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Abstract

In this article, we deal with the efficiency of world stock indices. Basically, we compare
three approaches: mean-risk, data envelopment analysis (DEA), and stochastic domi-
nance (SD) efficiency. In the DEA methodology, efficiency is defined as a weighted sum
of outputs compared to a weighted sum of inputs when optimal weights are used. In DEA-
risk efficiency, several risk measures and functionals which quantify the risk of the in-
dices (var, VaR, CVaR, etc.) as DEA inputs are used. Mean gross return is considered as
the only DEA output. When only one risk measure as the input and mean gross return as
the output are considered, the DEA-risk efficiency is related to the mean-risk efficiency.
We test the DEA-risk efficiency of 25 indices and we analyze the sensitivity of our results
with respect to the selected inputs. Using stochastic dominance criteria, we test pairwise
efficiency as well as portfolio efficiency, allowing full diversification across assets. While
SD pairwise efficiency testing is performed for first-order stochastic dominance (FSD) as
well as for second-order stochastic dominance (SSD), the SD portfolio efficiency test is
considered only for the SSD case. Our numerical analysis compares the results using two
sample datasets: before- and during-crisis. The results show that SSD portfolio efficiency
is the most powerful efficiency criterion, that is, it classifies only one index as efficient,
while FSD (SSD) pairwise efficiency tends to be very weak. The proposed DEA-risk effi-
ciency approach represents a compromise offering a reasonable set of efficient indices.

1. Introduction

In the theory of decision-making, questions about how to maximize profit
and how to diversify risk have been around for centuries; however, both of these
questions took another dimension with the work of Markowitz (1952). In his work,
Markowitz identified the two main components of portfolio performance—mean re-
ward and risk represented by variance—and by applying a simple parametric optimi-
zation model he found the optimal trade-off between these two components. If
the parameter is known one can easily find the optimal portfolio. If not, at least
the set of efficient portfolios (the efficient frontier) can be identified. In this case,
the portfolio is seen as efficient if there is no better portfolio, i.e., a portfolio with
a higher mean and smaller variance. In the last 60 years, the theory of mean-risk
models has been enriched by using other risk measures instead of variance, for ex-
ample, semi-variance (see Markowitz, 1959), Value at Risk (VaR), and Conditional
Value at Risk (CVaR) (see Rockafellar and Uryasev, 2000, 2002).
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Alternatively, one can adopt utility functions for modeling an investor’s risk
attitude, especially in the approach maximizing expected utility. Again, if the utility
function is perfectly known, one can find the optimal decision. If that is not the case,
one can identify at least the set of efficient portfolios with respect to a chosen set of
utility functions. Considering all utility functions, that is, assuming only non-satiation
for the investor’s preferences, leads to the first-order stochastic dominance (FSD) rela-
tion (see Levy, 2006, and references therein). Adding the very common assumption of
risk aversion, one can obtain the second-order stochastic dominance (SSD) approach.
Using pairwise comparisons, an alternative (asset) is classified as FSD (SSD) effi-
cient if there is no other alternative that dominates the former alternative with respect
to FSD (SSD). If investors may combine assets in portfolios, tests for portfolio effi-
ciency allowing full diversification across the indices can be of interest. Because of
computational considerations, we limit our attention to the SSD portfolio efficiency
tests developed in Post (2003), Kuosmanen (2004), Kopa and Chovanec (2008), and
Kopa (2010). These tests classify an asset as SSD efficient if there is no portfolio
created from the assets that SSD dominates. Alternatively, one can apply FSD
efficiency tests as in Kuosmanen (2004) and Kopa and Post (2009), or statistical SSD
efficiency tests as in Scaillet and Topaloglou (2010).

A third approach to efficiency is based on Data Envelopment Analysis (DEA)
—see, for example, Charnes et al. (1978) and Banker et al. (1984). For example,
Basso and Funari (2001, 2003), Murthi et al. (1997), Daraio and Simar (2006), and
Galagadera and Silvapulle (2002) applied DEA models to mutual fund performance
analysis. A fund is classified as DEA efficient if the inputs of the fund are accurate to
its outputs. The mean (gross) return is usually considered as the output, and other
fund characteristics, such as transaction costs and risk measures, serve as the inputs.
DEA models provide a popular tool for efficiency measurement even in other recent
applications, e.g. Cook and Zhu (2010), Rohacova (2011), and Prdsa (2012).

In this paper we apply all of the above-mentioned approaches to efficiency
analysis of stock indices. We consider 25 world stock indices as the basic assets. We
compare efficient indices selected according to different criteria: mean-variance effi-
ciency, DEA efficiency, and FSD and SSD efficiency using pairwise comparisons, as
well as SSD portfolio efficiency. An index that is classified as efficient with respect
to one of the criteria can be attractive for any investor who uses the corresponding
criterion for modeling his risk attitude. Moreover, if some index is efficient with
respect to more than one criterion, a larger group of decision-makers is interested in
it. In the ideal case, we would like to find at least some indices that are classified as
efficient when using all of the criteria considered. However, this requirement proved
to be very strict. We empirically examine the power of the efficiency approaches
considered: the smaller an efficiency set is, the more powerful is the criterion con-
sidered. We consider two datasets of weekly returns: before-crisis (September 2006—
—September 2008) and during-crisis (September 2008—September 2010).

