549 1.710 1.539 0.322 1.299 1.342 1.319 

 Inflation: Switzerland 

1. AR(12) 0.405 1.538 3.129 6.059 0.344 1.001 1.198 1.045 
2. AR(12)-UR 0.396 1.743 2.722 5.753 0.356 1.531 1.319 1.406 
3. SARIMA 0.349 1.670 3.613 16.637 0.317 0.964 0.945 0.961 
4. SARIMA-UR 0.307 1.038 0.896 0.970 0.304 0.929 0.885 0.951 
Lowest RMSPE 0.307 1.038 0.896 0.970 0.304 0.929 0.885 0.951 

 Inflation: United Kingdom 

1. AR(12) 0.397 1.741 6.546 32.223 0.329 1.337 1.352 1.365 
2. AR(12)-UR 0.372 1.233 1.455 1.861 0.321 1.123 1.062 1.018 
3. SARIMA 0.288 1.866 6.892 38.640 0.270 1.240 1.383 1.858 
4. SARIMA-UR 0.270 0.952 1.022 1.118 0.262 1.139 1.215 1.320 
Lowest RMSPE 0.270 0.952 1.022 1.118 0.262 1.123 1.062 1.018 

 Inflation: United States 

1. AR(12) 0.574 3.535 7.159 3.099 0.483 2.040 2.259 1.646 
2. AR(12)-UR 0.535 2.937 3.707 5.357 0.496 2.675 2.971 2.735 
3. SARIMA 0.464 2.189 2.749 4.726 0.335 1.569 1.439 1.455 
4. SARIMA-UR 0.403 1.772 1.674 1.604 0.331 1.501 1.474 1.499 
Lowest RMSPE 0.403 1.772 1.674 1.604 0.331 1.501 1.439 1.455 

Source: Authors' elaboration. 
 

We can also look at pairwise comparisons in Table 8. In other words, we 
could compare the performance of the unrestricted AR(12) model with its driftless 
unit-root version. We can engage in the same comparison using the SARIMA 
models. Table 8 shows that when using rolling windows of 30 observations, 
the driftless unit-root versions of both the AR(12) and SARIMA models outperform 
their unrestricted versions in 92.5% of the pairwise comparisons. The exceptions are 
Canada and Switzerland when forecasting one year ahead and the US when fore-
casting three years ahead. 
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Table 9  One-Sided p-Values of the Giacomini and White (2006) Test  
of Superior Predictive Ability of Driftless Unit-Root-Based Forecasts 

  Rolling-window size: 30 Rolling-window size: 100 

  h = 1 h = 12 h = 24 h = 36 h = 1 h = 12 h = 24 h = 36 

Inflation: Canada 

1. AR(12) 0.408 0.564 0.057* 0.107 0.844 0.941 0.865 0.776 

2. SARIMA 0.003*** 0.021** 0.047** 0.011** 0.144 0.125 0.280 0.005*** 

Inflation: Sweden 

1. AR(12) 0.035*** 0.045** 0.010** 0.129 0.977 0.991 0.999 1.000 

2. SARIMA 0.005*** 0.058* 0.149 0.153 0.045** 0.002*** 0.051** 0.149 

Inflation: Switzerland 

1. AR(12) 0.352 0.719 0.346 0.445 0.719 0.955 0.685 0.989 

2. SARIMA 0.002*** 0.008*** 0.110 0.151 0.059* 0.322 0.212 0.452 

Inflation: United Kingdom 

1. AR(12) 0.048** 0.067* 0.053* 0.095* 0.042* 0.002*** 0.009*** 0.027*** 

2. SARIMA 0.063* 0.088* 0.069* 0.088* 0.165 0.313 0.277 0.122 

Inflation: United States 
1. AR(12) 0.255 0.235 0.097* 0.852 0.684 0.944 0.894 0.984 

2. SARIMA 0.000*** 0.002*** 0.035** 0.133 0.174 0.258 0.831 0.964 

Notes: Figures below X/100 indicate rejection at the X% significance level of the null hypothesis of superior 
predictive ability models of forecasts coming from the correctly specified models in favor of driftless 
unit-root-based forecasts. (*) p-value<10%, (**) p-value<5%, (***) p-value<1%. 

Source: Authors' elaboration. 
 

When using rolling windows of 100 observations, Table 8 shows mixed results. 
Actually, in 55% of the pairwise comparisons, driftless unit root-based-forecasts 
outperform forecasts coming from unrestricted models. If we assume that our series 
are stationary, then our empirical findings are consistent with our simulation results: 
driftless unit-root-based forecasts perform well, especially when using rolling windows 
of small size.13  

Table 9 shows the p-values of the Giacomini and White (2006) test of superior 
predictive ability between forecasts coming from the unrestricted versions of the models 
and their driftless unit-root versions. The null hypothesis is that of superior predictive 
ability of forecasts coming from the unrestricted versions, while the alternative is that 
our driftless unit-root-based forecasts perform better. Therefore, we carry out a one-
sided test. As usual, low p-values are associated with the rejection of the null hypo-
thesis in favor of the alternative. We see that the null hypothesis is rejected at 
the 10% significance level in favor of driftless unit-root-based forecasts on a number 
of occasions. This happens both at short and long horizons. 

13 In an additional exercise, which is not reported for the sake of brevity, we compare the predictive 
performance of an AR(1) and an RW model in monthly unemployment series for Canada, the euro zone 
and the US. These results are fairly consistent with those shown for YoY inflation in two main aspects: 
First, in most cases the driftless RW model outperforms the AR(1). Second, the driftless RW model fares
better relative to the AR(1) in rolling windows of size 30R , i.e. when the AR(1) is estimated in short 
samples. 
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5. Conclusion 
The use of different time-series models to generate forecasts is fairly usual 

in the fields of macroeconomics and financial economics. When the target variable 
is stationary, the use of processes with unit-roots may seem counterintuitive. Never-
theless, in this paper we demonstrate that forecasting a stationary variable with 
forecasts based on driftless unit-root processes generates bounded mean squared 
prediction errors at every single horizon. We also show that these forecasts are 
unbiased. In addition, we show via simulations that persistent stationary processes 
may be better predicted by driftless unit-root-based forecasts than by forecasts 
coming from a model that is correctly specified but is subject to a higher degree 
of parameter uncertainty. In addition, we provide an empirical illustration of our 
findings in the context of inflation forecasts for five industrialized economies. 

Our simulations also provide evidence indicating that the benefits of using 
unit-root-based forecasts are not confined within the boundaries of short horizons. 
In fact, these benefits may be sizable at long horizons as well. 

It is important to point out that in our simulations we have assumed that 
we know the true data generating process, which is a little unrealistic and unfair to 
the performance of some of the driftless unit-root-based forecasts. A natural exten-
sion of this paper could be an exploration of a more realistic environment in which 
the data is known to be stationary but there is uncertainty about the true parametric 
form of the data generating process. In this scenario, both unit-root-based and sta-
tionary forecasts will probably come from misspecified models and therefore a fairer 
comparison can be made. Moreover, one could explore whether forecasts from per-
sistent stationary models can be better approximated by forecasts coming from 
the set of stationary models or from the set of models with the presence of a unit root. 
More generally, future research might explore if the results we have reached here 
may still hold true in broader environments. In particular, it would be very interesting 
to evaluate the local relative performance between unit-root-based forecasts and their 
stationary counterparts using the fluctuation test of Giacomini and Rossi (2010). 
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