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Abstract 

In this paper, we explore the relevance of asymmetry, long memory and fat tails in modeling 

and forecasting the conditional volatility and market risk for the Gulf Cooperation 

Council (GCC) stock markets. Various linear and non-linear long-memory GARCH-class 

models under three density functions are used to investigate this relevancy. Our results 

reveal that non-linear GARCH-class models accommodating long memory and asym-

metry can better capture the volatility of returns. In particular, we find that some stock 

returns’ behaviors are well described by dual long memory in the mean and the con-

ditional variances. Interestingly, the FIAPARCH volatility model with skewed Student 

distribution is found to be the best suited for estimating the value at risk and expected 

shortfall for short and long trading positions. This model outperforms the other com-

peting long-memory GARCH-class models and simple GARCH and EGARCH models. 

Overall, long-memory, asymmetry, persistence and fat tails are important empirical facts 

in the GCC markets that should be taken into account when modeling and predicting 

volatility and assessing total risk. Our findings offer several useful implications for policy 

regulation, risk assessment and hedging, stock-price forecasting and portfolio asset 

allocations. 

1. Introduction 

Originally used by financial institutions for internal risk control and asset 
management, value-at-risk (VaR) took on greater importance when the Basel Com-
mittee recommended its use through the 1996 amendment to the 1988 Basel Accord 
(Basel Committee on Banking Supervision [BCBS], 1996). In 2006, BCBS refined 
the regulation inherent to the use of VaR allowing greater flexibility for financial 
institutions to use their own internal VaR models subject to such models being re-
cognized by the regulator. VaR quantifies the maximum loss for a portfolio of assets 
under normal market conditions over a given period of time and at a certain con-
fidence level. The expected shortfall (ES) is an alternative tool to VaR that is more 
sensitive to the shape of the loss distribution in the tail of the distribution. It quan-
tifies the expected value of the loss, provided that a VaR violation has occurred. 
Within the literature, a variety of increasingly complex models, including both para-
metric and non-parametric models, are used to estimate the VaR. These models can 
take into account some major empirical facts of financial asset returns such as 

* The authors would like to extend their sincere appreciation to the Deanship of Scientific Research at King 
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clustering volatility, long memory (hyperbolic decline of the conditional variance), 
asymmetry, persistence and fat tails. These models have been estimated using various 
distributions of the asset return (normal, Student, skewed Student, generalized error 
distribution [GED], exponential generalized beta, and stable Paretian) for different 
financial and commodity assets, and different confidence levels.1 Presently, the empirical 
literature fails to offer a consensus regarding the best model for computing VaR. 
Specifically, the forecasting ability of each model depends on the sample period, 
the selected asset and the joint distribution of the asset’s return innovations. More-
over, some VaR models provide conflicting results when estimated for short and long 
trading positions that can be explained by the asymmetry in the asset return dis-
tributions (see, among others, Shao et al., 2009). At the same time, the empirical 
success of long-memory (LM) GARCH-class models to predict financial asset vola-
tility and to estimate VaR and ES has been widely evidenced in the empirical litera-
ture.2 Moreover, related literature offers evidence that long memory GARCH-class 
models under a non-Gaussian asset return distribution are the most suitable specifi-
cations to quantify risk using both VaR and ES. In this vein, Grané and Veiga (2008) 
reveal that LM GARCH-class models outclass short-memory GARCH specifications 
though similarly to the major previous papers on VaR, they limit their out-of-sample 
forecasting assessment to just one trading day.  

The need for a consistent instrument for risk assessment and management is 
the outcome of several significant factors: firstly, the great increase of stock market 
transactions mainly in some emerging and frontier countries which, however, result 
in higher uncertainty and increased stock market volatility. Indeed, immense capital 
inflow was recorded during the last decade in emerging stock markets, including 
those of the Middle East and North Africa (MENA). The net private capital flows to 
emerging economies rose from USD 582,807 million in 2006 to USD 766,025 million 
by the end of 20123 (Institute of International Finance Report, 2012) mainly because 
foreign investors expected more profitable opportunities to reduce their portfolio risk 
through diversification. Secondly, some well-known financial disasters have led banks, 
funds and other financial institutions to narrow their attention to the development  
and implementation of reliable tools for risk quantification. Thirdly, the recent BCBS 
reports assert that the reputation of VaR was badly damaged during the most recent 
global financial crisis, which reminded banks, funds and regulators alike that during 
turbulent periods markets can produce losses far in excess of the maximum amounts 
forecast by VaR.  

In this spirit, the research on stock market risk often uses VaR and ES based 
on GARCH-class models to evaluate the validity and forecasts of volatility models. 
A model is said to be best suited for modeling the conditional volatility of stock 
markets if it provides the most accurate VaR and ES forecasts. Since the dust has not 
yet settled and academicians are still out on the suitability of volatility models  
for modeling stock market volatility dynamics, this study will therefore evaluate 
the accuracy of various linear and non-linear GARCH-class models using different 

1 See, among others, Shao et al., 2009; Aloui and Mabrouk, 2010; Xekalaki and Degiannakis, 2010; 
Mabrouk and Saadi, 2012; Mabrouk and Aloui, 2010; Degiannakis et al., 2013. 
2 See, among others, Giot and Laurent, 2003, 2004; Tang and Shieh, 2006; Aloui and Mabrouk, 2010; 

Mabrouk and Saadi, 2012. 
3 Institute of International Finance; capital flow data, available at http://www.iif.com/emr/. 
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evaluation criteria in addition to VaR and ES. Furthermore, there are only a few 
works that assess the market risk for GCC countries and they often fall short of 
adequately characterizing volatility behavior. 

More concretely, our study sheds light on the issue of volatility forecasting 
under the risk management environment and on the evaluation procedure of various 
risk models. We conduct a comparative analysis of the performance of the most well-
known risk management techniques for different GCC stock markets. Explicitly, we 
ask whether accounting jointly for asymmetry, LM and fat tails in the return dis-
tribution as the major empirical facts of stock market volatility provides better 
estimations of VaR and ES. Empirically, this study estimates VaR and ES by using 
long-memory GARCH-class frameworks under three density functions (Normal, 
Student-t, and skewed Student-t). In addition, it compares4 their forecasting power to 
standard GARCH and exponential GARCH (EGARCH) models. The underlying idea 
is to ensure that, taking asymmetry into account, LM and fat tails offers better fore-
casts of stock market volatility and more accurate estimates of VaR and ES than 
standard GARCH-class models.  

We believe that the results of this study are important for three main reasons. 
Firstly, even though it is not considered the most attractive risk measure, VaR sum-
marizes the risk exposure of the investor in just one number and therefore portfolio 
managers can interpret it quite easily. Secondly, ES is closely associated with VaR; it 
is a coherent risk measure and therefore its utility in evaluating the risk models can 
be rewarding. However, most researchers currently assess the models only by calcu-
lating the average number of violations. Thirdly, even if risk managers hold both long 
and short trading positions to hedge their portfolios, most of the existing studies have 
been implemented only in long positions.  

This study, to the best of our knowledge, is the first that estimates VaR and 
ES using daily data for all GCC stock markets, namely Abu Dhabi, Bahrain, Dubai, 
Kuwait, Saudi Arabia and Qatar and we can therefore infer if these markets share 
common features in the risk management framework. Thus, we combined the most 
well-known and concurrent LM GARCH-class parametric to find out which model 
has the best overall performance. Despite the fact that we did not include all ARCH 
specifications available in the literature, we narrow our attention to GARCH-class 
models that captured the most underlying characteristics of the data and those that 
were already used in similar studies.  

The remaining sections of this paper are organized as follows: Section 2 
reviews the existing studies. Section 3 exposes the econometric frameworks of 
the LM GARCH-class models. Section 4 presents the technique for forecasting VaR 
and ES. Section 5 provides the empirical results and their implications for portfolio 
management. Section 6 concludes the paper. 