While mean-variance or FSD (SSD) efficiency tests are given precisely,
the DEA efficiency model can be constructed in various ways. Contrary to Basso and
Funari (2001) and Murthi, Choi, and Desai (1997), we do not consider the transaction
costs connected with buying or selling the indices, because we rely only on the mean
and risk characteristics of the indices’ returns. We choose various risk measures as
inputs, starting from the standard deviation up to the modern ones: VaR, CVaR, and
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corresponding drawdown measures; moreover, the probability risk measures—i.e.,
VaR, CVaR, and drawdown measures—are used at several probability levels. The only
output considered is mean gross return. These DEA-risk models classify an index as
efficient if the “total” risk is accurate to its mean gross return, where the total risk is
described by a linear convex combination of the risk measures considered. The idea
of a combination of risk measures corresponds to risk shaping (see, for example,
Cheklov et al., 2005), where weighted values of a given risk measure at different
levels are considered. The weights are given by the decision-maker. On the other
hand, in the DEA-risk model, more than one risk measure is considered and
the weights are specified by the optimization problems, as is usual in DEA models.
Moreover, if only one input is considered, then DEA-risk efficiency implies mean-
risk efficiency with respect to the same risk measure. For example, if the variance of
an index is used as the input, then the DEA-risk efficient index is always mean-
variance efficient, too. Therefore, DEA-risk models can be seen as a generalization
of mean-risk models.

In the models proposed in Basso and Funari (2001) and Murthi et al. (1997),
the weights of the risk measures had to be higher than a small constant, i.e., they
always influence fund efficiency. In our DEA-risk models, any risk measure can be
eliminated implicitly if the optimization model determines zero weight as optimal.
This can give us information about which measures have the greatest or least effect
on the DEA efficiency of world stock indices.

In the empirical part of the paper, the DEA efficient indices are compared to
those when using mean-risk and stochastic dominance criteria. In addition, we study
the sensitivity of the DEA-risk results to including or excluding a single risk measure
or a whole group of measures. Moreover, the stochastic dominance analysis includes
four different efficiency approaches: the two most popular orders (FSD and SSD) and
the two most frequent choices of comparisons (pairwise and portfolio efficiency).
Finally, two different periods are considered in the empirical study. An interesting
question is how the set of efficient indices differs for pre-crisis data from that for
during-crisis data using various efficiency approaches.

The remainder of this paper is structured as follows. Section 2 defines the risk
measures considered. It is followed (Section 3) by DEA-risk efficiency formulations
using risk measures as inputs and mean gross return as the output. Section 4 recalls
the basic ideas of the FSD and SSD approaches and presents the pairwise efficiency
tests. Section 5 generalizes the previous SSD results, allowing portfolio efficiency
testing with full diversification across the indices. Section 6 presents an empirical
application comparing several types of efficiency: mean-variance efficiency, DEA-
risk efficiency, FSD and SSD pairwise efficiency, and SSD portfolio efficiency.
Section 7 concludes.

2. Risk Measures

In this section, we will show how risk measures can be computed based on
discretely distributed returns. We consider a random vector r = (#,7,...,7y)" of re-

turns of N indices with a discrete probability distribution described by 7 equiprobable
scenarios. The returns of the indices for the various scenarios are given by:
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where x' = (xf J Xy va) is the #-th row of matrix X, representing the index returns

along the #-th scenario. That is, x;, t=1,...T, i =1,..,N , is the t-th realization of
Pl‘
the i-th index return. It can be computed as x! = tl L where P',P'"' are
P
1

the prices of the i-th index at the end of time periods 7 and (¢ —1), respectively. Then
the lower semideviation of order p for the i-th index return can be computed as

v
lsdi(p)Z(%i[xl{ i J P

t=1

where ;Ci = %ZZ—:I x; and []7 = —min{-,O} .

Following Rockafellar and Uryasev (2002), we will define Value at Risk and
Conditional Value at Risk. Firstly, we can sort the realizations of the i -th index
return in descending order, that is, xlm > xlm >..> xl[T 1 Secondly, for a € (0,1), we
find the unique index ¢, satisfying

t, -1 t
& <a <%

Then the Value at Risk (VaR) of the i-th index is defined as
VaR. (o) = —xl.[ta]

There exist several possible definitions of Conditional Value at Risk—see
Pflug (2000) and Rockafellar and Uryasev (2000, 2002). If « >1-1/T, then
the Conditional Value at Risk of the i-th index is equal to

CVaR (o) = VaR,(ct) = —x\"]
or else it can be computed as a weighted average
— T
CVaR,(a) S (ti—ajxl[ta] L > Xl
I-a |\ T 1=t +1

Conditional Value at Risk can be also computed using the minimization
formula introduced by Pflug (2000) and Rockafellar and Uryasev (2000, 2002). We
propose only the formula for the discrete distribution considered:

. 1 r t }
CVaR. () =min y + —X. —
(@) =miny (1_a)T§[ iV
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where [-], =max{,0} . As the left point of the compact interval of optimal solutions
we obtain the Value at Risk at level o .

