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Abstract 

We compare two approaches for estimation of stochastic volatility and jumps in the EUR/ 

/USD time series—the non-parametric power-variation approach using high-frequency 

returns and the parametric Bayesian approach (MCMC estimation of SVJD models) 

using daily returns. We have found that the estimated jump probabilities based on these 

two methods are surprisingly uncorrelated (using a rank correlation coefficient). This 

means that the two methods do not identify jumps on the same days. We further found that 

the non-parametrically identified jumps are in fact almost indistinguishable from 

the continuous price volatility at the daily frequency because they are too small. In most 

cases, the parametric approach using daily data does not in fact identify real jumps  

(i.e. discontinuous price changes) but rather only large returns caused by continuous 

price volatility. So if these unusually high daily returns are to be modelled, the para-

metric approach should be used, but if the goal is to identify the discontinuous price 

changes in the price evolution, the non-parametric high-frequency-based methods should 

be preferred. Among other results, we further found that the non-parametrically identified 

jumps exhibit only weak clustering (analyzed using the Hawkes process), but relatively 

strong size dependency. In the case of parametrically identified jumps, no clustering was 

present. We further found that after the beginning of 2012, the amount of jumps in the EUR/ 

/USD series greatly increased, but the results of our study still hold. 

1. Introduction 

Numerous studies have shown that asset price dynamics exhibit properties 

like fat tails of the return distribution, persistent long-term shifts in levels of volatility 

and abrupt changes in the levels of price and volatility (jumps). In order to tackle 

these empirical features, it has become common practice to decompose the variability 

of the price processes into two components—diffusive stochastic volatility and dis-

continuous price jumps (Craine et al., 2000; Eraker, 2004; Witzany, 2013). This has 

proved to be useful in many financial applications including option pricing (Eraker 

et al., 2003; Eraker, 2004; Fulop, Li and Yu, 2015), VaR estimation (Witzany, 2013), 

volatility forecasting (Andersen et al., 2007; Lanne, 2006; Corsi et al., 2010) and 

volatility risk premium modeling (Todorov, 2010; Chen and Poon, 2013; Fičura, 

2014). The correct identification and modeling of asset price jumps may also provide 

profitable signals for quantitative trading (Novotny et al., 2015).  

There are currently two main approaches to decomposing the variability 

of the price process into its continuous and discontinuous component—a parametric 
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approach based on the Bayesian estimation methods and a non-parametric approach 

based on the asymptotic theory of power variations and high-frequency data. 

Combined approaches using Bayesian methods together with high-frequency power-

variation estimators have also been proposed (see Fičura and Witzany, 2015, and 

Maneesoonthorn et al., 2016), greatly aiding the modeling of the self-exciting jump 

dynamics. 

In the parametric approach, it is necessary to first define the underlying 

processes governing the evolution of the price, i.e. typically the processes of log 

returns and stochastic volatility, as well as the processes governing the occurrences, 

magnitudes and intensity of jumps in price and volatility. The parameters of the re-

sulting SJVD (Stochastic-Volatility-Jump-Diffusion) models (see Shephard, 2005) 

and the evolution of the latent state variables (i.e. the unobservable processes) are 

then estimated usually through simulation-based Bayesian inference methods such as 

the MCMC (Markov chain Monte Carlo) algorithm (for different implementations, 

see Eraker et al., 2003; Johannes and Polson, 2009; Nakajima, 2012; and Witzany, 

2013), possibly in combination with Particle filters for the sequential estimation 

of the latent state variables (see, Stroud and Johanness, 2014 and Fulop, Li and Yu, 

2015). An approach to sequential estimation of the parameters of SVJD models was 

further proposed by Golightly (2014). Among other applications, Liu and Li (2015) 

use Bayesian methods to test for persistence of stochastic volatility in models with 

jumps, while Szerszen (2009) uses them to estimate stochastic volatility models with 
Lévy α-stable jumps. 

The non-parametric approach, on the other hand, does not define the para-

metric processes explicitly and it should theoretically be valid for a wide range 

of possible processes governing price evolution (i.e. it is model-free). This approach 

uses high-frequency returns and the asymptotic theory of power-variation measures 

(derived in Andersen et al., 2003, and Barndorff-Nielsen and Shephard, 2004) to 

calculate quantities that converge (with increasing frequency for their calculation) 

either to the quadratic variation, which is a measure of the overall price variability, 

or to the integrated variance, which is a measure of the diffusive price variability. 

The most commonly used measures converging to the quadratic variance are the real-

ized variance (Andersen and Bollerslev, 1998) and the realized kernels (Barndorff-

Nielsen et al., 2008). Proposed measures converging to the integrated variance are, 

among others, the bipower variation (Barndorff-Nielsen and Shephard, 2004), 

threshold bipower variation (Corsi, Pirino and Reno, 2010), multi-power variation 

measures (see Ysusi, 2006, and Shi, 2009) and the nearest-neighbor truncation 

measures (Andersen et al., 2010). In order to estimate the statistically significant 

jumps in a practical setting (with non-continuously sampled returns), an approach is 

commonly used in which the difference between the realized variance and bipower 

variation is normalized with the use of integrated quarticity. For a comparison 

of different approaches, see Barndorff-Nielsen and Shephard (2004); Andersen et al. 

(2007); Corsi, Pirino and Reno (2010); Hanousek et al. (2013), and Andersen et al. 

(2014). An alternative method, estimating jumps at the exact time at which they 
occur without integrated quarticity, was also proposed by Lee and Mykland (2008). 

As there are two approaches for estimating stochastic volatility and jumps, it 

is natural to ask whether they provide similar results. From the previously conducted 

studies, it is clear that the non-parametric approach typically identifies significantly 
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more jumps than the parametric approach does (as mentioned in Andersen et al., 

2007), which is to be expected because it is far easier to identify jumps from high-

frequency returns then from the daily returns commonly used in parametric model 

estimation (for an intraday implementation of SVJD models, see Stroud and 

Johanness, 2014). Nevertheless, we can still ask if the two methods at least tend to 

identify jumps at the same times and if the jump processes exhibit similar properties. 

To answer these questions, we estimated the stochastic volatility and jumps 

in the past history of the EUR/USD exchange rate (in the period between 3 February 

2006 and 15 April 2014) using representative methods from both approaches. 

Specifically, we used a log-variance SVJD model (based on a model in Witzany, 

2013) with self-exciting jumps and compared it with the bipower-variation approach 

for volatility and jumps estimation (developed in Andersen et al., 2007), where 

significant jumps are identified with the shrinkage estimator constructed using 

the realized tripower quarticity. 

Surprisingly, the results of our research indicate that the two methods do 

not tend to identify jumps at the same times at all. The jumps identified non-

parametrically from high-frequency returns are usually not large enough to be 

distinguishable at the daily frequency through the Bayesian method and the alleged 

“jumps” identified using the parametric approach are actually not real jumps in most 

cases (i.e. discontinuous price changes), but just large daily returns caused by dif-

fusive volatility (or possibly jumps in volatility).  