2. What Does the Empirical Literature Say? 

There is growing literature that addresses the issue of stock market volatility 
forecasting and risk quantification using VaR and ES. More recent research attempts 
to combine in one model more than one volatility characteristic (asymmetry effects, 

4 The authors are grateful to an anonymous referee for suggesting this point. 
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persistence, long-memory, and fat-tails) because modeling stock market volatilities 
may require the incorporation of several volatility characteristics separately or simul-
taneously.  

For example, Härdle and Mungo (2008) take into consideration both asym-
metric effects and LM when computing VaR and ES. They estimate two LM GARCH-
class models, namely the Fractional Integrated Power ARCH (FIAPARCH) model and 
the Hyperbolic GARCH (HYGARCH) model, under different stock return innovation 
distributions. They point out that models simultaneously considering asymmetry and 
LM perform better in predicting the one-day-ahead and five-days-ahead VaR for both 
short and long trading positions. Degiannakis (2004) analyzes the forecasting perfor-
mance of a few risk models and estimates the one-day-ahead realized volatility and 
daily VaR. The author shows that the FIAPARCH model under skewed Student-t 
distribution is able to capture the main empirical facts of stock market volatility. 
Kasman et al. (2010) investigate the existence of dual LM for stock markets operating  
in the region of Central and Eastern Europe and provide strong evidence of LM in stock 
returns and volatilities. McMillan et al. (2008) compute VaR using a board set 
of linear and non-linear GARCH-class models for emerging stock markets in the Asia-
Pacific region. They conclude that it is worthwhile to take into account both asym-
metries and long dependence in stock market volatility in order to offer a more 
accurate VaR. Considering several LM GARCH-class models, Aloui and Mabrouk 
(2010) show that taking into account dual LM in the mean process and the con-
ditional volatility of commodity returns offers accurate VaR and ES forecasts for 
both short and long trading positions. Tang and Shieh (2006) examine the LM 
features of three stock index futures markets. They estimate the FIGARCH and 
HYGARCH models under normal, Student and skewed Student densities, and dis-
cover that the HYGARCH model with skewed Student distribution performs better. 
Marzo and Zagalia (2007) compare processes based on normal, Student and GED 
distributions and show that the EGARCH model delivers the best performance 
followed by the GARCH-GED model. Dimitrakopoulos et al. (2010) compare the per-
formance of VaR and the Extreme Value Theory (ETV) for equity portfolios in 
sixteen emerging and four developed stock markets. These authors discover that 
the VaR models turn out to be conservative risk forecasts. Mabrouk and Saadi (2012) 
assess the performance of FIAPARCH, HYGARCH and FIGARCH models in esti-
mating the one-day-ahead VaR of seven stock markets using Student and skewed 
Student distributions. They find that the FIAPARCH model, under a skewed Student 
distribution, outperforms all of the other competing models. Albleib and Pohmeier 
(2012) suggest a methodology of VaR computation based on the optimal combina-
tion that accurately predicts losses. They estimate a board set of GARCH-class 
models including a simple GARCH model, Risk-Metrics and FIGARCH model and 
show that for the one-day-ahead VaR forecasts, some familiar distributions such us 
Student-t distribution, skewed Student and EVT convey better VaR estimates.  

In a more recent paper, Žikovic and Filler (2013) provide conflicting conclu-
sions. These authors suggest a new methodology for ranking the performance of VaR 
and ES models based on a nonparametric test using data covering sixteen developed 
and emerging stock markets for the pre- and post-crisis periods. Žikovic and Filler 
(2013) find that for a large number of VaR-based models there is no statistically 
significant difference. Accordingly, the top performers are the conditional extreme 
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value GARCH model and models based on volatility updating. ES results are similar 
to VaR results with the models being even more closely matched (Žikovic and Filler, 
2013, p. 327). Sethapramote et al. (2014) examine the accuracy of VaR estimations 
in the stock exchange of Thailand using a board set of long-memory GARCH-class 
frameworks. They conclude that VaR estimates using the FIGARCH model with 
normal distribution are more accurate than those generated using the short-memory 
GARCH model.  

Evidence in favor of LM, asymmetries and fat-tails on developed stock markets 
has been largely covered in the literature. Despite the fact that emerging markets in 
the last two decades have attracted the attention of international investors as a means 
of higher returns such as through diversification of international portfolio risk, only 
a few studies have investigated the issue of volatility persistence and VaR-ES fore-
casts. For instance, Al-Maghyereh and Awartani (2012) show that VaR accuracy is 
improved when they use a FIAPARCH model under skewed Student distribution for 
the stock markets of the United Arab Emirates (UAE). Al-Maghyereh and Al-Zoubi 
(2006) are concerned with MENA stock markets. They estimate VaR using tails dis-
tributions of return series using EVT, which allows comparison with the variance-
covariance method, and GARCH-class models under different distributions. Theses 
authors show that MENA stock returns exhibit fat tails and thus EVT is the best-
suited approach. In a more recent study, Onour (2010) investigates the extreme 
downside risk for major oil-producing Middle Eastern countries and examines 
the impact of the global financial crisis. He estimates VaR and ES under GED dis-
tribution and shows that the spillover effect of the global crisis varied from country 
to country, but the most severely affected market among the group of six markets 
was the Dubai financial market.  

3. Long-Memory GARCH-Class Models 

3.1 The Autoregressive Fractionally Integrated Moving Average Model 

Granger and Joyeux (1980) considered the Autoregressive Fractionally Inte-
grated Moving Average (ARFIMA) (p, d, q) models to test the LM property in 
financial time series. Formally, the model is written as follows:  

                   ( ) ( ) ( )1 ( )Φ µ θ ε− − =

d

t t
L L X L , ,        ~ (0,1)ε σ=

t t t
z z N                     (1) 

where ( ) ( )2 2

1 2 1 2
1  ,  and  1θ θ θ θ θ θ θ= − − −…− = − − −…−

p p
P PL L L L L L L L  are the auto-

regres-sive (AR) and moving-average (MA)  polynomials assumed to have all roots 

outside the unit circle and ε
t
 is a white noise process. When 0.5 0.5,− < <d  the Xt 

process is stationary and invertible and if 0 0.5,< <d  then the process is stationary 
and exhibits a LM. The ARFIMA model nests to ARMA (i.e. short memory) when 
d = 0 and ARIMA when d = 1 (i.e. infinite LM).  

3.2 The Fractional Integrated GARCH Model 

Baillie et al. (1996) extended the standard GARCH model by considering 
an eventual fractional integration. They suggested the FIGARCH model, which  
is able to distinguish between short memory and LM in the conditional variance 
behavior. Formally, the FIGARCH (p, d, q) model is defined as follows: 
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3.3 The Fractional Integrated Asymmetric Power ARCH Model 

Tse (1998) extended the FIGARCH (p, d, q) model to take into consideration 
asymmetry and the long-memory feature in the process of the conditional variance by 

introducing the function ( )ε γε−
t t

 of the APARCH  process. The FIAPARCH (p, d, q) 

can be written as follows: 

                
[ ] ( ){ }( )

112
1 ( ) 1 1 ( )(1 )

δ

σ ω β β ρ ε γε
−−

= − + − − − −  
d
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where δ γ,  and λ  are the model parameters. The FIGARCH process can take into 

account some empirical facts on volatility of financial and commodity asset prices. 
Specifically, (a) if 0 1< <d , then volatility exhibits the long-memory property; 
(b) when 0γ > , negative shocks have a greater impact on volatility than positive 

shocks and inversely; (c)    0λ >  is the power term in the volatility structure and it 
should be specified by the data; (d) the FIGARCH process also nests the FIGARCH 
process when 0γ =  and 2δ = . Therefore, the FIAPARCH process is superior to 

the FIGARCH because it takes into account asymmetry and LM in the conditional 
variance behavior. 

