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Abstract 
This paper investigates the behavior of the EUR/CZK, EUR/HUF and EUR/PLN spot ex-
change rates in the period 2002–2008, using 5-minute intraday data. We find that daily 
returns on the corresponding exchange rates scaled by model-free estimates of daily re-
alized volatility are approximately normally distributed and independent over time. On 
the other hand, daily realized variances exhibit substantial positive skewness and very 
persistent, long-memory type of dynamics. We estimate a simple three-equation model 
for daily returns, realized variance and the time-varying volatility of realized variance. 
The model captures all salient features of the data very well and can be successfully em-
ployed for constructing point, as well as density forecasts for future volatility. We also 
discuss some issues associated with measuring volatility from the noisy high-frequency 
data and employ a simple correction that accounts for the distortions present in our data-
set. 

1. Introduction 
The recent economic downturn has put an end to a period of relative stability 

that the Czech koruna, Hungarian forint and Polish z oty enjoyed over the last years. 
The considerable increase in the volatility of these currencies raises a question about 
the ability of the Czech Republic, Hungary and Poland to fulfill the exchange rate 
stability criteria stipulated in the Maastricht Treaty. Indeed, these criteria require that 
for at least two years prior to the entry into the Eurozone, the applicant country's cur-
rency remain within a normal fluctuation band around the central parity, effectively 
setting limits to the currency’s volatility during the pre-accession period (Antal and 
Holub, 2007). There is no doubt that while the choice of the appropriate monetary 
and exchange rate policies will be crucial to ensure that the currency meets the con-
vergence criteria, the design and implementation of such policies would not be pos-
sible without a thorough understanding of the statistical properties of the currencies 
in question. A practical framework for accurate modeling and forecasting of the ex-
change rate volatility in particular could ultimately help in making the relevant poli-
cies more efficient.  

A good knowledge of the Central European (CE) exchange rates dynamics is 
equally relevant for asset pricing and risk management. Understanding the condition-
al probability distribution of the exchange rate returns and their volatility is critical 
for accurate estimation of various models used in pricing and hedging derivative se-
curities written on the exchange rate. On a more general level, frequent and poten-
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tially large unexpected exchange rate movements adversely affect the performance of 
export-oriented businesses. Papaioannou (2006) discusses specific types of exchange 
rates risk that these companies face at times of increased currency volatility, include-
ing transaction costs associated with hedging against unfavorable exchange rate 
movements and economic costs arising from increased uncertainty about future rela-
tive competitiveness. As the CE currencies continue to suffer from relatively high 
volatility triggered by the global economic crisis, containing these and related risks 
demands effective risk management decisions that are impossible without a sound 
knowledge of the underlying exchange rate behavior. 

The CE currencies have been subject to a wide range of studies. The most re-
cent focus on understanding the effectiveness of foreign exchange interventions con-
ducted by Central Banks (see Geršl, 2004; Geršl, 2006; Geršl and Holub, 2006; Égert 
and Komárek, 2006; Égert, 2007), the sustainability of the real exchange rates (Bulí  
and Šmídková, 2005), or the equilibrium real exchange rate determination (Melecký 
and Komárek, 2008), among others.  

In contrast, only a limited number of studies have attempted to model the dy-
namics of the spot exchange rates for the CE currencies. Ko enda and Valachy (2006) 
provide a detailed analysis of the exchange rate volatility in the Visegrád countries, 
with a particular focus on the period in which these countries abandoned tight FX 
regimes for more flexible ones. Using daily nominal exchange rate data, the authors 
employ an augmented version of a threshold GARCH-in-Mean (T-GARCH) model 
to study the effects of path dependency, asymmetric shocks, and movements in in-
terest rates on exchange rate volatility during the regime transition. The study shows 
that the introduction of the more flexible regime lead to a general increase in ex-
change rate volatility, with the level of volatility persistence becoming roughly the same 
across the exchange rates analyzed. The authors also find a significant and negative 
effect of asymmetric shocks on the volatility of Polish z oty and Hungarian forint under 
the floating regime. 

In a related paper, Fidrmuc and Horváth (2008) analyze the exchange rate dy-
namics in the selected EU members including the Czech Republic, Hungary and Po-
land, using daily data from 1999 to 2006. The authors apply both a GARCH model 
and an extended version of the TARCH model to assess the exchange rate volatility 
in connection with the estimated target exchange rate and the credibility of exchange 
rate management. Among other findings, the study shows that the daily exchange rate 
volatility exhibits strong persistence as well as systematic asymmetric effects, with 
the latter being especially pronounced during the periods of exchange rate appre-
ciation. 