So the study shows that although the daily SVJD models may be useful for 

the modeling of unusually large daily returns occurring in the financial time series, 

in most cases these returns seem not to be caused by discontinuous price changes 

(jumps), which, in general, cannot be identified accurately by these models. The high-

frequency-based non-parametric methods, on the other hand, seem to be able to 

identify discontinuous price changes relatively well. As these have, however, only 

little to do with the unexpectedly large daily returns, the non-parametric methods 

may not be able to account for the occurrences of such returns in the asset price time 

series. So the optimal choice of the method to be used should depend on the purpose 

of the application. If the discontinuous price changes are the main feature of interest 

(as may be the case in some market-making and quantitative trading strategies), then 

the high-frequency nonparametric estimators may be the appropriate method to use. 

If, on the other hand, the unusually high daily returns are the feature that needs to be 

modeled (as may be the case in option pricing, VaR estimation or other applications 

in which the fat tails of the daily return distribution have to be accounted for), then 

the daily SVJD models may be preferable. 

The rest of the paper is organized as follows: In Section 2 we present the general 

price process and the non-parametric estimators used for the estimation of the quadratic 

variation, integrated variance and jump variance. In Section 3 we present our 

parametric SVJD model with self-exciting jumps and the Bayesian methods used for 

the estimation of its parameters and the latent state variables. In Section 4 we 

perform empirical research on the EUR/USD exchange rate and on simulated time 

series in order to analyze main differences between the two methods. Section 5 

concludes the paper. 
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2. Non-Parametric Estimation of Volatility and Jumps 

Let us assume that the logarithmic price of an asset follows a general 

Stochastic-Volatility Jump-Diffusion process defined by the following stochastic 

differential equation: 

                                ( ) ( ) ( ) ( ) ( ) ( )   dp t t dt t dW t j t dq tµ σ= + +                              (1) 

where p(t) is the logarithm of the asset price, ( )tµ  is the instantaneous drift rate, ( )tσ  

is the instantaneous volatility, ( )W t  is a Wiener process, ( )j t  is a process deter-

mining the size of the jumps and ( )q t  is a counting process whose differential 

determines the times of jump occurrences (i.e. the jump indicator). 

The logarithmic return over a given time period between 1t −  and t can be 

expressed as 

                 ( ) ( ) ( ) ( ) ( ) ( )
11 1

 1 ( )

t t

t tt t

r t p t p t d dW

τ

µ τ τ σ τ τ κ τ
− ≤ <− −

= − − = + + ∑∫ ∫                (2) 

where ( ) ( ) ( ) 1t j t I q tκ  = =  , (.)I  is the indicator function and the sum of ( )tκ  

measures the impact of jumps during the given period of time (from 1t −  to t). 

The total variability of the price process over a given period of time can be 

expressed with its quadratic variation in the following form: 

                                         ( ) ( ) ( )2 2

11

t

t s tt

QV t s ds sσ κ
− ≤ <−

= + ∑∫                                      (3) 

where the first term—representing the continuous component of price variability—is 

called Integrated Variance, and the second term—representing the discontinuous 

component of price variability—is called Jump Variance. So we can write: 

                                                ( ) ( )  ( )QV t IV t JV t= +                                               (4) 

where ( )IV t  is the integrated variance and ( )JV t  is the jump variance. 

Both of the quantities, ( )IV t  and ( )JV t , are unobservable and they have to 

be estimated. One possible approach is to parametrically define the processes ( )tσ , 

( )j t  and ( )q t  and estimate their parameters and the latent state variables using 

Bayesian inference methods (as will be shown in Section 3). Another approach is to 

use the non-parametric high-frequency power-variation estimators which converge 

either to ( )QV t  or to ( )IV t . 

In our study we estimate the quadratic variation with the realized variance 

(see Andersen and Bollerslev, 1998), which is defined for a given frequency as 

the sum of squared returns on some higher frequency. Denoting ∆  as some intraday 

time interval and ( ),r t ∆  as the logarithmic return between t ∆−  and t, we can 

define the realized variance as 
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                                           ( ) ( )
1/

2

1

,  1 ,

j

RV t r t j
∆

∆ ∆ ∆
=

= − +∑                                        (5) 

and it holds that ( ) ( ),RV t QV t∆ →  as  0∆ → . 

The realized variance should theoretically provide an unbiased and consistent 

estimate of the underlying quadratic variation, as long as the price follows a con-

tinuous semi-martingale and the high-frequency returns are not plagued by micro-

structure noise (see Andersen et al., 2003). In practical applications, the cumulation 

of the microstructure noise (bid-ask bounce, etc.) present at ultra-high frequencies 

(tick, minute, etc.) causes the returns to be serially autocorrelated and the ( ),RV t ∆  

estimator to become positively biased. To cope with this problem, it is possible to use 

more advanced estimators of the quadratic variance, such as sub-sampling schemes 

(see Zhang, Mykland and Ait-Sahalia, 2005), the autocorrelation-robust estimator 

of Hansen and Lunde (2004), or the realized kernels of Barndorff-Nielsen and 

Shephard (2008). A simpler (though less precise) approach is to estimate the realized 

variance on slightly lower frequencies at which no serial autocorrelation is present 

(Andersen et al., 2005). In our case, standard ( ),RV t ∆  is used with returns sampled 

at the 15-minute frequency, at which the estimated autocorrelation was negligible. 

In order to estimate the continuous component of the quadratic variation—i.e. 

the integrated variance—it is possible to use the realized bipower variation (Barndorff-

Nielsen and Shephard, 2004) defined as follows: 

                       ( ) ( ) ( )
1/

2

,  1 , 1 ( 1) ,
2

j

BV t r t j r t j

∆π
∆ ∆ ∆ ∆ ∆

=

= − + − + −∑                         (6) 

and it holds that ( ) ( ),BV t IV t∆ →  as  0∆ → . 

The contribution of the jump component can then be estimated as 

                                       ( ) ( ) ( ), , ,RJV t RV t BV t∆ ∆ ∆= −                                       (7) 

where ( ),RJV t ∆  is the realized jump variance and ( ) ( )2

1

,

t s t

RJV t s∆ κ
− ≤ <

→ ∑  as 

 0∆ → . 

As long as we are not able to sample the absolute returns at infinitely fine 

frequency, the estimates of jump variance based on bipower variation are always 

plagued by some noise. This noise may cause the values of the estimator to be negative. 

The underlying integrated variance can never be negative, so it is reasonable to discard 

the negative values (Andersen, Bollerslev and Diebold, 2007) as follows 

                                 ( ) ( ) ( ){ }, max , , ,0RJV t RV t BV t∆ ∆ ∆= −                               (8) 

Consequently, in order to ensure that the estimates of the integrated variance 

and jump variance sum into the estimate of the quadratic variation (realized vari-

ance), it is necessary to re-estimate the integrated variance as follows: 

                         ( ) ( ) ( ) ( ){ }, max , , ,0EIV t RV t, RV t BV t∆ ∆ ∆ ∆= − −                       (9) 

where ( ),EIV t ∆  is the adjusted estimate of the integrated variance. 
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Nevertheless, even if we discard the negative values, the noise present in 

the bipower variation estimator (due to the finiteness of our sampling frequency) 

causes the ( ),RJV t ∆  to indicate a non-negative jump component on almost every 

day. It would be reasonable to pick only the significant jumps in the presence 

of noise, which can be done by using the so-called shrinkage estimator for the jump 

contribution (see Barndorff-Nielsen and Shephard, 2004, and Andersen, Bollerslev 

and Diebold, 2007). 