5 According to Baillie et al. (1996), the implementation of the FIGARCH model necessitates conditioning 

on pre-sample values and a truncation of the infinite lag polynomial in equation (3). Given the long

memory and relatively slow decay of the response to lagged squared innovation, the effect of pre-sample 
values might be expected to have a bigger impact than with a stationary GARCH process. Based on 

the above argument, Baille et al. (1996) state that truncating at too low a lag may destroy important long-

run dependencies. To mitigate these effects, they recommend that the truncating lag be set at 1,000 (Baillie, 
Bollerslev and Mikkelsen, 1996, p.13)  
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3.4 The Error’s Density Models  

The parameters of the volatility models can be estimated by using non-linear 
optimization procedures to maximize the logarithm of the Gaussian likelihood func-
tion. Under the assumption that the random variable is ~ (0,1)

t
z N , the log like-

lihood of Gaussian or normal distribution ( ) Norm L can be expressed as: 
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where T is the number of observations. However, it is widely recognized that re-
siduals suffer from excess kurtosis. To account for fat tails in the stock return distribu-
tion, we consider the Student distribution. If the random variable is ~ (0,1, )ν

t
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the log-likelihood function of the Student distribution (
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where 2  and  (.)ν Γ< ≤ ∞ is the gamma function. In contrast to the normal distribu-

tion, the Student distribution is estimated with an additional parameter ν , which 
stands for the number of degrees of freedom measuring the degree of fat tails in 
the density. Despite accounting for tail thickness, a Student distribution alone cannot 
capture the asymmetric feature of density. To account for excess skewness and 
kurtosis, we consider a skewed Student distribution proposed by Lambert and Laurent 
(2001). If ~ (0,1, , )ν

t
z Skst k , the log likelihood of the skewed Student distribution 
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, k  is an asymmetry parameter. 

The constants ( ) 2
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of the skewed Student distribution: 
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The value of  ln( )k  can also represent the degree of asymmetry in the residual 

distribution. We note that when ( )ln 0=k , the skewed Student distribution equals 

the general Student distribution, ~ (0,1, )ν
t
z ST . 

3.5 Computing one Step-Ahead VaR and ES under LM GARCH-Class Models 

For a 95% confidence level, the one-step-ahead VaR is estimated as follows: 
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 are the conditional forecasts of the mean and 

the standard deviation at time (t + 1), given the information set available at time (t), 
respectively. ( )αN  is the α-th quantile of the normal distribution. In order to back-

test the accuracy for the estimated VaRs, we compute the empirical failure rates for 
both short and long trading positions. The prescribed probability ranges from 0.25% 
to 5%. By definition, the failure rate is the number of times returns exceed (in abso-
lute value) the forecasted VaR. If the model is “correctly” specified, then the failure 
rate should be equal to the specified VaR level. Artzner et al. (1997) introduce 
the concept of ES to overcome the main shortcomings of VaR. Shortly, the ES 
provides the expected value of the loss, given that a VaR violation occurred. We 
compute the ES as follows: first, we divide the tail of the probability distribution of 
returns into 5,000 slices, each with identical probability mass, and then we calculate 
the VaR inherent to each slice and estimate the mean of these VaRs to compute 
the ES: 
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According to Angelidis and Degiannakis (2007), it is possible to measure 
the squared difference of the losses using the ES given that the VaR does not provide 
any information regarding the size of the expected loss. They suggest 
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occurred. In this way, the best model corresponds to the smallest mean squared error: 
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The collective accuracy of the VaR figures produced for each of the non-
overlapping intervals is then statistically tested using several accuracy forecasting 
tests.  
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3.6 Statistical Accuracy of Model-Based VaRs 

We employ three alternative tests, namely the Kupiec (1995) test, dynamic 
quantile test (DQT) suggested by Engle and Manganelli (2004), and the expected loss 
of VaR forecasts proposed by Giacomini and Kamunjer (2005). Our choice of these 
alternative tests is motivated by the fact that the common tests of Kupiec and 
of Engle and Manganelli (2002) exhibit low power when assessing VaR accuracy 
(Berkowitz et al., 2011). The underlying idea of the Kupiec (1995) test is to estimate 
the probability of observing a loss greater than the VaR amount. To evaluate 
the accuracy of the model-based VaR estimates, Kupiec (1995) suggests a likelihood 
ratio test ( )UC

LR  for testing whether the failure rate of the model is statistically equal 

to the expected one (unconditional coverage). Consider that 
1=

=∑
T

t

t

N I  is the number 

of exceptions in the sample size T. Then: 
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follows a binomial distribution,   ~ ( , )αN B T . If  
=  
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p E

T
 is the expected excep-

tion frequency (i.e. the expected ratio of violations), then the hypothesis for testing 
whether the failure rate of the model is equal to the expected one is expressed as 
follows: 

0 0
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0
α  is the prescribed VaR level. The appropriate likelihood 

ratio statistic in the presence of the null hypothesis is given by: 
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Under the null hypothesis, 
uc

LR  has a 2 (1)χ  as an asymptotical distribution. 

Consequently, the preferred model for VaR prediction should display the property 

that the unconditional coverage measured by  
=  

 

N
p E

T
 equals the desired coverage 

level
0

 p . In addition to the Kupiec LR test, we use the DQT suggested by Engle and 

Manganelli (2002). The DQT is based on a sequence of VaR violations that is not seri-

ally correlated. Formally, considering two new variables ( ) ( )( )α
α α= < −

t t t
Hit I y VaR  

and ( ) ( )( )1
1

α
α α

−

− = > −
t t t

Hit I y VaR , Engle and Manganelli (2002) suggest jointly 

testing that: 

− A1: ( )( ) 0α =
t

E Hit  (respectively, ( )( )1
t

E Hit α−  for long trading positions 

(short trading positions); 

− A2: ( )α
t

Hit  ( )( )or 1 α−
t

Hit  is uncorrelated with the variables included 

in the information set. 
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Engle and Manganelli (2002), suggest the following artificial regression in 
order to test A1-A2, λ ε= +

t t
Hit X ; where, X  is a ×T k  matrix whose first column 

consists of onesand the next q  columns are 
1,− …

−
t Hitt q

Hit . 1− −k q  and the re-

maining columns are additional independent variables including the VaR. For Engle 

and Manganelli (2002), the DQT is given by: 
ˆ'

(1 )

λ

α α−

X X  where λ̂  is the OLS esti-

mates of λ and it follows a ( )2
χ k  distribution. However, a significant part of the litera-

ture on testing the performance of VaR and ES shows that the tests of Kupiec and 
Christofersen have low power6,7 thus if we do not reject the null with these tests, we 
cannot be impressed by the results, as it is very hard to distinguish between “good” 
and “bad” forecasts. Therefore, we use for our in-sample and out-of-sample VaR 
testing an alternative approach originally suggested by Engle and Manganelli (2004). 
Formally, Engle and Manganelli (2004) use the n-th order autoregression: 

                                       
1

1 1

α

ω β β µ
− − +

= =

= + + +∑ ∑
n n

t t k t k t

k k

I I q                                      (15) 

where 
1+t

I  is 1 if 
1

α

+
<

t t
y q  and zero otherwise, while hit sequence 

t
I  is a binary 

sequence. µ
t
 is assumed to follow a logistic distribution and it is possible to estimate 

it as a simple logit model and test whether [ ]1 α

= =
t t

Pr I q . Following Avdulaj and 

Barunik (2013), we rely on simulations suggested by Berkowitz et al. (2011) to 
obtain the p-values of this test. In addition, we evaluate the accuracy of the VaR 
forecasts (i.e. out-of sample forecasting) statistically by implementing the Giacomini 
and Kamunjer (2005) testing methodology. Briefly, the Giacomini and Kamunjer 
(2005) define the expected loss made by the forecasting model (m) as follows: 

                               
( ), ,

, , 1 , 1 , 1 , 11
α α

α
α

+ + + +

   = − < −  
m m

m t t t t t t t t
L E y q y q                            (16) 

The differences in the values of ( )
,α m

L  can then be tested using the Diebold 

and Mariano (2002) approach, where we test the null hypothesis that the loss func-
tion of a benchmark forecaster is the same as the loss function of the selected 
forecasting model (m), under the alternative assumption that the benchmark model is 
more accurate than the competing one. Since we are concerned with the relevancy 
of GARCH-class models accounting for asymmetry, LM and fat tails in producing 
accurate VaR and ES, we select the GARCH model under normal distribution as 
the benchmark. The competing forecasting model varies across GCC countries.  