Horváth (2005) investigates the medium-term determinants of the bilateral ex-
change rate volatility of Central and Eastern European countries (CEEc) based on 
the optimal currency area criteria. As part of the analysis, the author also compares 
the actual and predicted exchange rate variability between the Euro area countries 
and the CEEc. Although limited to the use of quarterly data and a relatively short 
sample period from 1999 to 2004, the study shows that the actual exchange rate vari-
ability is larger in the CEEc compared to what it had been in the Euro area before its 
creation. In addition, the author finds the predicted exchange rate variability to be 
close to the Eurozone levels, with the difference between the latter and the actual 
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variability caused by the Euro area countries participating in the ERM during the sam-
ple period. 

Finally, Frömmel (2007) provides an interesting investigation of the changes 
between volatility regimes in five Central and Eastern European countries, including 
the Czech Republic, Poland and Hungary. Frömmel employs a Markov-Switching 
GARCH model to study whether the changes between the volatility regimes are consist-
ent with changes in the official exchange rate arrangements. Among other findings, 
the author concludes that an increase in the flexibility of the exchange rate regime 
leads to an increase in exchange rate volatility. 

The goal of this paper is to examine the conditional distribution of the Czech 
koruna, Hungarian forint and Polish z oty exchange rates vis-à-vis the Euro in the pe-
riod 2002–2008. Employing a 5-minute intraday data, we examine the distributional 
properties and time-series dynamics of both daily exchange rate returns, as well as 
daily realized variance. Unlike the existing empirical literature that employs almost 
exclusively a GARCH framework to study the dynamics of the exchange rate, our work 
relies on model-free nonparametric measures of ex-post volatility based on the use of 
intraday data. This approach, pioneered by Andersen and Bollerslev (1998), has at-
tracted substantial attention in the recent financial econometric literature; see e.g. 
McAleer and Medeiros (2008) for a recent review. It offers a number of advantages. 

First, no parametric assumptions are needed to ensure that the realized vari-
ance and related measures are consistent for the true, unobserved volatility, apart 
from some mild regularity conditions. This is in stark contrast to the GARCH frame-
work, where all results concerning the behavior of volatility hinge on a particular 
specification of the GARCH variance equation. 

Second, realized variance captures the total variation in the price or exchange 
rate over a given period of time, unlike a GARCH-type model that focuses on condi-
tional volatility of the price at time t, given the information set available at time t – 1. 
In other words, realized variance combines both the volatility expectations as well as 
the innovations to volatility. This carries important implications for studying the con-
ditional distributions of one-period returns as pointed out by Andersen, Bollerslev 
and Dobrev (2007): while the one-period financial returns standardized by condition-
al volatility typically appear to be leptokurtic, standardizing by realized volatility 
produces approximately Gaussian innovations. This in turn lends empirical support to 
a large class of continuous-time stochastic volatility models widely employed in the as-
set pricing literature. 

Finally, since the realized variance and alternative related measures render vol-
atility essentially observable up to a measurement error that vanishes as the sampling 
frequency increases, simple time-series models can be used to model and accurately 
forecast future volatility (see Andersen, Bollerslev, Diebold and Labys, 2003; Ander-
sen, Bollerslev and Dobrev, 2007, among others). This includes not only point fore-
casts, that is, the expected future volatility, but the entire predictive density for future 
volatility, allowing for construction of confidence intervals around the point forecast 
or, similarly, estimation of the probability that future volatility remains within a cer-
tain fluctuation band. The ability to provide the predictive density for future volatility 
also facilitates the measurement and management of risk associated with trading re-
alized volatility, which has become very popular in recent years (e.g. Bondarenko, 
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2007). In this paper, we only focus on a simple model for returns and variance since 
our primary interest lies in studying the dynamics and conditional distributions of 
the EUR/CZK, EUR/HUF and EUR/PLN spot exchange rates. 

Our empirical results confirm some stylized facts about the behavior of re-
turns and volatility of foreign exchange rates. We find that daily returns on the ex-
change rates are approximately normally distributed and independent over time, when 
properly scaled by model-free estimates of daily realized variance. Daily realized 
variance, on the other hand, exhibits substantial positive skewness as well as a very 
persistent, long-memory type of dynamics. We propose a relatively simple model for 
daily returns, realized variance and the time-varying volatility of realized variance, 
finding that it very well captures all salient features of the data. In addition, the model 
is shown to perform remarkably well out-of-sample, delivering accurate volatility fore-
casts. It may therefore serve well as an auxiliary model for estimating various con-
tinuous-time stochastic volatility models used for pricing derivative securities written 
on the exchange rate (Bollerslev, Kretschmer, Pigorsch and Tauchen, 2009). 