The shrinkage estimator is based on the idea that appropriately normalized 

differences between realized variance and bipower variation should—in the absence 

of jumps—asymptotically converge to the standard normal distribution. For the nor-

malization, it is necessary to define the so-called integrated quarticity: 

                                                  ( ) ( )4

1

t

t

IQ t s dsσ
−

= ∫                                                 (10) 

which can be consistently estimated (even in the presence of jumps) with the realized 

tripower quarticity:          (11) 
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i.e. it holds that ( ) ( ),TQ t IQ t∆ →  as  0∆ → . 

Using ( ),RV t ∆ , ( ),BV t ∆  and ( ),TQ t ∆  we can define a variable ( ),Z t ∆  

which has asymptotically a standard normal distribution as long as the underlying 

process does not contain jumps: 

                  ( )
( ) ( ) ( )

( ) ( ) ( ){ }
1

2 2

, V , ,
,

/ 2 5 max 1, , V ,

RV t B t RV t
Z t

TV t B t

∆ ∆ ∆
∆
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−

−

 − =
 + −  

                      (12) 

Large values of ( ),Z t ∆  thus indicate that a jump occurred during the day. So 

the statistically significant jumps at significance level α can be identified as 

                      ( ) ( ) ( ){ } ( ) ( )1
, , , ,RJV t I Z t RV t BV t∆ ∆ Φ α ∆ ∆−  = > −                      (13) 

where 

{}.I  is the indicator function and ( ) 1Φ α −
 is the quantile function of the standard 

normal distribution. It is also worth noting that for 0.5α = , equation (13) becomes 

equal to equation (8) and only the negative jumps are eliminated by the estimator. 

As we want the jump estimator and the integrated variance estimator to sum 

into the realized variance, we need to re-estimate the integrated variance as 

         ( ) ( ) ( ) ( ){ } ( ) ( )1
, , , , ,EIV t RV t I Z t RV t BV t∆ ∆ ∆ Φ α ∆ ∆−  = − > −             (14) 

It is worth noting that although the aforementioned jump estimation method is 

commonly used in the literature, it may underestimate the jump component in finite 
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samples, especially if consecutive jumps (i.e. jumps in two consecutive high-frequency 

time-periods) occur in the time series, which may indeed be probable, especially due 

to the self-exciting behavior of the jumps. For discussion of this issue and possible 

solutions, see Corsi et al. (2010). 

An additional problem is the small sample size (with 15-minute frequency we 

have just 96 daily returns), which may also decrease the precision of the jump 

estimates. A solution would be to use a bootstrapped version of the estimator as 

described in Dovonon et al. (2014).  

Nevertheless, we chose to use the basic ( ),RJV t ∆  estimator as we believe it 

should be accurate enough for the purposes of this study. 

3. Bayesian Estimation of Volatility and Jumps 

In order to estimate the continuous stochastic volatility and jumps using 

the parametric approach, we need to specify the underlying latent processes for 

( )tµ , ( )tσ , ( )j t  and ( )q t  in equation (1) as well as the latent process ( )tλ , 

which determines the intensity of jumps governing the possible jump clustering. We 

will further present a parametric SVJD model inspired by Witzany (2013), with 

the addition of Self-Exciting Hawkes jumps instead of independent Poisson jumps. 

In the model, we assume that the drift of the logarithmic return process is 

constant: ( )tµ µ= . Equation (1) then changes to 

                                    ( ) ( ) ( ) ( ) ( )   dp t dt t dW t j t dq tµ σ= + +                              (15) 

In order to model the instantaneous stochastic volatility ( )tσ , we utilize 

the log-variance model which uses the mean-reverting Ornstein-Uhlenbeck process 

for the logarithm of the return variance. The process can be written as follows: 

                                          ( ) ( ) ( )Vdh t h t dt dW tκ θ ξ = − +                                  (16) 

where ( )h t  is the logarithm of the return variance, ( )2( ) lnh t tσ =   and ( )VW t , is 

a separate Wiener process governing the evolution of the stochastic volatility, which 

may be correlated with the Wiener process of the logarithmic price ( )W t , but we 

will further assume no correlation, as the correlation does not seem to be present for 

currency markets (unlike stock markets) (see Franses and van Dijk, 2000, p. 18). 

Parameter θ  represents the long-term level of volatility, κ  determines the strength 

of the mean-reversion and ξ  is the volatility of volatility, which is assumed to be 

constant. Additionally, it is possible to add jumps into the volatility process (see 

Eraker, 2004, and Fulop, Li and Yu, 2015), but we will omit these in the presented 

model. 

Considering the process of jump sizes ( )j t , we will model it as a series 

of normally distributed independent random variables: ( ) ( )~ ,J Jj t N µ σ  (i.e. we 

will not include the possibility of time-varying jump magnitudes or the possible 

correlation between the jump magnitudes and the stochastic volatility). 
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Finally, the process of jump occurrences ( )q t  will be modeled using a self-

exciting Hawkes process with the exponential decay function (see Ait-Sahalia et al., 

2015, and Fulop, Li and Yu, 2015 for the application of the Hawkes processes 

for jump modeling, and Bacry et al., 2015 for a detailed overview of the applications 

of these processes in finance). In the Hawkes process, the intensity of jumps ( )tλ , 

defined by the relationship ( ) ( )Pr 1dq t t dtλ = =  , increases (by a fixed amount) 

every time a jump occurs and then decays exponentially back to its long-term level. 

The jump intensity process ( )tλ  can be expressed using the following differential 

equation: 

                                    ( ) ( ) ( )J J Jd t t dt dq tλ κ θ λ ξ = − +                                     (17) 

where Jθ  is the long-term jump intensity, Jκ determines the rate of the exponential 

decay of the jump intensity towards its long-term level and Jξ  measures the imme-

diate increase in jump intensity after a jump occurs (i.e. when ( ) 1dq t = ). 

By solving differential equation (17), it is possible to express the value of 

the jump intensity ( )tλ  at any given point in time using the following relationship: 

                   ( ) ( ) ( )
( )

( )

1,

J J

t

t s t s
J J J J

dq s s t

t e dq s e
κ κλ θ ξ θ ξ− − − −

= ≤−∞

= + = + ∑∫                   (18) 

It is worth noting that many recent studies (Eraker et al., 2003; Eraker, 2004; 

and Fulop, Li and Yu, 2015) also add the possibility of jumps in the volatility 

process, which may be correlated with jumps in price. However, we do not include 

this feature in our model.  

The final SVJD model used in our study is specified by equations (15), (16) 

and (17). In order to estimate the parameters of the model, we convert the model 

from continuous-time into discrete-time using the Euler discretization (with the nota-

tion where 1, 2, .t = …  represents days). For the discretization of the jump intensity 

process, we have to assume that no more than one jump can occur during one day. 

The discrete version of equation (15) governing the evolution of daily log-

returns is 

                                         ( ) ( ) ( ) ( ) ( )r t t t J t Q tµ σ ε= + +                                      (19) 

where ( )r t  is the daily logarithmic return defined as ( ) ( ) ( )1r t p t p t= − −  and ( )p t  

is the logarithm of the closing price at day t. Parameter μ represents the uncon-

ditional mean of the daily returns, ( )tσ  is the daily conditional volatility, 

( ) ~ (0,1)t Nε  is a standard normal random variable, ( ) ( )~ ,J JJ t N µ σ  is a normally 

distributed random variable determining the size of the jumps and ( ) ( )Q t Bern tλ  ∼  

is a variable following a Bernoulli process with intensity ( )tλ . 