4. Data, Preliminary Analysis and GARCH-Class Model Estimates 

4.1 Descriptive Statistics 

The dataset contains seven stock markets, namely those of Saudi Arabia 
(Saudi Arabia Stock Exchange Index: SASEIDX), Dubai (Dubai Financial Market 
General Index: DFMGI Index), Abu Dhabi (Abu Dhabi Stock Market Index: ADSMI 

6 We are grateful to an anonymous reviewer for pointing this out and suggesting appropriate tests. 
7 For detailed discussion, see Berkowitz et al., 2011. 
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Index), Oman (Muscat Stock Market Index: MSM30), Bahrain (Bahrain Stock 
Exchange All Shares Index: BHSEASI), Kuwait (Kuwait Stock Exchange Index: 
KWSEIDX) and Qatar (Doha Stock Market Index: DSM Index). Data consist 
of Bloomberg daily stock indices covering the period (January 3, 2003–January 22, 
2013) and totaling 2,620 observations. Stock indices are expressed in local currency. 
In addition, we use the BGCC index established by Bloomberg as a general index for 
the GCC stock markets for the entire sample period. We should note that we reserve 
the last 1,000 observations for the out-of-sample forecasts. 

The time-variations of the GCC stock market indices are displayed in Figure A1 
(see Appendix 1 online). We observe that the GCC indices experienced quite similar 
trends with some very large swings within the sample period. By taking a look at 
Figure A1, we see that the GCC stock markets have experienced two major break-
downs in the course of the ongoing economic and financial crisis from which they 
have recovered moderately so far. The GCC markets responded sharply to the global 
financial crisis in the US and Europe since mid-2008 as shown by the drastic drop 
in all of the GCC indices, reaching their peak in the first quarter of 2009. At that level, 
the GCC stock market indices had—compared with their levels at the beginning 
of 2007—fallen by one-fifth in the case of Oman, around one-third in Bahrain, Kuwait 
and Abu Dhabi, almost 50% in Saudi Arabia, and as much as two-thirds in Dubai.  

Table A1 reports (see Appendix 2 online) some the descriptive statistics for 
the GCC daily returns as well as their stochastic properties. Panel A shows that 
the highest average return is recorded for the Qatari market (4.9%) while the lowest 
average return is for Bahrain (-1.5%). The Dubai and Saudi Arabian markets exhibit 
a higher level of risk as measured by the standard deviation of daily returns. Further-
more, all of the GCC daily returns display clustering volatility and a tendency 
for large (small) price changes to be followed by other large (small) price changes 
of either sign and they tend to be time dependent (see Figure A2 in Appendix 1 
online). Moreover, all of the daily returns display significant negative skewness and 
we ambiguously reject the null hypothesis of skewness coefficients conforming to 
the normal distribution value of zero. In addition, all of the return distributions are 
leptokurtic since they exhibit thicker (fatter) tails than that of a Gaussian distribution. 
The Jarque-Bera test for the unconditional Gaussian distribution confirms these 
results and shows a significant departure from normality. The Engle (1982) test 
for conditional heteroscedasticity and the Ljung-Box test provide strong evidence 
of ARCH effects in the returns and serial correlations in the squared returns 
(i.e. volatility), respectively. Panel B relates the results of the Augmented Dickey-
Fuller (1979) unit root tests, the Schmidt and Phillips (SP) stationarity test and Zivot-
Andrews (1992) unit root test to examine the stationarity property of GCC stock 
returns. The Zivot-Andrews (1992) unit root test examines the null of the unit root 
hypothesis against the break-stationary alternative and it is therefore robust to 
the presence of potential structural breaks in the time variations of GCC returns. 
The results from these tests reveal that all of the GCC daily returns are stationary and 
therefore suitable for further analysis. 

4.2 LM Tests 

In the present study, the dual LM in the conditional mean and variance of stock 
returns and squared returns is investigated by implanting two tests commonly used 
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in the existing literature: the log-periodogram regression (GPH) of Geweke and Porter-
Hudak (1983) and the Gaussian semi-parametric (GSP) of Robinson (1995).8 It is 
worth noting that the choice of these various tests is justified by the fact that several 
scholars cautioned against using Lo’s (1991) modified R/S in isolation. Specifically, 
Monte Carlo experiments conducted by Teverovsky et al. (1999) and Willinger et al. 
(1999) on Lo’s (1991) statistic reveal that the modified R/S statistic is founded 
in favor of accepting the null of no LM as the bandwidth increases. Table A2 (see 
Appendix 4 online) reports the results of these tests. We employ the following two 
bandwidths for the GPH test: m = T0.5 and m = T0.6 For the GSP test, we use 

/ 4;=m T  and / 8=m T . From the reported results, we find mixed LM evidence 
for the returns as both LM tests fail to reject the null hypothesis of no long-range 
dependence for two markets at the 1% level. More precisely, the Saudi Arabian and 
Bahraini markets display LM properties for their returns. For the GCC squared 
returns, the two LM tests conclude favorably on the presence of a LM component 
at the 1% significance level. As a result, all of the GCC stock market volatilities 
exhibit LM behavior. Taken as a whole, the results of LM tests indicate the suit-
ability of the GARCH/ARCH models accommodating the LM feature, as far as 
the modeling and forecasting of stock market return volatility are concerned.  

4.3 LM GARCH-Class Estimates 

We now discuss the estimation results for the GARCH-class models for 
the seven GCC markets. For each stock return, our conditional mean equation includes 
a constant and an autoregressive term, while its conditional variance is modeled by 
seven competing GARCH-class models taking into consideration the main stylized 
empirical facts of stock returns. To investigate the relevancy9 of LM GARCH-class 
models in modeling conditional volatility and market risk, these models are com-
parted to other competing standard GARCH and EGARCH models which do not take 
into account long-memory and fat-tailed returns. As noted earlier, the selected vola-
tility models are estimated by using the Student-t, skewed Student and Quasi-
maximum Likelihood (QML) methods. The parameter estimates as well as the results 
of the diagnostic tests of standardized residuals and squared residuals are displayed 
in Tables A3a–A3d (see Appendix 5 online).  

For all of the GCC stock returns, our results reveal slight evidence of return 
predictability at the 10% level when the GARCH and EGARCH models are estimated. 
Regarding the estimates of the conditional variances, we note that the stationarity 
condition is guaranteed given that the sum of the ARCH and the GARCH coeffi-
cients is less than one for all of the selected markets. These coefficients are statis-
tically significant at the 1% level. More importantly, the estimated coefficients 
for the GARCH and EGARCH models are generally higher than 0.9, indicating that 
GCC stock market volatilities exhibit a high level of persistence over time. When 
the LM of stock return volatility is effectively taken into account via the FIAPARCH 
and FIGARCH specifications, the values of the GARCH parameters in the GARCH 
and EGARCH frameworks decline noticeably. With regard to the EGARCH estimates, 

8 The log-periodogram regression (GPH) of Geweke and Porter-Hudak (1983) and the Gaussian semi-

parametric (GSP) of Robinson (1995) are detailed in Appendix 3 online. 
9 We are grateful to an anonymous referee for raising this point. 
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the results indicate that the coefficient EGARCH (δ) is significant and negative for 
all of the GCC stock markets. This result implies that the negative return shock has 
a significant and greater impact on the conditional volatility than do positive return 
shocks of equal size.  