The rest of the paper is organized as follows. In Section 2 we describe our 
theoretical framework and discuss some distributional predictions that it generates 
for the EUR/CZK, EUR/HUF and EUR/PLN returns. In Section 3, we follow with 
a definition of the realized variance as a model-free measure of variation in asset 
prices and some of the issues associated with measuring volatility from noisy high- 
-frequency data. In Section 4 we describe the data and in Section 5 we report the em-
pirical results. In particular, we present the results of the tests of normality and in-
dependence of returns standardized by realized volatility, the estimation of a joint 
model for daily returns, realized variance and the volatility of realized variance, and 
the results of an out-of-sample volatility forecasting exercise. Section 6 concludes 
the paper with some suggestions for future work. 

2. Theoretical Framework 
Following a vast body of recent literature in financial econometrics, we adopt 

a relatively simple, yet very general continuous-time framework. Working in con-
tinuous time has a number of technical advantages, but more importantly it provides 
a direct link to the asset pricing literature, which establishes a number of important 
results concerning the restrictions on admissible models governing asset prices in 
an arbitrage-free environment (Back, 1991). A detailed overview of this and related 
issues is beyond the scope of this paper and we refer the interested reader to an ex-
cellent discussion in Andersen, Bollerslev, Diebold and Labys (2003). 

We assume that the logarithmic spot exchange rate, st, follows a stochastic 
volatility model given by 

     
0 0

d d
t t

t u u us u W                                               (1) 

where t and t denote the drift and volatility processes, respectively, and Wt is 
a standard Brownian motion. Both t and t are allowed to be general stochastic pro-
cesses and we do not impose any parametric assumption regarding their respective 
laws of motion. Also, no restrictions are placed on the dependence between volatility 
( t) and the Brownian motion (Wt) driving the exchange rate innovations.  
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A few remarks regarding the model in equation (1) are in order. First, the sam-
ple paths of the exchange rate are continuous, hence ruling out the presence of jumps. 
We choose to make this assumption to keep our framework simple for the sake of 
exposition, but nothing prevents us from including a jump process to the drift and 
diffusion components in equation (1). Indeed, the measures of volatility that we em-
ploy later in the paper can capture both parts of the variation, i.e. the diffusion part 
and jump part, if present, and hence there is no loss of generality in this sense by 
doing otherwise. 

Second, the model nests a wide variety of arbitrage-free stochastic volatility 
models employed in the asset pricing literature. The well-known Black-Scholes model, 
where both the drift and volatility are constant, is a prominent example. For more 
general and empirically relevant specification see Chernov, Gallant, Ghysels and 
Tauchen (2003) and the references therein.  

Finally, the model delivers testable distributional predictions: the one-period 
returns defined as rt = st – st–1 are conditionally on the sample path of drift and vol-
atility, normally distributed. Formally: 

       2
1 1 1

|{ , } ~ d , d
t tt

t u u t u ut t
r N u u                                    (2) 

Since the drift is typically negligible at daily and weekly frequencies, espe-
cially in the case of foreign exchange rates, the key quantity that we are interested in 
is the so-called integrated variance,  

                                            2
1

d
t

t ut
IV u                                                       (3) 

which, as equation (2) shows, is the natural measure of variation in the one-period 
returns. The conditional normality of rt further implies that in the absence of depen-
dence between the volatility process and the Brownian motion driving the exchange 
rate (Wt), the one-period standardized returns follow the standard normal distribution, 
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Similar predictions can be derived when the volatility process correlates with 
the Brownian motion. The normality of properly standardized returns has found an over-
whelming empirical support across different assets classes; see e.g. Andersen, Bol-
lerslev and Dobrev (2007), Andersen, Bollerslev, Frederiksen and Nielsen (2009) and 
Žikeš (2008) for recent evidence from equity index futures, individual stocks, and for-
eign exchange rates, respectively. It is worth reiterating that this distributional assump-
tion can be tested without making any parametric assumptions about the volatility 
process since the integrated volatility appearing in the denominator of the standardized 
returns can be consistently estimated by nonparametric methods, which we describe in 
the next section. 