The discrete version of equation (16) governing the daily conditional volatility 

is 
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                                          ( ) ( ) ( )1 Vh t h t tα β γε= + − +                                          (20) 

where ( ) ( )2lnh t tσ =    is the logarithm of the daily return variance, ( )1α β θ= −  is 

the long-term volatility, β is the autoregressive coefficient, γ is the volatility 

of volatility and ( ) ~ (0,1)V t Nε  is a series of standard normal random variables 

uncorrelated with ( )tε .  

Finally, the discrete version of equation (17) governing the jump intensity 

( )tλ  is 

                                       ( ) ( ) ( )1 1J J Jt t Q tλ α β λ γ= + − + −                                    (21) 

where ( )tλ  is the jump intensity at day t , ( )1J J J Ja b γ θ= − −  determines the long-

term jump intensity, Jβ  is the rate of the exponential decay of the jump intensity, 

and Jγ  is the increase of jump intensity on the day following a jump occurrence. 

For notational simplicity, we will further denote ( ) ( )2
V t tσ=  as the daily 

conditional variance. 

The final model in the discrete time setting has three equations (19, 20 and 21) 

with nine parameters to be estimated ( , , , , , , , ,J J J J Jµ α β γ θ β γ µ σ ) and three vectors 

of latent state variables: V, J and Q. 

To estimate the parameters of the model and the past values of the latent state 

variables, we use a Markov chain Monte Carlo (MCMC) algorithm constructed 

according to Witzany (2013) and based on the results in Jacquier et al. (2007) and 

Johannes and Polson (2009). 

MCMC is a Bayesian estimation method that enables us to sample from high-

dimensional multivariate densities by constructing a Markov chain that converges to 

the target joint density but uses only information about the conditional low-dimensional 

densities that are far easier to analytically express and sample from. 

Let us assume that our goal is to estimate a vector of parameters denoted as 

( )1 , , kΘ θ θ= …  and that we are able to analytically express (and sample from) all of 

the univariate conditional densities ( )| , , dataj ip i jθ θ ≠ , but not the multivariate joint 

density ( )| datap Θ . Then we can use the Gibbs sampler and construct a Markov 

chain that should converge to the multivariate joint density ( )| datap Θ  and will thus 

generate asymptotically unbiased samples from it. 

The procedure for the Gibbs sampler is as follows: 

0. Assign a vector of initial values to ( )0 0 0
1 , , kΘ θ θ= …  and set 0j = . 

1. Set 1j j= + . 

2. Sample ( )1 1
11 2~ | , , , dataj j j

kpθ θ θ θ− −…  

3. Sample ( )1 1
22 1 3~ | , , , ,dataj j j j

kpθ θ θ θ θ− −…  

... 

k + 1. Sample ( )1 2 1~ | , , , , dataj j j j
kk kpθ θ θ θ θ −…  and return to step 1. 
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According to the Clifford-Hammersley theorem (see Johannes and Polson, 

2009) the univariate conditional distributions ( )| , ,dataj ip i jθ θ ≠  fully characterize 

the joint distribution ( )| datap Θ  and it can also be proved that the Markov chain 

constructed according to the Gibbs sampler converges to the multivariate joint 

distribution ( )| datap Θ . So, we only have to calculate enough iterations of the Gibbs 

sampler, discard the first ones and use the remaining ones to estimate all of the required 

statistical properties of the joint distribution ( )| datap Θ . 

The conditional densities ( )| , ,dataj ip i jθ θ ≠  are usually obtained by applying 

the Bayes theorem to the likelihood function and the prior density: 

         ( ) ( ) ( )1 1 1 1 1 1
1 1 12 2 2| , , ,data data| , , , prior | , ,j j j j j j

k k kp Lθ θ θ θ θ θ θ θ θ− − − − − −… ∝ … × …       (22) 

where (.)L  denotes the likelihood function, prior(.) is the Bayesian prior density for 

the given parameter and ∝  represents a proportionate relationship. In our application, 

we generally use uninformative priors (i.e. ( )prior 1iθ ∝ ) and assume independence 

of the parameters. 

In order to utilize the Gibbs sampler, it is necessary to normalize the right 

hand side (RHS) of equation (22) (i.e. to replace the proportionate relationship with 

equality). This can be done by integrating the RHS of the equation over 1θ  in order 

to get the density ( )1 1
2data| , ,
j j

kp θ θ− −…  with which the RHS has to be divided. 

If integration on the right hand side of equation (22) is not possible, then 

the Gibbs sampler cannot be used. Instead, we can use the Metropolis-Hastings algo-

rithm, which is a rejection sampling algorithm that works as follows: a proposal 

value for each parameter is drawn from a proposal density and the new parameter 

value is then either accepted or rejected based on a given probability. 

Specifically, Step 2 in the Gibbs sampler is replaced by the following two-step 

procedure: 

A. Draw 1
jθ  from the proposal density ( )1 1

1 2| , , ,data
j j

kq θ θ θ− −… . 

B. Accept 1
jθ  with the probability min( ,1)Rα = , where R denotes the acceptance 

ratio defined as 

( ) ( )
( ) ( )

1 1 1 1 1
1 2 1 1 2

1 1 1 1 1 1
1 2 1 1 2

| , , , data | , , , ,data

| , , ,data | , , , ,data

j j j j j j j
k k

j j j j j j j
k k

p q
R

p q

θ θ θ θ θ θ θ

θ θ θ θ θ θ θ

− − − − −

− − − − − −

… …
=

… …
               (23) 

which is in practice evaluated by sampling ( )0,1u U∼  from a uniform distri-

bution and accepting 1
jθ  if and only if u R< . 

It can be shown that the resulting Markov chain converges to the joint 

distribution ( )| datap Θ  (see Johannes and Polson, 2009). 
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There are many different versions of the Metropolis-Hastings algorithm which 

often differ in the proposal density assumed. A very popular version is the Random-

Walk Metropolis-Hastings with the following proposal density: 

                                                   ( )1
1 1~ 0,
j j

N cθ θ − +                                               (24) 

where c  is a meta-parameter which may influence the computational efficiency 

of the algorithm and the practice is to set it so that approximately 50% of the pro-

posals get accepted. 

A great advantage of the Random-Walk Metropolis-Hastings algorithm is that 

its proposal distribution is symmetric, which means that the probability of going from 
1

1
jθ −  to 1

jθ  is the same as the probability of going from 1
jθ  to 1

1
jθ − . Because of that, 

the proposal densities in equation (23) cancel out. Consequently, by utilizing relation-

ship (22) and assuming non-informative priors, the acceptance ratio reduces to 

the likelihood ratio 

                                       
( )
( )

1 1
1 2

1 1 1
1 2

data | , , ,

data | , , ,

j j j
k

j j j
k

L
R

L

θ θ θ

θ θ θ

− −

− − −

…
=

…
                                       (25) 

So, in theory, as long as we are able to analytically express the likelihood 

function, we can use this algorithm to estimate the joint posterior density of the para-

meters. 