Denote by c/,t=1,..,T the uncompounded cumulative rate of the i-th index
return:

t
cl.t = ZX.k,t =1..,T

i
k=1

The absolute drawdown at the end of period ¢ is defined as

AD! = maxcf —¢!
I<kst

The absolute drawdown function compares the current rate of return with
the up-to-date minimum value of the returns. When the return drops below the mini-
mum value, the drawdown function is the mirror image of the return until it returns to
the minimum value.

Finally, the Drawdown at Risk (DaR) of the i-th index can be computed as
the VaR on equiprobable absolute drawdowns of the i-th index, and the Conditional
Drawdown at Risk (CDaR) of the i-th index as the CVaR defined on equiprobable
absolute drawdowns of the i-th index. Precise definitions can be found in Cheklov et
al. (2003).

3. Data Envelopment Analysis

Data Envelopment Analysis (DEA) was introduced by Charnes et al. (1978)
as a way to state the efficiency of a decision-making unit over all other decision-
making units. Let Z,,...,Z, denote the inputs and Y;,...,Y;; denote the outputs of
unit 7 from the N units considered. The DEA efficiency of unit 7 is then evaluated
using the optimal value of the following program, where the weighted inputs are
compared with the weighted outputs:

L
21:1 YuYy
max ————

Zle Wl
s.t.
—ZK’L:l Yl oy N
ZH WkIZki
w, 20,k=1,..,K
vy 20,0/=1..L

Unit [ is then DEA efficient if the optimal value is equal to 1, otherwise it is
DEA inefficient. The program can be rewritten as a linear program based on frac-
tional programming reformulation (see Charnes et al., 1978):

L
max . v, ¥,
=

s.t.

110 Finance a uvér-Czech Journal of Economics and Finance, 62,2012, no. 2



K
Z Wyl =1
k=1

K L
=2 WaZy + 2 Yy¥y <0,i=1..,N

k=1 =1
w, 20,k=1,..,K
vy 20,/=1..,L

In the numerical comparison of world stock indices we will consider several
risk measures as inputs and mean gross return as the output. This special case of
DEA efficiency can be called DEA-risk efficiency. The combination of mean, risk
measures, and DEA models can also be found in Lozano and Gutierrez (2008).
Contrary to that approach, we consider several risk measures jointly in one DEA
model.

3.1 DEA-Risk Efficiency

Let us consider K values of risk measures p,;,..., p; as inputs Z,,,...,Z,, and
the mean gross return u;, =1+, as output Y, of the i-th index. We say that index / is
DEA-risk efficient if the optimal objective value of the following problem:

max y, g,
Ss.t.
K K
2 Wabu =L =X Wy P+ v <0i=1.,N (M
k=1 k=1
Wy 20,k =1,...K
¥ 20

is equal to 1. In the special case where only one type of risk measure (for example,
CVaR) but at different levels a is considered, DEA-risk modeling is related to
the risk-shaping approach (see, for example, Rockafellar and Uryasev, 2002, or
Cheklov et al., 2005). The main difference is in the choice of weights. Our model
allows another weight scheme, w,;, for each index. The choice is always done in

the optimal way, which leads to measurement of the risk of index / using the best
combination of the risk measures considered.

Example 1

In this example we consider only one risk measure. We will show the basic
property of a DEA-risk efficient index. Moreover, we will prove that the DEA-risk
efficient index is always mean-risk efficient, too. Let p; be the value of the risk

measure considered and p, be the mean return of the i-th index for i =1,..., N. Then
we say that index / is mean-risk efficient if there is no index i such that p, < p, and
u; > u, with at least one strict inequality. In this setting, the definition of the linear
problem (1) simplifies to:
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max y, H;
Ss.L.
wp; =1
-w,p; +y, 1 <0,i=1..,N
w,; 20
yr20
which can be easily rewritten as:

max y, 11

s.t.

y <P i N )

Since the optimal solution of (2) is

y; =—min 2
Pr M
the index I is DEA-efficient if it has a minimal risk-mean ratio, that is, the ratio of
the value of the considered risk measure and mean return is minimal. Assume now
that index 7 is not mean-risk efficient. Then there exists another index with a lower
risk-mean ratio. Hence the optimal objective value of (2) is strictly smaller than 1,
that is, index 7 is not DEA-efficient. Summarizing, we have shown that DEA-risk
efficiency with only one input always implies mean-risk efficiency.

4. Stochastic Dominance Relations

Stochastic dominance is an appealing approach for comparing random vari-
ables. In our case we apply it to compare random stock index returns. Following
Levy (2006) and references therein, the i-th index dominates the j-th index with

respect to the first-order stochastic dominance (FSD) if Eu(r,)> Eu ( r/.) for all util-
ity functions with strict inequality for at least one utility function. If the same
property is satisfied for all concave utility functions with strict inequality for at least
one such utility function, then the i-th index dominates the j-th index with respect to
second-order stochastic dominance (SSD). It is clear that an FSD relation implies
an SSD relation. Let F;(x) denote the cumulative probability distribution function of

the returns of the i-th index. The twice cumulative probability distribution function
of the returns of the i-th index is defined as:

ED0) = F(x)d

Then the FSD and SSD relations can be alternatively defined as follows:
— the i-th index dominates the j-th index with respect to FSD if
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F()<F,(t)VteR
with strict inequality for at least one 7 € R ;
—  the i-th index dominates the j-th index with respect to SSD if
FP()<FP()VteR

with strict inequality for at least one 7 € R .