The results of the LM GARCH-class models (FIGARCH and FIAPARCH) 
show that only two markets (Saudi Arabia and Bahrain) exhibit LM properties 
in both the mean return and the conditional variance. For the Saudi Arabian market, 
the long dependence parameter in the conditional mean ranges between 0.21 and 0.27 
when the FIGARCH and FIAPARCH specifications are estimated, respectively. Simi-
larly, the long dependence coefficient ranges between 0.140 and 0.146 for Bahrain.  
For these countries, the fractional integration parameter in the conditional variance 
is statistically significant at the 1% level regardless of which nonlinear FIGARCH or 
FIAPARCH model is implemented and which type of density distribution is used 
(i.e. normal, Student or skewed Student). For Saudi Arabia (Bahrain), the LM para-
meter equals 0.34 (0.37) (for the FIAPARCH model) and 0.52 (0.39) (for the FIGARCH 
model), respectively. More interestingly, the conditional volatility of the Saudi and 
Bahraini returns reacts asymmetrically to unexpected news in view of the APARCH 
(γ) being positive and significant. Thus, negative shocks have a more sizable impact 
on conditional volatility than do positive shocks, which is entirely consistent with 
the EGARCH implications. The APARCH power term (δ) is positive and significant 
for the two countries. 

Furthermore, for the two selected models, the Student-df parameter is positive 
and thus shows strong evidence of fat tails in stock return volatility. The Log(L), 
Akaike Information (AIC) and Shibata and Hanan-Quinn (SHIC) criteria we use to 
rank the various GARCH-class models unanimously select the ARFIMA-FIAPARCH 
model under skewed Student-t distribution for both the Saudi and the Bahraini 
returns, indicating the important role of asymmetry effects and LM as the main 
empirical stylized facts in stock market volatility. Furthermore, the Box-Pierce statis- 
tics for the remaining serial correlation for the squared standardized residuals and 
the residual-based diagnostic test accept the ARFIMA-FIAPARCH as a correct specifi-
cation.  

For the rest of the GCC countries the estimation results of the GARCH-class 
models are quite similar. They indicate no LM in the mean equation of returns and 
are well described by an AR(1) process.10 This result is consistent with what we have 
learned from the LM tests. The coefficients associated with the ARCH and GARCH 
terms are highly significant regardless of the density distribution used, suggesting 
strong support of ARCH and GARCH effects. In addition, the condition for existence 
of the conditional variance is guaranteed since α + β < 1. For the EGARCH model, 
the “leverage” parameter is negatively signed and significant. Moreover, the APARCH 
(δ) is significant and positive and shows the existence of asymmetry. The fractional 
difference or LM parameters (d) in the conditional variance are all positive and sig-
nificant at the 1% level. These findings thus indicate strong evidence of persistence 

10 We note that we checked whether our results are sensitive to the choice of the mean equation; we 

replicate the same analysis for ( ) ,  :1, 2,3,4,5 10…AR k k  for all of the GCC time series. Our unreported 

results show that the AR-FIGARCH and the ARFIMA-FIAPARCH models under skewed Student-t innova-
tion distribution provide a better fit than all of the competing models.  
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behavior in the GCC stock market volatilities. However, we note some disparities 
among markets. Indeed, the LM parameter is lower than 0.5 for Kuwait, Bahrain 
and Dubai and it is greater than 0.5 for Abu Dhabi and Qatar. More interestingly, 
the various information criteria used to rank the various GARCH-class models con-
sistently select the AR-FIAPARCH model under skewed Student distribution for all 
of the GCC countries.  

5. Forecasting Performance 

5.1 The Evaluation Criteria 

As mentioned above, the full sample period provides 2,620 daily observations. 
We estimate the various long-memory GARCH-class models over the first 1,620 trad-
ing days for each GCC market. The parameter estimates generated by the time series 
from the in-sample period are included in the relevant forecasting formulas and 
the volatility forecast 

1

ˆ
+t

h  is computed given the information available at time 

( )1,620 , ,  1,000 ( 2,620)= = … + =t T T  (i.e. 1,000 one-step-ahead forecasts are com-

puted). On the other side, before evaluating the forecasting performance of the con-
sidered GARCH-class models, it is necessary to have a valid proxy for the true but 
unobservable stock market volatility. We employ the realized volatility. Accordingly, 
the squared returns which are assimilated into the natural candidate proxy of the un-
observable volatility are considered as a noisy proxy (see Patton, 2010). To assess 
the forecasting performance of the competing models, we use several criteria such as 
the mean square error (MSE), the mean absolute prediction error (MAPE), the loga-
rithmic loss function (LL), the Mincer-Zarnowitz (1969) regression and the superior 
predictive accuracy (SPA) test of Hansen (2005). 

5.1.1 The Mincer-Zarnowitz (1969) Regression Test 

For the Mincer-Zarnowitz (1969) regression, we recall that this test procedure 
is based on the regression of the realized volatility 

1
 

+t
h on the constant and forecast 

volatility 
1

ˆ
+t

h . Formally, we have: 

                                                     1 1
ˆα β ε

+ +
= + +

t tt
hh                                              (17) 

For an unbiased model, we should verify that  the estimated parameters α 

and β are respectively equal to zero and one.11 The coefficient of determination  is con-
sidered as a measure of the predictive power for each model. Consequently, for 
the model with the largest R

2, the realized volatility is well explained by the fore-
casted volatility. Despite the fact that the slope coefficient of the Mincer-Zarnowitz 
regression might be biased, R

2 provides an imminent indicator of the variability 
in predictions (Andersen and Bollerslev, 1998, p. 890). 

5.1.2 The Superior Predictive Accuracy (SPA) Test 

To assess the predictive ability of the estimated GARCH-class models, we use 
Hansen’s (2005) SPA test, which is a more efficient test to ensure the significance 
of the superiority of models. The SPA test examines whether the null hypothesis that 

11 In Table 1, we report the Ordinary Least Squares estimates of the parameters in the Mincer-Zarnowitz 
regression (equation 15). We use the Newey-West correction to calculate the standard errors.  
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the benchmark model is not outperformed by any of its competitors is rejected 
or not.12 Formally, the forecasting performance of the benchmark model,13 model 0, 
with respect to k competing models is deduced from the loss function differential 

, 0, ,= −
t k t k t
f I I  where 1, , = …k j  is the total number of competing models. Under 

the null hypothesis and assuming stationarity for 
,t k

f , we expect that on average 

the forecasting loss function on the benchmark model will be smaller or at least equal 
to that of model k. The null hypothesis is stated as: 

                                           
( )1,..,

 

max

var    
=

=
SPA k

n
k t

k

n f
T

n f

                                            (18) 

where 
1

1

=

= ∑k

n

k

t

f f
n

 and ( )var  
k

n f  is the variance of  
k

n f . Both ( )var  
k

n f  and 

the test statistic p-values are consistently estimated via stationary bootstrapping. 
The last column of Table 1 reports the results of the SPA test. For each GCC market, 
models are alternatively used as the benchmark model and the null hypothesis that it 
is not outperformed by any of it counterparts is tested.  