In our case, we want to estimate a vector of a few model parameters Θ  and 

a large number of latent state variables X. Since we know from the Bayes theorem 

that 

                                ( ) ( ) ( ), | data data | , * ,p X p X p XΘ Θ Θ∝                              (26) 

we can estimate iteratively the parameters and the latent state variables 

                           
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

| ,data data | , * | *

| ,data data | , * | *

p X p X p X p

p X p X p X p X

Θ Θ Θ Θ

Θ Θ Θ

∝

∝
                     (27) 

In order to achieve better computational efficiency, we combine in our 

application different versions of the MCMC algorithm for different variables. Spe-

cifically, we use the Gibbs sampler to estimate the parameters , , , , ,j jµ µ σ α β γ  and 

latent state variables Q, J and V (for V using an accept-reject Gibbs sampler based 

on Kim, Shephard and Chib, 1998) and Random-Walk Metropolis Hastings to esti-

mate the Hawkes process parameters , ,J J Jθ β γ . 

The full estimation algorithm (based on Witzany, 2013) proceeds as follows: 

1. Sample reasonable initial values (0) (0) (0) (0) (0)(0) (0) (0) (0), , , , , , , , ,J J J J Jµ µ σ α β γ θ β γ  

(0) (0) (0),,V J Q . Denoting s
2
 as the estimate of unconditional variance Var (r), 

the following initial values were used: (0)
0µ = , (0)

0Jµ = , (0)
2*J sσ = , 

( ) ( )(0) 2log * 1 0.9sα = − , (0) 0.9β = , (0) 0.3γ = , (0) 0.05Jθ = , (0) 0.8Jβ = , (0) 0.01Jγ = . 
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The initial stochastic variances (0)
V  were set equal to the exponential moving 

average of 2r  and jump occurrences (0)Q  were set equal to zero. 

2. For 1, ,i T= …  sample jump sizes 
( ) ( )( )1 1( )

; ,
g gg

i J JJ Jϕ µ σ− −∝  if 
( )1

0
g

iQ
− =  and 

( ) ( ) ( ) ( )( )1 1 11( ) ; , ; ,
g g ggg

i i i J JJ r J V Jϕ µ ϕ µ σ− − −− ∝ + 
 

 if 
( )1

1
g

iQ
− = . 

3. For 1, ,i T= …  sample jump occurrences { }( ) 0,1g
iQ ∈ , [ ] ( )1 0 1Pr 1 /Q p p p= = + , 

where ( ) ( ) ( )( )11 1
0 ; , 1

gg g
i ip r Vϕ µ λ−− − = − 
 

 and ( ) ( )11 ( 1)
1 ; ,

gg g
i ip r J Vϕ µ λ−− − = + 
 

. 

4. Sample new stochastic log-variances 
( ) ( )( )log
g g

i ih V=  for 1, ,i T= …  using 

the Gibbs Sampler with the accept-reject procedure developed in Kim, Shephard 

and Chib (1998), i.e. we calculate the series ( ) ( ) ( )1 g gg
i i i iy r J Qµ −= − −  and sample 

( )g

ih  from a proposal distribution ( ) ; ,i ihϕ µ σ , where ( )
2

2 exp 1
2

i i i iy
σ

µ φ φ = + − −  , 

( ) ( )

( )
1 1

2

1 log log

1

i i

i

V Vα β β
φ

β

+ − − + + =
+

 and 
21

γ
σ

β
=

+
.  

The proposal is accepted with probability * */f g  (otherwise a new proposal is 

drawn), where 

( )
2

*log exp
2 2

i i
i

h y
f h = − − −   and ( )( ) ( )

2
*log exp 1 exp

2 2

i i
i i i i

h y
g hφ φ φ = − − − + − −  . 

5. Sample new stochastic volatility autoregression coefficients ( ) ( ) ( ), ,g g gα β γ  from 

( )( )log g
i ih V=  for 1, ,i T= …  using the Bayesian linear regression model 

(Lynch, 2007), i.e. 

( ) 1ˆ −
= X'Xβ Xy , ˆ =e y - Xβ

⌢

, where 
1 1

1    1    

Th h −

… 
=  … 

X

'

   and ( )2 Th h= …y
'
, so we 

sample ( )2( ) 2
,

2 2

g n
IGγ

− 
∝  

 

e´e
⌢ ⌢

 and ( ) ( ) ( ) ( )
2 1( ) ( ) ( ), , ; ,g g gα β ϕ α β γ − ∝   

β X'X
⌢' '

. 

6. Sample ( )gµ  based on the normally distributed time series ( ) ( )g g
i i ir J Q−  with vari-

ances ( )g
iV : ( ) ( ) ( ) ( )( )

( ) ( )

( ) ( ) ( )
1 1 1

1 1
| , , ; ,

g gT T T
g g g g i i i

g g g
i i ii i i

r J Q
p

V V V
µ ϕ µ

= = =

 −
∝   

 
∑ ∑ ∑r,J Q V . 

7. Sample , ,J J Jθ β γ  using Random-Walk Metropolis-Hastings and the likelihood 

function ( )( ) ( )1
1

| , , 1 ii

T
Qg Q

J J J i i
i

L θ β γ λ λ −

=

= −∏Q . 
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8. Sample ( ) ( ),g g
J Jµ σ  based on the normally distributed series ( )g

J  and uninforma-

tive priors ( ) 1p µ ∝  and ( )2log 1p σ ∝  (which is equivalent to ( )2 21/p σ σ∝ ), 

i.e. we sample from 

 ( ) ( ) ( )( ) ( )
( ) ( )1

1 1| , ; ,

T g g
ig g gg i J

J J J

J
p

T T

σ
µ σ ϕ µ

−
− =

 
 ∝
 
 

∑
J , 

 ( )( ) ( ) ( ) ( )( )
( ) ( )( )22 2

1
| , ; ,

2 2

T g g

i Jg g g ig

J J J

J
T

p IG

µ
σ µ σ =

 
−  

∝   
   

  

∑
J . 

4. Empirical Results 

The empirical research was performed on a time series of the EUR/USD 

exchange rate consisting of 2,083 trading days over the period between 3 February 

2006 and 15 April 2014. All of the non-parametric high-frequency estimators were 

calculated on 15-minute returns provided by Forexhistorydatabase.com. The data 

correspond to the GMT+2 time-zone and consist of ninety-six 15-minute returns 

for each trading day (Monday to Friday). We further removed all days with less than 

twenty 15-minute returns from the sample, as these were viewed as non-standard 

and, due to the small sample sizes, could potentially cause bad behavior of the non-

parametric estimators. All of the calculations were performed in Matlab. 

Before applying the models to real price data, we compared the performance 

of the two methods in simulated time series. We simulated the series of price evolu-

tion using our SVJD model with parameters calibrated to the EUR/USD history (equal 

to the third row of Table 5), with the modification that we put the mean jump size 

parameter equal to zero ( 0Jµ = ) and simulated the series in 12 different variants 

with different values of Jσ  (i.e. the jump volatility parameter). The simulation was 

performed with 15-minute time steps and the length of the simulated series was set to 

5,000 trading days. The purpose of the performed simulation was to assess the ability 

of the two analyzed methods (i.e. non-parametric estimation and the Bayesian 

approach) to identify jumps of different magnitudes. 

The performance of the two jump estimators was compared using the accu-

racy ratio (AR) which can be defined as follows. If i is a random day on which 

a jump occurred and j a random day on which a jump did not occur, p1 denotes 

the probability that the values of the jump estimator ( JE ) are ( ) ( )JE i JE j>  and  

p2 the probability that ( ) ( )JE i JE j< , then the accuracy ratio can be defined as 

1 2AR p p= − .  