4.1 SD Pairwise Efficiency

In this section, we first formulate a computationally attractive algorithm of
FSD pairwise efficiency testing. Then we present a modification for SSD pairwise

efficiency. Following Levy (2006), let v/, 1 =1,2,..,T denote the ordered returns of

the i-th index in ascending order, that is, v} <v’ <...<v! . Then the i-th index domi-
nates the j-th index with respect to first-order stochastic dominance if and only if

vi2vi,t=12,.,T 3

with at least one strict inequality. Moreover, we classify the j-th index as FSD
pairwise inefficient if there exists some i-th index satisfying (3). Otherwise, the j-th
index is FSD pairwise efficient. Therefore, the algorithm for testing the FSD pairwise
efficiency of thej-th index consists of two steps. Firstly, we order the returns in

ascending order v/ forall i=1,2,..,N, s =1,2,..,T . Secondly, we try to find some i

satisfying (3). If such i exists then the j-th index is SSD pairwise inefficient. If not,
then the j-th index is FSD pairwise efficient.

Testing of SSD pairwise efficiency is performed in a similar way to the pre-
vious algorithm using criterion

S S

t t
Sz ZV/,S =12,...T
t=1 t=1

instead of (3). Moreover, we use the simple fact that FSD pairwise inefficiency
implies SSD pairwise inefficiency. Or, equivalently, an SSD pairwise efficient index
is always FSD pairwise efficient, too.

5. Stochastic Dominance Portfolio Efficiency

Contrary to the previous case, aninvestor may combine indices into his

portfolio. We will use A=(4,4,,...,4y )I for a vector of portfolio weights, and
the portfolio possibilities are given by

A={2eR" |12 =1,2,20n=12 N}

sy =

For computational reasons, we limit our attention only to the SSD case, that
is, we define SSD portfolio efficiency with respect to all possible portfolios that can
be created from the indices. The j-th index is SSD portfolio inefficient if there exists
portfolio A € A such that r'A dominates 7; by SSD. Otherwise, the j-th index is

SSD portfolio efficient. Similarly to how we defined the SSD portfolio efficiency for
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the j-th index, we can define the SSD portfolio efficiency of any portfolio 7 € A,
using r'z instead of 7;. The following SSD portfolio efficiency tests are formulated
for this more general setting. However, one could easily consider 7 =(1,0,...,0),
7=(0,L,...,0) ,...,t =(0,0,...,1) to test the efficiency of the indices.

5.1 SSD Portfolio Efficiency Test

The following SSD portfolio efficiency test was introduced by Kopa and
Chovanec (2008). Alternatively, one can use the SSD portfolio efficiency tests devel-

oped in Post (2003) or Kuosmanen (2004). Let a;, =k /T, k€ K ={0,1,..,T -1} . Let
-1
ER
s.t.
CVaR, (-¥'T) = CVaRy, (-t'2) 2 D,k e K
D, 20,kekK
ALeA
Using linear programming reformulation of CVaR (see Rockafellar and Uryasev,
2002), we can compute the measure of inefficiency D (t) as follows:
T
PO, I D
s.t.
-
(=77
wi+x'A>-b, t,keK
w,’C >0,t,ke K
D, >0kek
LeA

M~

CVaR%(—r’r)—bk - w,2D,, keK

1

If D*(r)>0, then 7 is SSD portfolio inefficient and r'A" >, r't . Other-
wise, D*(r)=0 and 7 is SSD portfolio efficient.

Testing of FSD portfolio efficiency is much more computationally demanding
than in the SSD case and therefore we were not able to apply it in the following
empirical study. However, formulations of FSD portfolio efficiency tests can be
found in Kuosmanen (2004) and Kopa and Post (2009).

6. Stock Index Efficiency—Empirical Study

We consider the following 25 world financial (stock) indices listed on Yahoo
Finance:

- America (5): MERVAL BUENOS AIRES, IBOVESPA, S&P TSX Composite
index, S&P 500 INDEX RTH, IPC,
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Table 1 Descriptive Statistics of Index Returns (before crisis)