5.2 The Forecasting Performance Results 

Table 1 reports the obtained results, while the boldface numbers indicate 
the best model in terms of volatility forecast accuracy. We can see that under the skewed 
Student distribution, the ARFIMA-FIAPARCH model provides the best fit for Saudi 
Arabia and Bahrain. Indeed, the Mincer-Zarnowitz (1969) regression’s results show 
that this dual-LM GARCH-model outperforms the other competing models including 
standard GARCH and EGARCH models. The coefficient of determination measuring 
the predictive power for each model indicates that the largest coefficients correspond 
to the ARFIMA-FIAPARCH model. This result is consistent with the MSE and MAPE 
criteria. Additionally, the p-values of Hansen’s (2005) SPA test indicate that the null 
hypothesis that this model is not outperformed by any of its counterparts under 
Student distribution is rejected.  

For the other GCC markets, we perceive that FIAPARCH with skewed dis-
tribution is the best specification. In fact, the various forecasting measures indicate 
that this model displays greater forecasting accuracy than the other competing models. 
Furthermore, the obtained results show that the forecasting accuracy of the FIAPARCH 
with skewed Student distribution is significantly higher compared to its counterpart 
under Student and normal distributions. Indeed, the MAE, MAPE and SPA test never 
select the standard GARCH and EGARCH models. Altogether, the non-linear GARCH-
class models, which are able to take into account the main empirical facts of GCC 
markets returns (asymmetry and/or LM) display greater forecasting accuracy than 
the linear ones. Furthermore, our results reveal that the FIGARCH model generates 
 

12 In the SPA test, we evaluated the forecasts using the predefined loss functions. We use the SPA test 
of Hansen (2005) that incorporates two predefined loss functions. In our case, we refer to the MAPE and 

MSE. 
13 Here the competing model changes across countries. For example, for Saudi Arabia and Oman, our 

previous analysis reveals that the ARFIMA-FIAPARCH model with skewed Student distribution out-
performs all the other models. 
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Table 1  The In-Sample Forecasting Performance of the GARCH-Class Models 

 
α β R2 MSE MAPE LL 

SPA test 
(p-values) 

Saudi Arabia 

ARFIMA-FIGARCH 

Student 
0.44 

(0.62) 
0.77  

(0.22) 
0.07 0.272 177.6 6.69 0.01 

Skewed St. 
0.68 

(0.42) 
0.82  

(0.06) 
0.19 0.250 159.3 5.12 0.00 

Normal 
0.55 

(0.06) 
0.81  

(0.56) 
0.13 0.240 166.8 5.78 0.00 

ARFIMA-FIAPARCH 

Student 
0.01 

(0.15) 
0.78  

(0.06) 
0.16 0.236 131.23 4.78 0.00 

Skewed St. 
0.09 

(0.28) 
0.79  

(0.75) 
0.21 0.214 129.89 4.65 0.47 

Normal 
0.53 

(0.05) 
0.80  

(0.22) 
0.09 0.263 136.9 5.68 0.00 

GARCH-Normal 
0.07 

(0.08) 
0.66  

(0.06) 
0.17 0.289 133.06 5.13 0.01 

EGARCH-Normal 
0.12 

(0.16) 
0.68  

(0.06) 
0.19 0.241 131.05 5.08 0.00 

Abu Dhabi 

AR-FIGARCH 

Student 
0.42 

(0.11) 
1.02 

(0.16) 
0.53 0.443 165.5 6.78 0.00 

Skewed St. 
0.11 

(0.22) 
1.01 

(0.25) 
0.52 0.426 147.4 6.12 0.00 

Normal 
0.22 

(0.85) 
0.98 

(0.19) 
0.49 0.421 150.2 6.22 0.00 

AR-FIAPARCH 

Student 
0.67 

(0.06) 
0.79 

(0.26) 
0.31 0.445 143.5 6.08 0.00 

Skewed St. 
0.77 

(0.21) 
0.87 

(0.33) 
0.54 0.421 132.9 4.97 0.63 

Normal 
0.63 

(0.21) 
0.96 

(0.52) 
0.36 0.449 144.0 5.09 0.00 

GARCH-Normal 
0.26 

(0.13) 
1.11 

(0.49) 
0.29 0.423 144.7 5.10 0.00 

EGARCH-Normal 
0.32 

(0.12) 
0.96 

(0.56) 
0.31 0.422 144.3 5.12 0.00 

Dubai 

AR-FIGARCH 

Student 
0.37 

(0.02) 
0.98 

(0.03) 
0.43 0.477 196.74 9.69 0.00 

Skewed St. 
0.97 

(0.16) 
0.96 

(0.02) 
0.47 0.444 176.85 7.96 0.00 

Normal 
0.14 

(0.25) 
1.02 

(0.06) 
0.41 0.365 182.33 8.65 0.00 
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AR-FIAPARCH 

Student 
0.54 

(0.02) 
1.01 

(0.01) 
0.24 0.221 133.2 14.8 0.00 

Skewed St. 
0.76 

(0.01) 
1.03 

(0.16) 
0.43 0.220 131.7 13.9 0.33 

Normal 
0.63 

(0.06) 
1.02 

(0.06) 
0.36 0.245 133.2 12.3 0.00 

GARCH-Normal 
0.21 

(0.33) 
1.09 

(0.08) 
0.39 0.263 135.6 15.1 0.01 

EGARCH-Normal 
0.13 

(0.16) 
0.96 

(0.09) 
0.35 0.285 131.9 14.9 0.00 

Oman 

AR-FIGARCH 

Student 
0.37 

(0.01) 
0.97 

(0.16) 
0.03 0.150 114.2 6.79 0.00 

Skewed St. 
0.97 

(0.04) 
0.64 

(0.33) 
0.07 0.430 113.6 6.12 0.00 

Normal 
0.52 

(0.09) 
0.63 

(0.12) 
0.11 0.450 115.7 6.33 0.00 

AR-FIAPARCH 

Student 
0.31 

(0.16) 
1.02 

(0.66) 
0.33 0.379 99.32 7.01 0.00 

Skewed St. 
0.46 

(0.22) 
1.67 

(0.16) 
0.39 0.376 96.61 6.33 0.63 

Normal 
0.12 

(0.11) 
1.33 

(0.02) 
0.24 0.380 98.01 6.95 0.00 

GARCH-Normal 
0.24 

(0.23) 
0.98 

(0.26) 
0.28 0.423 99.02 6.98 0.00 

EGARCH-Normal 
0.33 

(0.12) 
0.68 

(0.09) 
0.29 0.380 101.2 6.99 0.01 

Qatar 

AR-FIGARCH 

Student 
0.43 

(0.06) 
1.02 

(0.22) 
0.03 0.143 22.33 5.78 0.00 

Skewed St. 
0.11 

(0.25) 
1.01 

(0.33) 
0.21 0.417 23.06 5.12 0.00 

Normal 
0.12 

(0.11) 
1.03 

(0.06) 
0.32 0.552 24.01 5.16 0.01 

AR-FIAPARCH 

Student 
0.37 

(0.22) 
0.77 

(0.93) 
0.44 0.219 20.02 7.97 0.00 

Skewed St. 
0.13 

(0.09) 
1.02 

(0.06) 
0.44 0.135 19.66 7.78 0.31 

Normal 
0.14 

(0.26) 
0.86 

(0.04) 
0.32 0.165 21.33 6.23 0.00 

GARCH-Normal 
0.66 

(0.18) 
0.90 

(0.16) 
0.39 0.178 22.09 6.03 0.00 

EGARCH-Normal 
0.51 

(0.16) 
1.21 

(0.06) 
0.38 0.195 22.00 5.88 0.00 
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Kuwait 