As can be seen in Figure 1, the non-parametric power-variation approach is 

able to identify simulated jumps with far greater accuracy than the Bayesian 

approach, especially if the magnitude of the simulated jumps is relatively low. This  

is to be expected, as it is far easier to identify small discontinuities in the price 

evolution from high-frequency returns then from the daily returns to which 
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Figure 1  Accuracy Ratios for the Parametric and Non-Parametric Jump Estimators 
in Simulated Time Series with Different Values of SigmaJ  

                                     

 
Table 1  Basic Statistics for the Realized Variance and Bipower Variation Series 

  mean st.dev. skew kurt JB-test acf(1) LB-test 

RV 4.14E-05 4.60E-05 4.58 37.57 111014.48 0.746 15410.05 

BV 3.72E-05 4.17E-05 4.23 30.96    74071.31 0.785 17128.07 

ln(RV) -10.4376 0.7922 0.34 3.24 43.98 0.762 19601.80 

ln(BV) -10.5535 0.8002 0.38 3.19 54.00 0.792 20793.67 

RV^(1/2) 0.0059 0.0026 1.89 9.06 4426.47 0.786 19555.14 

BV^(1/2) 0.0056 0.0025 1.86 8.49 3815.76 0.815 20825.31 

 

the Bayesian approach is applied. The main contribution of the simulation is to tell us 

the degree of accuracy that we can expect from the two methods based on the sizes 

of the relevant jumps. As we can see, for jumps with sigma smaller or equal to 0.5%, 

the accuracy ratio of the Bayesian approach is virtually equal to zero, indicating that 

the method cannot distinguish jump days from non-jump days if the volatility 

of the jumps is too small. 

Knowing the simulation performance of the two methods, we applied them to 

the empirical EUR/USD log returns. Table 1 shows the main summary statistics 

of realized variance and bipower variation as well as of their logarithmic and root 

transformations. For the Jarque-Bera test and the Ljung-Box test with lag 20, we 

report only the test statistic for comparison. All of the series exhibit strong, statis-

tically significant autocorrelation and non-normality. The non-normality is least 

pronounced in the case of the logarithmically transformed series, which supports 

the application of our log-variance model in the parametric approach. 

In the next step, we estimated the contribution of the jump component to 

the quadratic variation using equation (13) with probability levels (alphas) of 50%, 

90%, 95%, 99%, 99.9% and 99.99%. Table 2 shows some basic statistics of the iden-

tified jumps. 

From the first and second column we can see that jumps are clearly present 

in the time series. The last column (m.jump) shows the estimated mean absolute 

jump size under the assumption that, at most, one jump can happen during one day. 

It is calculated as the mean of the square roots of the estimated jump component. 

The value of m.jump is relatively low, meaning that the jumps are rather small and it 
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Table 2  Statistics of Jumps Identified Non-Parametrically with Different Alphas 

  number rate mean st.dev. skew kurt JB-test m.jump 

JV_50% 1620 77.77% 5.96E-06 9.41E-06 6.114 62.765 251194.00 0.0021 

JV_90% 812 38.98% 9.42E-06 1.19E-05 5.121 42.320 55856.44 0.0028 

JV_95% 596 28.61% 1.05E-05 1.23E-05 4.758 37.629 32027.99 0.0029 

JV_99% 330 15.84% 1.27E-05 1.47E-05 4.374 30.062 11122.59 0.0032 

JV_99.9% 132 6.34% 1.51E-05 1.30E-05 2.678 12.737 679.27 0.0036 

JV_99.99% 63 3.02% 1.83E-05 1.47E-05 2.591 11.246 248.97 0.0040 

 

Table 3  Autocorrelations of the Magnitudes of the Estimated Jump Components 

  JV_50% JV_90% JV_95% JV_99% JV_99.9% JV_99.99% 

acf(1) 0.198 0.332 0.264 0.223 0.039 -0.246 

LB-test 919.942 985.041 514.019 228.486 8.826 25.331 

LB-pval 0 0 0 0 0.985 0.189 

 

Table 4  Parameters of the Hawkes Process Applied to the Jumps Identified  
Non-Parametrically with Different Alphas (i.e. Probability Levels) 

  ThetaJ BetaJ GammaJ 

JV_90% 0.4014 (0.0297) 0.9937 (0.0041) 0.0041 (0.0024) 

JV_95% 0.2861 (0.0107) 0.6175 (0.3722) 0.0286 (0.0206) 

JV_99% 0.1582 (0.0100) 0.8746 (0.0784) 0.0250 (0.0134) 

JV_99.9% 0.0643 (0.0059) 0.8159 (0.5456) 0.0136 (0.0150) 

JV_99.99% 0.0302 (0.0038) 0.8195 (1.0868) 0.0008 (0.0137) 

 

may be difficult to identify them accurately (especially using the Bayesian approach, 

which exhibited close to zero predictive accuracy in the simulations when the vola-

tility of the jumps was smaller than 0.5%). 

We further analyze the jump size dependency by first removing the non-jump 

days and then calculating the autocorrelation of the resulting time series. We can see 

from the autocorrelation on lag one (acf(1)) and the Ljung-Box test with lag 20 that 

for jumps estimated with 99%α ≤ , there exists some dependency in their absolute 

sizes. (see Table 3) 

In order to analyze jump clustering, we first calculated the autocorrelation 

of the time series of the logarithms of the numbers of days between jump occur-

rences, but the results indicated no statistically significant autocorrelation.  

As an alternative approach, we estimated the parameters of the Hawkes process 

on the non-parametrically identified jump time series (while assuming that the daily 

jump component is always generated by only a single jump). The estimation was 

done by numerically maximizing the likelihood function with the Matlab fmincon 

function. Table 4 shows the results. 

As can be seen in Table 4, the parameters indicate some tendency to jump 

clustering, as the BetaJ parameter is relatively high for all of the time series. Never-

theless, from the confidence intervals (estimated using the Hessian), we can see that 
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Table 5  Mean Bayesian Estimates of the Parameters of the SVJD Model 

  mui muiJ sigmaJ alpha beta gamma thetaJ betaJ gammaJ 

B_2_Mean 0.0002 0.0012 0.0057 -0.0450 0.9957 0.0698 0.0307 0.4133 0.0441 

B_2_Std (0.0001) (0.0033) (0.0011) (0.0260) (0.0025) (0.0080) (0.0255) (0.2510) (0.0282) 

B_3_Mean 0.0001 0.0020 0.0079 -0.0475 0.9954 0.0686 0.0205 0.4414 0.0423 

B_3_Std (0.0001) (0.0036) (0.0015) (0.0274) (0.0026) (0.0102) (0.0194) (0.2688) (0.0278) 

B_4_Mean 0.0002 0.0065 0.0109 -0.0401 0.9962 0.0653 0.0132 0.4231 0.0455 

B_4_Std (0.0001) (0.0071) (0.0023) (0.0251) (0.0024) (0.0086) (0.0133) (0.2647) (0.0286) 

 

the GammaJ parameter is statistically insignificant for most of the time series (with 

the possible exception of JV_90% and JV_99%). We also calculated the Bayesian 
confidence intervals at which even the BetaJ parameter becomes insignificant.  