Index mean std Skewness Kurtosis min max
MERVAL BUENOS AIRES 0.0006 0.0285 -0.3796 3.4926  -0.0930 0.0790
IBOVESPA 0.0043 0.0354 -0.3984 29726  -0.0792 0.0914
S&PTSX Composite index 0.0012 0.0207 -0.8538 42427  -0.0693 0.0405
S&P 500 INDEX.RTH -0.0003 0.0206 -0.3688 3.0898  -0.0541 0.0487
IPC 0.0021 0.0275 -0.2260 3.1223  -0.0766 0.0749
ALL ORDINARIES 0.0000 0.0226 -0.1447 3.6553  -0.0539 0.0735
SSE Composite Index 0.0030 0.0492 0.0064 3.6819  -0.1384 0.1496
HANG SENG INDEX 0.0017 0.0350  0.2907 3.9350 -0.0752 0.1243
BSE SENSEX 0.0021 0.0353 -0.1442 3.0517  -0.0912 0.0959
Jakarta Composite Index 0.0031 0.0376 -0.8524 5.5700 -0.1353 0.1229
FTSE Bursa Malaysia KLCI 0.0010 0.0262 -0.8195 46614  -0.0926 0.0688
NIKKEI 225 -0.0024 0.0261 -0.3031 3.6745  -0.0889 0.0639
NZX 50 INDEX GROSS -0.0008 0.0186 -0.4676 4.0477  -0.0537 0.0533
STRAITS TIMES INDEX 0.0005 0.0282 -0.2139 3.7221 -0.0810 0.0763
KOSPI Composite Index 0.0011  0.0308 -0.1832 42746  -0.1041 0.0936
TSEC weighted index -0.0006 0.0307 -0.7637 42176  -0.1049 0.0741
ATX -0.0010 0.0298 0.1956 2.8467  -0.0728 0.0724
CAC4 -0.0013 0.0249 -0.3099 2.5887  -0.0638 0.0485
DAX 0.0006 0.0238 -0.4518 3.1551 -0.0680 0.0580
AEX -0.0018 0.0251 -0.2151 3.1011 -0.0659 0.0657
SMSI -0.0004 0.0234 -0.4680 2.5474  -0.0564 0.0432
OMX Stockholm PI -0.0016  0.0267 -0.2470 3.0273  -0.0715 0.0675
SMI -0.0013 0.0224 -0.2825 2.8023  -0.0573 0.0545
FTSE 100 -0.0007 0.0217  -0.4911 3.1398  -0.0702 0.0447
TEL AVIV TA-100 IND -0.0002 0.0283 -1.3721 6.7134  -0.1319 0.0655

— Asia/Pacific (11): ALL ORDINARIES, SSE Composite Index, HANG SENG
INDEX, BSE SENSEX, Jakarta Composite Index, FTSE Bursa Malaysia
KLCI, NIKKEI 225, NZX 50 INDEX GROSS, STRAITS TIMES INDEX,
KOSPI Composite Index, TSEC weighted index,

- Europe (8): ATX, CAC 4, DAX, AEX, SMSI, OMX Stockholm PI, SMI,
FTSE 100,

- Middle East (1): TEL AVIV TA-100 IND.

In our analysis we describe each index by its weekly rates of return. We
divided the returns into two periods:

- before-crisis (B): September 11, 2006-September 15, 2008,
- during-crisis (D): September 16, 2008—September 20, 2010.

Of course, the exact starting date of the crisis is not known and can be debated
at length. We chose September 16, 2008 because all stock indices plummeted in
the week starting that day. The descriptive statistics of the returns are summarized in
Tables 1 and 2. Almost all the returns are negatively skewed. Moreover, comparing
the before-crisis data with the during-crisis data, we find that the during-crisis returns
usually have a higher standard deviation and kurtosis. Focusing on the mean and
variance of the returns, we can start our efficiency analysis by identifying the mean-
variance efficient indices. Following Markowitz (1952, 1959) we say that the i-th
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Table 2 Descriptive Statistics of Index Returns (during crisis)

Index mean std Skewness Kurtosis min max

MERVAL BUENOS AIRES 0.0062 0.0631 -0.8847 7.5042  -0.2679 0.1990
IBOVESPA 0.0037 0.0519 -0.1997 6.7006  -0.2001 0.1834
S&PTSX Composite index 0.0004 0.0419 -0.5470 6.1356  -0.1609 0.1368
S&P 500 INDEX.RTH 0.0000 0.0420 -0.5036 6.0514  -0.1820 0.1203
IPC 0.0036 0.0480 0.3712 7.0059 -0.1641 0.2042
ALL ORDINARIES 0.0003 0.0360 -1.0859 6.0336  -0.1623 0.0844
SSE Composite Index 0.0029 0.0409 0.2583 3.1658  -0.0827 0.1366
HANG SENG INDEX 0.0023 0.0449 -0.3925 45676  -0.1632 0.1204
BSE SENSEX 0.0045 0.0464 -0.2953 48833  -0.1595 0.1408
Jakarta Composite Index 0.0066 0.0437 -1.2644 8.5629  -0.2137 0.1153
FTSE Bursa Malaysia KLCI 0.0035 0.0202 -0.9039 5.2007  -0.0813 0.0498
NIKKEI 225 -0.0011 0.0454 -1.3699 9.9061 -0.2433 0.1213
NZX 50 INDEX GROSS 0.0003 0.0234 -1.0423 7.7343  -0.1099 0.0563
STRAITS TIMES INDEX 0.0027 0.0415 -0.1928 7.3056  -0.1518 0.1656
KOSPI Composite Index 0.0032 0.0435 -0.7363 9.9194  -0.2049 0.1857
TSEC weighted index 0.0036 0.0352 -0.3891 3.4918  -0.1065 0.0987
ATX -0.0003 0.0612 -1.0259 7.5609  -0.2892 0.1880
CAC4 -0.0001 0.0474 -0.9893 6.9359  -0.2216 0.1324
DAX 0.0014 0.0481 -0.6176 7.2379  -0.2161 0.1612
AEX 0.0001 0.0494 -1.1847 8.4153  -0.2499 0.1329
SMSI 0.0002 0.0488 -1.0729 6.0520  -0.2099 0.1131
OMX Stockholm PI 0.0033 0.0436 -1.0648 7.5521 -0.2059 0.1161
SMI -0.0001 0.0416 -0.9636 11.8030  -0.2228 0.1407
FTSE 100 0.0014 0.0423 -0.8733 9.1228  -0.2105 0.1341
TEL AVIV TA-100 IND 0.0043 0.0348 -0.6951 43946  -0.1140 0.0903