AR-FIGARCH        

Student 
0.42 

(0.23) 
1.02 

(0.05) 
0.03 0.236 16.57 5.82 0.00 

Skewed St. 
0.21 

(0.06) 
1.01 

(0.23) 
0.11 0.338 14.37 4.86 0.00 

Normal 
0.24 

(0.12) 
0.96 

(0.13) 
0.16 0.296 15.01 5.68 0.00 

AR-FIAPARCH 

Student 
0.77 

(0.01) 
0.57 

(0.12) 
0.44 0.230 17.21 7.06 0.00 

Skewed St. 
0.21 

(0.22) 
0.88 

(0.25) 
0.53 0.201 14.30 7.00 0.23 

Normal 
0.20 

(0.06) 
0.95 

(0.13) 
0.47 0.210 15.01 5.55 0.01 

GARCH-Normal 
0.36 

(0.05) 
1.02 

(0.22) 
0.23 0.225 14.98 4.99 0.00 

EGARCH-Normal 
0.49 

(0.03) 
0.89 

(0.14) 
0.36 0.216 14.68 5.69 0.00 

Bahrain 

ARFIMA-FIGARCH 

Student 
0.43 

(0.01) 
1.02 

(0.19) 
0.41 0.243 156.4 6.03 0.00 

Skewed St. 
0.33 

(0.12) 
1.01 

(0.25) 
0.41 0.217 147.4 6.02 0.48 

Normal 
0.11 

(0.16) 
0.85 

(0.06) 
0.39 0.252 145.3 6.00 0.01 

ARFIMA-FIAPARCH 

Student 
0.77 

(0.23) 
0.82 

(0.12) 
0.41 0.279 155.5 7.99 0.00 

Skewed St. 
0.44 

(0.09) 
0.87 

(0.06) 
0.40 0.243 153.2 7.98 0.00 

Normal 
0.06 

(0.08) 
1.02 

(0.18) 
0.39 0.268 150.3 7.44 0.00 

GARCH-Normal 
0.33 

(0.10) 
0.86 

(0.12) 
0.36 0.283 161.8 7.22 0.00 

EGARCH-Normal 
0.34 

(0.09) 
0.98 

(0.11) 
0.39 0.262 160.9 7.63 0.00 

Notes: This table reports the mean losses of the different volatility models over the out-of-sample period with 
respect to the evaluation criteria.α and β refer to the estimated coefficients of the Mincer-Zarnowitz 
(1969) regression. While R

2 
is the determination coefficient. Standard errors calculated using the Newey-

West correction are reported in parentheses. MSE is the mean square error. MAPE is the mean 
absolute prediction error. LL is the logarithmic loss function. SPA is the superior predictive accuracy 
test of Hansen (1995). 

 

more accurate forecasts than the other models with skewed Student density and is 
the best-fitting model for only the Bahraini stock market. 

Even though our results point to the superiority of non-linear GARCH-class 
models over the short horizon (one-day-forecasting) relative to linear models (GARCH 
and EGARCH), the appropriate choice of the “correct” GARCH-class model is 
a challenging task since the considered non-linear GARCH-class model categorically 
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outclasses the other competing models. In fact, the forecasting accuracy changes 
across the GCC markets. Such disparities provide better investment opportunities for 
funds operating in the region and require market operators to take into consideration 
asymmetry, LM and fat tails when checking the relevance of a particular GARCH-
class framework.  

6. The Role of LM and Asymmetry in VaR and ES Estimations 

As far as market risk matters, portfolio managers may wish to know the best 
suitable model that can be used to forecast stock market behavior and to estimate 
the VaR and ES for their portfolios. Given that our previous forecasting analysis 
provides significant support for non-linear GARCH-class models accommodating 
long memory, asymmetry and fat tails, we now produce VaR and ES estimates 
based on the selected model for each market. For comparison purposes, we refer to 
the standard GARCH model with normal distribution. Our main idea is to check 
the relevancy of the selected long-memory GARCH-class models in forecasting 
the VaR and ES. In addition, we extend our previous analysis to research the best-
fitting non-linear GARCH-class model for the GCC multi-country portfolio and we 
estimate the VaR and ES for short and long trading positions. 

6.1 The In-Sample VaR and ES Estimations 

To do so, we estimate the in-sample VaR and ES and the out-of-sample VaR 
and ES forecasts for both short and long trading positions for a one-day investment 
horizon and confidence levels ranging between 0.25% and 5%. As noted above, we 
conduct several tests including the Kupiec (1995) test and the DQT proposed by Engle 
and Manganelli (2004) to evaluate accuracy. The VaR and ES estimates are displayed  
in Table A4

14 (see Appendix 6 online) With regard to the utilized accuracy tests, we 
note that, under normal distribution, the standard GARCH model performs poorly for 
all of the GCC stock markets. For example, the failure rates significantly exceed 
the prescribed quantiles as they decrease from 5% to 1% and are quite similar for 
short and long trading positions. Furthermore, for the Saudi Arabian and Bahraini 
markets, our results indicate that under skewed Student distribution, the ARFIMA-
FIAPARCH model performs better than the normal distribution for both short 
and long trading positions. Particularly for the Saudi stock market, the p-values 
of the Kupiec and DQT tests indicate that the null hypothesis is not rejected for all 
of the selected quantiles except for the 0.95 confidence level.  

Quite comparable results are obtained for the Bahraini stock market, as ARFIMA-
FIAPARCH model generates good estimates for the two trading positions. Indeed, 
the selected accuracy tests fail to reject the null hypothesis for all of the prescribed 
confidence levels, except for the DQT of Engle and Manganelli (2004) with 0.25% for 
short positions and 5% for long positions. Therefore, an important finding emerging 
from these results is that taking into account long memory jointly in stock returns 
and volatility, asymmetry and fat tails in the return innovations enhance the VaR and 
the ES estimations for short and long trading positions. For the other markets, we see 

14 We note that, due to space limitations, the VaR and ES generated by the standard GARCH under normal 

distribution results are not presented here, but are available upon request submitted to the corresponding 
author. 
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that the use of the FIAPARCH or FIGARCH models under skewed Student distribu-
tion leads to a clear improvement of the in-sample VaR and ES estimations relative 
to the standard GARCH model whether the undertaken trading action is  buy or sell. 
Indeed, when the LM and asymmetric effects are accounted for in the FIAPARCH 
model, the Kupiec (1995) and Manganelli (2004) tests fail to reject the null hypo-
thesis for all of the significance levels and for all of the GCC markets return series. 
These findings lead us to conclude that the VaR estimates provided by the long-
memory GARCH-class models are more accurate than those of the standard GARCH 
model over the in-sample period. Thus, taking LM into account, asymmetry and fat 
tails in volatility models improve the quality of the VaR estimations. Our results are 
thus in line with Härdle (2008), Degiannakis et al. (2013) and Sethapramote et al. 
(2014), suggesting that taking into account long-range memory and asymmetry could 
provide better performance in risk management than that of standard GARCH.  

6.2 The Out-of-Sample VaR and ES Forecasts 

We analyze the forecasting performance of the VaR and ES with respect 
to the selected GARCH-class models under skewed Student distribution. Our fore- 
casts are based on a window updating the model parameters every 50 observations 
in the out-of-sample period. Specifically, we compute 1,000 out-of- sample VaR and 
ES for each stock return. As in the in-sample VaR estimates, the out-of-sample VaR 
and ES are compared to the observed returns and then both results are recorded for 
latter assessment using the considered accuracy tests. As mentioned above, we use 
the Kupiec (1995) test, the DQT of Engle and Manganelli (2004) and the Giacomini 
and Kamunjer (2005)15 accuracy testing methodology. We should recall that for 
the Giacomini and Kamunjer (2005) test procedure, we test the null hypothesis that 
the loss function of a benchmark forecaster is the same as the loss function of the se-
lected forecasting model (m), under the alternative assumption that the benchmark 
model is more accurate than the competing one. Since we are testing the relevancy of 
the selected long-memory GARCH-class models in producing accurate VaR and ES 
forecasts, we chose the standard GARCH-model as a benchmark. Table A5 (see 
Appendix 7 online) reports the one-day-ahead VaR and ES forecasts for short and 
long trading positions. 