In the parametric approach for jump identification, we estimated the posterior 

distributions of the parameters and latent state variables of the SVJD model described 

in Section 3 by using a MCMC algorithm with 20,000 iterations (of which the first 

5,000 were discarded). We first performed the estimation without any prior infor-

mation, which caused pathological behavior of the jump size parameters (sigmaJ 

converging to zero). Thus we decided to use a prior inverse gamma distribution 

for the sigmaJ parameter in the Gibbs sampler with the scale parameter 4α =  and 

with the mean alternatively equal to 2, 3 and 4 times the unconditional standard 

deviations of the log-returns (denoted as B_2, B_3 and B_4), thereby forcing 

the possible jumps in the time series to be relatively large compared to the overall 

volatility. Table 5 shows the Bayesian posterior means and standard deviations 
of the parameter estimates. 

As can be seen in Table 5, the parameter beta is very close to 1, indicating 

potential non-stationarity of the log-variance time series. Considering the jumps, we 

can see that the parameters of the Hawkes process (thetaJ, betaJ and gammaJ) do not 

indicate any jump clustering (betaJ is low and statistically insignificant). As for 

the sigmaJ parameter determining the jump volatility, its value varies between 0.57% 

and 1.09%, depending on the applied prior. It is thus apparent that the jumps are 

rather small in their absolute value and the accuracy of the Bayesian approach 

(regarding the identification of jumps) may be poor (as can be seen in the simulation 
results in Figure 1). 

Figure 2 compares the Bayesian stochastic volatility estimates (for the B_3 

case) with the non-parametric estimates of integrated variance. We can see that both 

of the series exhibit similar behavior with the stochastic variance only being less 

noisy. 

Finally, we compare the jumps estimated using the Bayesian approach with 

the jumps estimated using the non-parametric power-variation approach. To identify 

jumps using the Bayesian approach, averages of the sampled jump occurrences 

(for every single day) from the last 15,000 sweeps of the MCMC algorithm were 

computed (Figures 3 and 4). The jump estimates thus constructed correspond to 

the posterior probabilities of jump occurrences for every single day. Table 6 shows 

the numbers of days in which the estimated probabilities that a jump occurred are 

greater than a given percentage (10% to 99%). The rows correspond to the three 
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Figure 2  Comparison of the SV (B_3) Estimate and the Integrated Variance Estimate 
(EIV) Based on the Differences between BV and JV_99.9% 

                                     

 
Figure 3  Bayesian Probabilities of Jump Occurrences for B_2 (left) and B_3 (right) 

      
 
Figure 4  Bayesian Probabilities of Jump Occurrences (B_4) 

                                   
 

MCMC runs with different priors regarding the jump volatility. As can be seen 

in Table 6, the method identified only one possible jump with Bayesian probability 

of occurrence greater than 50% (in the last row, i.e. the one with the highest prior 

jump volatility) and zero jumps at the higher confidence levels (90% to 99%). This 

is in stark contrast to the non-parametric approach, which identified many jumps 

in the time series with relatively high levels of confidence (as can be seen in Table 2).  

Although the Bayesian approach identified a significantly smaller number 

of jumps in the time series than the non-parametric approach did, we can still ask 
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Table 6  Parametrically Identified Jumps at Different Bayesian Probability Levels (bp) 

  bp > 10% bp > 20% bp > 30% bp > 50% bp > 90% bp > 95% bp > 99% 

B_2_jumps 25 12 5 0 0 0 0 

B_3_jumps 20 12 7 0 0 0 0 

B_4_jumps 15 9 4 1 0 0 0 
 

Table 7  Rank Correlations of the Estimated Jump Probabilities  
and with Other Variables 

  bp2 bp3 bp4 Z(t,Δ) RV RV-BV R2(day) max(r2(15)) 

bp2 1.0000 0.9551 0.9462 0.0285 0.5382 0.2032 0.8529 0.4865 

bp3 0.9551 1.0000 0.9459 0.0256 0.5584 0.2072 0.8395 0.4949 

bp4 0.9462 0.9459 1.0000 0.0263 0.5795 0.2131 0.8433 0.5065 

Z(t,Δ) 0.0285 0.0256 0.0263 1.0000 0.0223 0.8698 0.0365 0.2607 

 

if the two methods tend to identify jumps at the same times (i.e. if, when one 

of the methods assigns a relatively high jump probability to a given day, the second 

method assigns a relatively high jump probability to that day as well). In order to find 

out, we calculated the Spearman rank correlation coefficients between the Bayesian 

probabilities of jump occurrences and the values of variable Z from equation (12). 

As can be seen in Table 7, the rank correlation coefficients between the Bayesian 

jump probabilities (bp2, bp3 or bp4) and variable Z are very low, indicating that 

the two methods do not tend to identify jumps at the same times. This is strange, 

considering that the two methods should both identify the same phenomenon, 
i.e. discontinuous price changes. 

In order to explain these results we calculated rank correlations of the jump 

estimators with some other quantities related to price volatility—namely the realized 

variance (RV), the difference between RV and BV (RV – BV), the squared daily return 

(R2_Day) and the squared maximum 15-minute return during the day (max(r2(15m))). 

As we can see from the results, the Bayesian jump probabilities are strongly rank-

correlated with the squared daily returns and somewhat correlated also with 

the realized variance and the maximum 15-minute returns. Conversely, the value 

of the Z-statistics is almost uncorrelated with the squared daily returns and sur-
prisingly even with the daily realized variance.  

As the Z-statistics exhibit correlation only with variables calculated from 

the intraday returns (RV – BV and max(r2(15))) and virtually no correlation with 

the daily squared returns, it seems that the real jumps are in fact indistinguishable 

at the daily frequency (because they are too small to significantly influence the daily 

returns). 

In order to examine this issue in more detail, we used the following approach: 

We estimated the daily integrated variance using equation (14) with different values 

of α and we then applied the HAR model (Corsi, 2004) to these series in order to 

calculate one-day predictions of the continuous price volatility. We then used these 

predictions to normalize the log-returns for every single day and calculated the dis-

tribution of the normalized returns on jump days and non-jump days to see the extent 

to which they are different. 



296                                    Finance a úvěr-Czech Journal of Economics and Finance, 66, 2016, no. 4 

Figure 5  Distribution of Normalized Returns on Jump Days and Non-Jump Days  
for Non-Parametrically Identified Jumps  
with α = 0.99 (left) and α = 0.999 (right) 

       
 
Figure 6  Distribution of Normalized Returns on Jump Days and Non-Jump Days  

for Parametrically Identified Jumps  
Using bp ≥ 0.02 (B_4) (left) and bp ≥ 0.05 (B_3) (right) 

        
 

As we can see in Figure 5, on the majority of days the presence of jumps does 
not dramatically increase the daily returns compared to their size in the days without 
jumps. The vast majority of non-parametrically identified jumps are thus indis-

tinguishable at the daily frequency.  

As we can see in Figure 6, for the parametrically identified jumps the distri-
bution of normalized returns on jump days is bi-modal and most of the returns 
on those days are in their absolute magnitude far greater than in the case of the non-
jump days. This is to be expected, as the Bayesian method uses primarily the size 
of the daily returns in order to determine if a jump occurred. The shape of the distri-
bution in Figure 6 also supports the possible utilization of bi-modal jump distribution 
in the SVJD model (see Božovic, 2008). 