Table 3 Mean-Variance Efficient Indices (B—before crisis, D-during crisis)

Period B D

IBOVESPA

S&PTSX Composite index
S&P 500 INDEX,RTH

IPC

Jakarta Composite Index X
FTSE Bursa Malaysia KLCI X
NZX 50 INDEX GROSS X

TEL AVIV TA-100 IND X

X X X X

index is mean-variance efficient if there is no other index having returns with higher
or equal mean and smaller or equal variance (with at least one strict inequality). It
is no surprise that four out of the five American indices considered are classified
as mean-variance efficient in the before-crisis case. Perhaps surprisingly, all of
them become mean-variance inefficient in the during-crisis period. Moreover, all
the European indices are mean-variance inefficient in both periods. The list of mean-
variance efficient indices is presented in Table 3. In the last two columns, the mean-
variance indices are marked by X.
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Table 4 Mean-Variance Efficient and SSD Pairwise Efficient Indices
(B-before crisis, D—during crisis)

. mean-variance SSD pairwise

Period

B D B D
IBOVESPA X X
S&PTSX Composite index X X
S&P 500 INDEX,RTH X X
IPC X X
ALL ORDINARIES X
HANG SENG INDEX X
BSE SENSEX X X
Jakarta Composite Index X X X
FTSE Bursa Malaysia KLCI X X
NZX 50 INDEX GROSS X X
TSEC weighted index X
DAX X
TEL AVIV TA-100 IND X X

6.1 Efficiency with Respect to Stochastic Dominance

Using methods introduced in Sections 4 and 5, we analyze index efficiency
with respect to stochastic dominance criteria. We start with FSD pairwise efficiency
testing, because it identifies the largest number of efficient indices. In this case,
an index is efficient if the expected utility of its returns is maximal for at least one
utility function. This means that the FSD pairwise efficient index is the best choice
(out of all the 25 indices considered) for at least one decision-maker, because it
maximizes his expected utility. Using the algorithm described in Section 4.1, we
classify all indices in both periods as FSD pairwise efficient. Therefore, we want to
observe how the set of efficient indices is reduced when only risk-averse decision-
makers are considered, which leads to SSD pairwise efficiency testing. The results of
these tests are compared to the mean-variance efficiency in Table 4.

It is well known that mean-variance efficiency does not imply stochastic
dominance efficiency (see Levy, 2006). However, Table 4 shows that every mean-
variance efficient index is SSD pairwise efficient, too. Hence, in this study, SSD
pairwise efficiency can be seen as a generalization of the mean-variance efficiency
approach. Moreover, there are only six indices that are classified differently—five of
them for the before-crisis data and two of them for the during-crisis data. Finally, we
allow full diversification among the indices and apply the Kopa and Chovanec (2008)
test to identify SSD portfolio efficient indices. This property is much stronger than
SSD pairwise efficiency because a given index is SSD portfolio efficient if there
exists no linear convex combination of the considered indices which SSD-dominates
the underlying index. Therefore, every SSD portfolio efficient index is also SSD
pairwise efficient. The comparison of these two approaches can be seen in Table 5.

As we expected, the SSD portfolio efficiency classification is very strong.
Only the index with the highest mean is SSD portfolio efficient (in both periods). All
other indices are SSD portfolio inefficient, that is, all risk-averse decision-makers
prefer some combination of other indices to the index.
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Table 5 SSD Portfolio Efficient and SSD Pairwise Efficient Indices
(B-before crisis, D—during crisis)

. mean-variance SSD pairwise

Period

B D B
IBOVESPA X X
S&PTSX Composite index X
S&P 500 INDEX,RTH X
IPC X
ALL ORDINARIES X
HANG SENG INDEX X
BSE SENSEX X X
Jakarta Composite Index X X X
FTSE Bursa Malaysia KLCI X
NZX 50 INDEX GROSS X
TSEC weighted index X
DAX X
TEL AVIV TA-100 IND X

Table 6 DEA-risk (B—before crisis, D—during crisis)

Period

S&PTSX Composite index
S&P 500 INDEX,RTH
ALL ORDINARIES

FTSE Bursa Malaysia KLCI X
NZX 50 INDEX GROSS
FTSE 100

X X X|m

X X
x

6.2 DEA-Risk Efficiency

In both periods, we compute the risk measures (at given levels) that are used
as the inputs to the DEA-risk model:

— Inputs (28): std; 1sd for powers 1,2,3; VaR, CVaR, DaR and CDaR at levels 0.75,
0.9, 0.95, 0.99, 0.995.
— Output: mean gross return.