Broadly speaking, the reported results show that the out-of-sample VaR fore-
casts are quite similar to their counterparts for the in-sample period. This result 
implies that the long-memory GARCH-class models are able to accommodate major 
empirical facts on the GCC return volatilities. Specifically, the selected LM GARCH-
class models provide better forecasting accuracy than the GCC return volatilities for 
the out-of-sample period. With reference to the standard GARCH as a benchmark 
model, we note that the ARFIMA-FIAPARCH and the FIAPARCH models with 
skewed distribution provide better forecasts for all of the critical levels as the null 
hypothesis is not rejected in all cases according to the Kupiec and DQT tests. Addi-
tionally, we perceive that for long trading positions, the out-of-sample VaR forecasts 
are marginally better than their equivalents for short positions. The p-values cor-
responding to the Kupiec (1995) test and the DQT of Engle and Manganelli (2004), 
statistics are higher for all of the selected markets. Furthermore, when looking at 

15 We are grateful to an anonymous reviewer for suggesting this test. 
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the estimated loss functions of Giacomini and Kamunjer (2005), we can see that 
the norm of quantiles implied by different models can be distinguished from each 
other statistically for all of the prescribed confidence levels. This result indicates that 
the selected long-memory GARCH-class models under Student and skewed Student 
distributions provide better VaR forecasts than the standard GARCH  model under 
normal distribution. Considering what has been discussed above, we can claim long 
dependence either in the return or conditional variance, while asymmetry and fat tails 
play an important role in forecasting GCC volatilities and thus for forecasting VaR 
and ES. Our results are in line with the findings of Giot and Laurent (2004), Kang and 
Yoon (2007), Mabrouk and Aloui (2010), Mabrouk and Saadi (2012), and Degiannakis 
et al. (2013). In Figure A3 (see Appendix 8 online), we report the conditional variance 
and the one-day-ahead VaR plot for the out-of-sample period.  

6.3 The GCC Multi-Country Portfolio Risk Assessment 

In this sub-section, we extend our previous analysis by researching the best-
fitting non-linear GARCH-class model for the GCC multi-country portfolio and 
computing the VaR and ES for short and long trading positions. To do so, we use 
the Bloomberg GCC 200 Index (BGCC-index), which is a capitalization-weighted 
index of the top 200 stocks in the GCC markets based on market capitalization and 
liquidity. The estimation results show that the ARFIMA-FIAPARCH model under 
skewed Student distribution is the best model for describing the GCC multi-country 
portfolio.16 The fractional integration parameter in the mean return is equal to 0.573 
and is significant at the 1% level while it is equal to 0.68 for the conditional 
volatility. The APARCH coefficients γ and δ are positive and are equal to 0.311 and 
1.9743, respectively. Furthermore, the tail parameter is equal to 2.73 and significant 
at the 1% level while the asymmetry coefficient is negatively signed (-0.0396) and 
significant at the 1% level. The diagnostic tests show that the ARFIMA(1,d,0)-
FIAPARCH(1,d,1) under skewed Student distribution outperforms the same model 
under normal and Student-t distributions. Table A6 (see Appendix 9 online) reports 
the in-sample VaR and ES estimates for both short and long trading positions while 
Figures A4a and A4b (see Appendix 10 online) report the daily return, conditional 
variance and one-day-ahead VaR of the GCC multi-country portfolio for the in-
sample and out-of-sample periods, respectively.  

Despite the fact that they are not as good as the in-sample forecasts, the esti-
mation results show that the ARFIMA(1,d,0)-FIAPARCH(1,d,1) model with skewed 
distribution performs well for the out-of-sample forecasts. This result confirms 
the main idea that GARCH-class models produce accurate in-sample estimates but 
less satisfactory out-of-sample forecasts. Regarding long trading positions, the out-
of-sample results are quite similar to those of the in-sample period. However, we note 
that the p-values for the in-sample VaR estimates are greater than those of the out- 
of-sample. On the other hand, for short trading positions, the selected ARFIMA-
FIAPARCH model with skewed Student-t distribution performs very well for the GCC 
multi-country portfolio at all confidence levels. 

 

16 These results are not displayed here, but are available upon request to the corresponding author. 
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7. Conclusion  

This article examines the relevance and usefulness of LM and asymmetry  
in modeling and forecasting the conditional volatility and market risk for seven stock 
markets operating in the GCC region. By implementing a GARCH-class methodology, 
our empirical study makes it possible not only to find the best-fitting GARCH-class 
model that takes into account the major empirical facts in stock market volatility, but 
also to examine the ability of competing GARCH-class models to predict GCC market 
risk using VaR and ES. Our empirical framework is distinguishable from existing 
studies in at least four main points: firstly, our sample is extended to cover all  
of the GCC stock markets, and we consider a large sample period in daily frequency. 
Secondly, we consider a border set of linear and non-linear GARCH-class models 
including FIGARCH, FIAPARCH, GARCH and EGARCH under three density 
functions (Normal, Student and skewed Student). Thirdly, we investigate simulta-
neously for LM in the mean and conditional variance of stock returns. Finally, we 
estimate jointly the VaR and ES for both short and long trading positions as well as 
for a GCC multi-country portfolio.  

Regarding the estimation results, we find that non-linear GARCH-class models 
achieve superior performance in comparison with the other competing models for 
both the in-sample and out-of-sample periods. Interestingly, our forecasting analysis 
reveals that long-memory GARCH-class models (FIGARCH and FIAPARCH) out-
perform the simple GARCH and EGARCH models for all of the selected stock return 
innovations. Thus, not only LM but also asymmetry effects and the existence of fat 
tails are prominent for modeling and forecasting the volatility of the GCC markets 
under study. In addition, we show the correct choice of the FIAPARCH model to 
compute the VaR and ES for a GCC multi-country portfolio. The relevant models 
show evidence of strong persistence and asymmetry in the seven GCC stock markets. 
This has several important implications for both participants and policymakers. On 
the one hand, investors and fund managers concerned with GCC markets should 
favor models that accommodate asymmetries, LM and fat tails when they construct 
their predictions. Policymakers therefore should be aware that negative shocks such 
as wars, geopolitical risk and economic recession have a greater effect on stock market 
volatility than positive shocks such as an increase in energy commodity prices or 
greater improvement of the global GCC economies. On the other hand, in a non-
Fickian or non-neutral market, LM in return behavior systematically implies 
the existence of profit-making arbitrage opportunities, making the considered markets 
inefficient and unfair. Policymakers thus have an interest in undertaking appropriate 
actions to improve the efficiency of stock markets in order to ensure their attrac-
tiveness as a long-run financing source for promoting economic growth (Aloui and 
Nguyen, 2014).  

Our research presents some shortcomings and can be extended in several 
ways. Firstly, it would be interesting to estimate the GARCH-class models under 
other stock return innovation distributions including the generalized error distribution 
(GED), exponential generalized beta, and stable Paretian, and to enlarge the sample 
to include other MENA countries. Secondly, from a portfolio management perspec-
tive, it is useful to examine the relevancy of the selected GARCH-class models in 
forecasting volatility and assessing risk within a multi-step-ahead approach. In fact, 
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the empirical literature recognizes that long-memory GARCH-class models improve 
forecasts mainly in multi-step-ahead horizons. Thirdly, it would be very important to 
show how to choose between the competing GARCH-class models based on calcula-
tions of the out-of-sample percentage of violations and daily capital charges that 
funds and other financial institutions must report to financial market regulatory 
authorities, in compliance with the Basel II Accord rules. 
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