Finally, we can ask if the Bayesian method really identifies jumps (i.e. dis-
continuous price changes) in the time series or if the alleged jumps are just large 
price movements caused by continuous variability in conjunction with some other 
phenomenon, i.e. jumps in volatility (see Eraker et al., 2003) or dependencies 
in the conditional mean (see Stádník, 2014). 

In order to answer that question, we compare the distribution of the Z-statistic 
on the days when the Bayesian jump probabilities are relatively high with its 
distribution on the days when the Bayesian jump probabilities are relatively low. 
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Figure 7  Distribution of the Values of the Z-Statistic on Days  
when bp ≥ 0.02 and bp < 0.02 for B_4 (left)  
and on Days when bp ≥ 0.05 and bp < 0.05 for B_3 (right) 

     

 
Figure 8  Days with the Largest Value of the Z-Statistics (Z = 9.48) (left)  

and the Largest Bayesian Probability of Jump Occurrences (bp = 48%) 
(B_3) (right) 

      

 
As can be seen in Figure 7, high Bayesian probabilities of jump occurrence 

coincide to a limited degree with higher values of the Z-statistic. Nevertheless, most 

of the days with high Bayesian probabilities of jumps probably do not contain 

realized jumps. We further performed a Welsh t-test for the differences between 
the two sample means, which gave us mixed results (see Table 8). 

As a practical illustration, Figure 8 plots the day with the highest value 

of the Z statistics (9.48) and the day with the highest Bayesian jump probability for 

B_3 (48%). As we can see, the return on the day with Z = 9.48 was not enormous, 

but it contained a single large 15-minute return. This could not be seen at the daily 

frequency and the Bayesian method actually assigned a mere 2.13% jump probability 

to that day. On the other hand, if we look at the returns to which the Bayesian 

approach assigned 48% probability of a jump occurrence, we can see that there were 

no visible discontinuities in the price evolution on that day and that the price merely 

trended the whole day, achieving a large daily return gradually during the whole 
period (in fact the value of the Z-statistic on that day was only 0.2662). 

Considering the distribution of jumps in Figures 3 and 4, we can see that 

the frequency of jump occurrences increases greatly after the beginning of 2012. 

In order to determine whether the results of our study hold even for this more recent 
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Figure 9  Bayesian Probabilities of Jump Occurrences  
(after 1 January 2012) (B_4) 

                                     
 

Table 8  Welsh t-Tests for the Difference between the Two Sample Means  
(bp ≥ x% and bp < x%)  
(1 = statistically significant difference, 0 = statistically insignificant difference) 

  bp ≥ 2% bp ≥ 5% bp ≥ 10% 

B_2_jumps 0 1 0 

B_3_jumps 1 1 0 

B_4_jumps 1 0 0 

 

Table 9  Bayesian Estimates of the Parameters of the SVJD Model  
(after 1 January 2012) 

  mui muiJ sigmaJ alpha beta gamma thetaJ betaJ gammaJ 

B_2_Mean -0.0001 0.0049 0.0045 -0.1283 0.9885 0.0593 0.0551 0.4286 0.0409 

B_2_Std (0.0002) (0.0037) (0.0009) (0.1274) (0.0117) (0.0260) (0.0264) (0.2636) (0.0278) 

B_3_Mean -0.0001 0.0038 0.0061 -0.1620 0.9854 0.0634 0.0531 0.4528 0.0408 

B_3_Std (0.0002) (0.0033) (0.0011) (0.1430) (0.0131) (0.0260) (0.0264) (0.2681) (0.0274) 

B_4_Mean -0.0001 0.0013 0.0076 -0.1273 0.9886 0.0491 0.0535 0.4428 0.0433 

B_4_Std (0.0002) (0.0103) (0.0016) (0.1325) (0.0122) (0.0288) (0.0305) (0.2721) (0.0286) 

 

Table 10  Rank Correlation between the Jump Estimators  
  (after 1 January 2012) 

  bp2 bp3 bp4 Z(t,Δ) RV RV-BV R2(day) max(r2(15)) 

bp2 1.0000 0.9295 0.8911 0.0603 0.4170 0.1799 0.6244 0.3411 

bp3 0.9295 1.0000 0.9743 0.0456 0.4858 0.1937 0.8060 0.3896 

bp4 0.8911 0.9743 1.0000 0.0265 0.5012 0.1787 0.8511 0.3971 

Z(t,Δ) 0.0603 0.0456 0.0265 1.0000 0.0945 0.8864 0.0254 0.3474 

 

period, we re-estimated the Bayesian model on the data for the period after 1 January 

2012. From the results in Tables 9 and 10 we can see that although jumps are much 

more common in this period, the main results still hold to a certain degree (although 

the correlation between the Bayesian jump probabilities and variable Z is slightly 

larger for this period; for the estimated jump probabilities see Figure 9). 
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5. Conclusion 

We compared two different approaches to stochastic volatility and jump 

estimation. The first approach uses power-variation measures calculated from high-

frequency returns in order to non-parametrically estimate the continuous and dis-

continuous components of price variability. We used the realized variance to estimate 

the quadratic variation, bipower variation to estimate the integrated variance and 

the shrinkage estimator to estimate the jump component of the quadratic variation 

at different probability levels.  

The second approach specifies the underlying volatility and jump processes 

parametrically and then estimates their parameters and the latent state variables using 

Bayesian inference methods. We used a log-variance Stochastic-Volatility Jump-

Diffusion model with self-exciting jumps governed by the Hawkes process as our 

underlying parametric model and we estimated its parameters through a MCMC 

algorithm. 

We applied the two methods to simulated time series, finding that the non-

parametric approach identifies jumps with far greater accuracy than the parametric 

approach, especially when the jumps are small. We then applied the two methods to 

the past history of the EUR/USD exchange rate during the period between 3 February 

2006 and 15 April 2014. 

The most surprising result of our study is the finding that the probabilities 

of jump occurrences estimated using the two methods are virtually uncorrelated 

(using Spearman’s rank-correlation coefficient), which means that the two methods 

do not identify jumps at the same times. This is strange, considering that the methods 

should theoretically identify the same phenomenon, i.e. discontinuous price changes.  

Our further research showed that in the vast majority of cases the jumps 

identified using the non-parametric approach from high-frequency returns are not 

large enough to be distinguishable at the daily frequency—indeed, they are almost 

uncorrelated with the squared daily returns as well as with the realized variance. 

The parametrically identified jumps, on the other hand, are strongly correlated 

with the daily squared returns, but in most cases they do not represent real jumps 

at all (i.e. they do not coincide with discontinuous price changes) but only large daily 

returns generated by the continuous price variability, amplified possibly by some 

other phenomenon—jumps in volatility or the potentially stochastic behavior of the con-

ditional mean. Therefore, it may be interesting to include these features in the SVJD 

model and examine the problem further. 

Among other results, we found that non-parametrically identified jumps 

exhibit only weak (statistically insignificant) clustering and that parametrically 

identified jumps do not exhibit clustering at all. Conversely, we found some auto-

correlation in the jump magnitudes for the non-parametrically identified jumps, 

which is a feature that may further be included in the parametric model as well. From 

the results, it also seems that it may be useful to use a bi-modal distribution 

for the jump component in the SVJD models, as it corresponds more closely to 

the distribution of jumps that are identifiable using that method. 

We further found that the intensity of jumps greatly increases after the begin-

ning 2012, but the main results of our study still seem to more or less hold. 
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