In general, one can choose arbitrary risk measures at arbitrary levels as the in-
puts of a DEA-risk model. The only limitation is that all inputs of all indices must be
non-negative. We employ the measures that have tended to be the most popular in
recent years. On the other hand, the output of the DEA-risk model is precisely
specified. Since the outputs of all indices must be non-negative, the mean return
cannot generally be used. Therefore, we modified it to the mean gross return. The re-
sults of DEA-efficiency testing can be found in Table 6.

Similar to the case of mean-variance efficiency, only a few indices are
classified as efficient and the crisis almost completely changed the set of efficient
indices. However, contrary to the mean-variance case, an index exists that is DEA-
efficient in both periods.

As a by-product of DEA-efficiency testing, we can analyze the optimal
weights of the inputs. Specifically, we can distinguish between zero and non-zero
weights. For a given index, omitting the input causes no harm if the optimal weight
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Table 7 Number of Indices with Positive Weight of Selected Risk Measure
in DEA-Risk Model

VaR
Level 0.75 0.9 0.95 0.99 0.995
Before crisis 4 7 4 15 5
During crisis 2 4 5 2 3
CVaR
Level 0.75 0.9 0.95 0.99 0.995
Before crisis 0 0 4 0 0
During crisis 0 0 0 0 1
DaR
Level 0.75 0.9 0.95 0.99 0.995
Before crisis 9 0 0 1 0
During crisis 2 0 0 3 1
CDaR
Level 0.75 0.9 0.95 0.99 0.995
Before crisis 0 0 0 0 0
During crisis 0 0 1 0 1
Isd std
Power 1 2 3
Before crisis 0 0 1 0
During crisis 2 0 0

of an input is zero; that is, the input has no relevant impact on DEA-risk efficiency.
In Table 7, we present the number of indices having positive optimal weights of
particular risk measures in the DEA-risk model.

As we can see, Value at Risk at all considered levels plays the crucial role in
our DEA-risk analysis. Particularly in the before-crisis period, VaR at level 0.99 is
an important measure for 15 indices. In Section 6.1 we found that first-order
stochastic dominance pairwise efficiency testing identified the largest set of efficient
indices. Since the FSD criterion can be expressed using VaR (see Ogryczak and
Ruszczynski, 2002), the important role of VaR is in accordance with our FSD testing
results. On the other hand, omitting the standard deviation or CDaR measures from
DEA-risk testing causes no harm for nearly all the indices.

6.3 Sensitivity of DEA-Risk Efficiency

We also studied the sensitivity of our results with respect to the inputs. We
start with stability analysis with respect to selected types of risk measures. Tables 8
and 9 present the efficient indices when only one type of risk measure (at all con-
sidered levels) is considered.

In both periods, we find that Value at Risk identifies the largest set of efficient
indices. If another type of risk measure is considered, then always only one index is
DEA-risk efficient. Similarly, we can test DEA-efficiency if one type of risk measure
is omitted. The results are summarized in Tables 10 and 1.

Again, we can see the crucial role of VaR in both periods. If it is kept in
the model with reduced inputs, the results obtained are the same as those in the full
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Table 8 Sensitivity of Results—with One Type of Risk Measure (before crisis)

Only with
VaR CVaR DaR CDaR Isd and std
S&PTSX Composite index X X X
S&P 500 INDEX,RTH X
NZX 50 INDEX GROSS X X X
FTSE 100 X

Table 9 Sensitivity of Results—with One Type of Risk Measure (during crisis)

Only with
VaR CVaR DaR CDaR Isdand std
FTSE Bursa Malaysia KLCI X X X X X

NZX 50 INDEX GROSS X

Table 10 Sensitivity of Results—with One Type of Risk Measure Omitted
(before crisis)

Without
VaR CVaR DaR CDaR Isdand std
S&PTSX Composite index X X X X X
S&P 500 INDEX,RTH X X X X X
ALL ORDINARIES X X X X
NZX 50 INDEX GROSS X X X X X
FTSE 100 X X X X

Table 11 Sensitivity of Results—with One Type of Risk Measure Omitted
(during crisis)

Without
VaR CVaR DaR CDaR Isd and std
FTSE Bursa Malaysia KLCI X X X X X
NZX 50 INDEX GROSS X X X X

model (see Table 6). On the other hand, if VaR is not considered as an input,
the number of efficient indices decreases. The same can be concluded for DaR, but
only in the case of the before-crisis data.

Similar to the previous analysis, we will examine the sensitivity of the result
with respect to the levels considered. In Tables 12, 13, 14, and 15 we can see results
for models in which only risk measures at particular levels are either kept as inputs
or dropped. Dropping a level hardly changed the set of efficient indices at all.

Finally, we tested the sensitivity of the results to dropping exactly one input.
If we drop almost any input, we get the same results as in the case of the full model
(Table 6). The only exceptions are DaR, ,5, which causes the All Ordinaries index to

become inefficient in the before-crisis period, and VaR,,, which causes the NZX 50
Index Gross to be identified as inefficient based on during-crisis data.
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Table 12 Sensitivity of Results—with Only One Level (before crisis)

Index With level

0.75 0.9 0.95 0.99 0.995
S&PTSX Composite index X X X X X
S&P 500 INDEX,RTH X X X
NZX 50 INDEX GROSS X X X X X
FTSE 100 X

Table 13 Sensitivity of Results—with Only One Level (during crisis)

Ind With level

naex 075 09 095 099  0.995
FTSE Bursa Malaysia KLCI X X X X X
NZX 50 INDEX GROSS X

Table 14 Sensitivity of Results—without Only One Level (before crisis)

Index Without level

0.75 0.9 0.95 0.99 0.995
S&PTSX Composite index X X X X X
S&P 500 INDEX,RTH X X X X X
ALL ORDINARIES X X X
NZX 50 INDEX GROSS X X X X X
FTSE 100 X X X X X

Table 15 Sensitivity of Results—withut Only One Level (during crisis)

Index Without level

0.75 0.9 0.95 0.99 0.995
FTSE Bursa Malaysia KLCI X X X X X
NZX 50 INDEX GROSS X X X X

6.4 Comparison of Different Efficiency Approaches

In this section we compare all four efficiency approaches considered in this
paper:
— mean-variance efficiency,
— DEA-risk efficiency with all inputs,
—  SSD pairwise efficiency,
— SSD portfolio efficiency.

We do not include results of FSD pairwise efficiency testing, because the FSD
criterion is too weak to classify any index as inefficient. The comparison is presented
in Table 16.

Unfortunately, no index is classified as efficient using all four methods. Since
the SSD portfolio efficiency tests identified only one efficient index in both periods,
we limit our attention to the other three approaches. In the before-crisis case, we can
find three indices (S&PTSX Comp. index; S&P 500 INDEX, RTH; NZX 50 INDEX
GROSS) that are mean-variance efficient and DEA-risk efficient as well as SSD
pairwise efficient, and 14 indices are classified as inefficient in all three cases. Using
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Table 16 All Four Types of Efficiency (B—before crisis, D-during crisis)

. . SSD
Period Mean-variance DEA-risk Pairwise Portfolio
B D B D B D B D
IBOVESPA X X X
S&PTSX Comp. index X X X
S&P 500 INDEX,RTH X X X
IPC X X
ALL ORDINARIES X X
HANG SENG INDEX X
BSE SENSEX X X
Jakarta Composite Index X X X X
FTSE Bursa Malaysia X X X
NZX 50 INDEX GROSS X X X X
TSEC weighted index X
DAX X
FTSE 100 X
TEL AVIV TA-100 IND X X

during-crisis data, only one index (FTSE Bursa Malaysia) is mean-variance efficient
and DEA-risk efficient as well as SSD pairwise efficient, and 21 indices are classi-
fied as inefficient in all three cases.

Finally, we compare the efficiency classifications of the before-crisis data
with those of the during-crisis data. Perhaps surprisingly, there are only three indices
(BSE SENSEX; Jakarta Composite Index; NZX 50 INDEX GROSS) that are clas-
sified as efficient in both periods using at least one approach.

7. Conclusions

In this paper we analyzed the efficiency of 25 world stock indices using three
different approaches: mean-risk efficiency, stochastic dominance efficiency, and
DEA-risk efficiency. We identified efficient portfolios with respect to mean-variance,
DEA-risk efficiency, FSD pairwise, SSD pairwise, and SSD portfolio criteria. We
considered two periods: before-crisis and during-crisis. We started with the classical
mean-variance method. We found that four out of the five American indices con-
sidered were classified as mean-variance efficient in the before-crisis period, but
none were so in the during-crisis period. Following, for example, Basso and Funari
(2001) and Murthi et al. (1997), we proposed a new DEA-risk efficiency test based
on the classical DEA model of Charnes et al. (1978), where several risk measures
and functionals which quantify the risk are used as inputs, and mean gross return is
used as the output. Using the stochastic dominance approach, we found the FSD
pairwise test too weak because it classified all indices as efficient (in both periods).
Moreover, the SSD portfolio efficiency test tended to be too strong—only one index
was SSD portfolio efficient (in each period). Therefore, we focused mainly on com-
paring the mean-variance, DEA-risk, and SSD pairwise results. We found four
indices that were classified as efficient using all three methods: S&PTSX Comp.,
S&P 500 INDEX, RTH, NZX 50 INDEX GROSS (before the crisis), and FTSE
Bursa Malaysia (during the crisis). Comparing the number of efficient indices, we
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can order the efficiency criteria considered with respect to their power of inefficiency
identification from the weakest to the strongest: FSD pairwise efficiency < SSD
pairwise efficiency < mean-variance efficiency < DEA-risk efficiency < SSD
portfolio efficiency. Although the comparison of power is the same for both periods
considered, we discovered that the crisis almost completely changed the set of effi-
cient indices, no matter which approach we used. Finally, we analyzed the sensitivity
of the DEA-risk efficiency classification with respect to changes in inputs. The study
showed that Value at Risk played the most important role among the risk measures
considered. On the other hand, the impact of standard deviation and CDaR measures
proved to be negligible.
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