3. Measuring Daily Variance 
Suppose we obtain a sample of size T(M+1) corresponding to T days, each hav-

ing M + 1 intraday observations of the logarithmic spot exchange rate. We denote by 
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st(i) the i-th observation of the log-spot rate on day t, with i = 0,…, M and t = 1,…,T. 
The simplest and most widely used estimator, the well-known realized variance1 (An-
dersen and Bollerslev, 1998), is obtained by summing the squared intraday returns: 

                                                    2
,

1
( )

M

t M i t
i

RV s                                                  (5) 

where ist = st(i) – st(i–1) denotes the i-th intraday return on day t. As the sampling 
frequency increases, M  , the realized variance converges in probability to the in-
tegrated variance, IVt (see e.g., Protter, 2005). Moreover, under some mild regularity 
conditions, a central limit theorem can be obtained, establishing the M1/2 rate of con-
vergence (Barndorff-Nielsen and Shephard, 2002). Thus, the realized variance is 
a fully nonparametric estimator of the integrated variance, yet it achieves the usual 
parametric rate of convergence. We finally remark that if jumps are present in the true 
price process in addition to the diffusion component, the realized variance will pick 
up both: it will converge to the integrated variance plus the sum of squared jumps, 
thereby providing a measure of the overall variation in the one-period returns. 

The asymptotic results mentioned above seem to suggest that one should sam-
ple as frequently as possible to achieve highly accurate realized variance estimates. 
However, when taken to the data, one quickly realizes that this is actually not op-
timal. The reason is that intraday data sampled at very high frequencies tend to be 
contaminated by the so-called microstructure noise. The noise arises from a number 
of frictions inherent to the process of trading and posting bid and ask quotes. See 
O'Hara (1995) for an overview of the theory market microstructure and Hansen and 
Lunde (2006) for the implications of the presence of noise for estimating volatility 
from high-frequency data. 

A typical approach to modeling the noise in the realized variance literature is 
to assume that the noise is additive, i.e. 
                                          *

( ) ( ) ( )t i t i t is s , 2
( ) ~ (0, )t i D                                      (6) 

where st(i)
* is the actual price the econometrician observes, while the efficient price, 

st(i), remains unobserved due to contamination by t(i). Earlier contributions assumed 
that the noise is independently and identically distributed over time and is inde-
pendent from the efficient prices. Both have been gradually relaxed and the estimator 
we use in this paper works under very general conditions. Nonetheless, the assump-
tion of i.i.d. turns out to be approximately satisfied in foreign exchange data and as 
we will see below, also for the exchange rates analyzed in the current study. We will 
therefore retain this assumption for the sake of exposition. 

An immediate consequence of the presence of i.i.d. microstructure noise is 
that the realized variance becomes biased and inconsistent as the sampling frequency 
increases. The noise contaminating the efficient price induces a moving-average type 
of structure in the observed intraday returns, 

                                              *
( ) ( 1)i t i t t i t is s                                             (7) 

1 Note that it is common in the literature to abuse terminology by using ‘realized variance’ and ‘realized
volatility’ interchangeably to refer to the same quantity defined in equation (5). We will try to avoid this
by reserving the term ‘realized variance’ for RVt,M defined as in (5) and ‘realized volatility’ for (RVt,M )1/2. 
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As a result, the realized variance behaves, for large M, as 
                                        2

, 2t M tRV IV M                                                 (8) 

and is thus biased and inconsistent as it tends to infinity with M  . In fact, for 
large M, the realized variance, when scaled by 2M can be used to estimate the vari-
ance of the noise (Bandi and Russell, 2006).  

The vast majority of papers in the literature circumvent the problem of noise 
by sampling sparsely, that is, by sampling at frequencies at which the bias is small. 
To this end, Andersen, Bollerslev, Diebold and Labys (2000) introduce the so-called 
volatility signature plot that shows the average daily realized volatility calculated at 
different sampling frequencies. In the absence of noise, this plot should be flat. On 
the other hand, if the noise is present, the signature plot will reveal the frequency at 
which the bias induced by it kicks in. This frequency is then used in the empirical 
work to measure the daily volatility. 

Sampling sparsely, however, entails throwing away a lot of data, which vio-
lates one of the main rules of statistics (Zhang, Mykland and Aït-Sahalia, 2005). There-
fore a number of solutions have been proposed in the literature to correct the biases 
associated with microstructure noise directly. Here we use the moving-average based 
estimator first used by Andersen, Bollerslev, Diebold and Labys (2001) and recently 
theoretically studied by Hansen, Large and Lunde (2008), since the microstructure 
noise contaminating our data seems to exhibit a simple i.i.d. structure. For an alter-
native approach, see Barndorff, Nielsen, Hansen, Lunde and Shephard (2008) and 
the references therein. 

The moving-average based estimator exploits the MA(1) structure of observed 
returns, i st

*.  The intraday returns are first filtered by an MA(1) model, 

                                                    *
, ( 1)i t t i t is                                                  (9) 

where the parameter  can be estimated by the method of quasi maximum likelihood. 
In the second step, the usual realized variance is applied to the filtered intraday re-
turns, ( )t̂ i , i.e. 

                                             (1) 2 2
, ( )

1

ˆ ˆ(1 )
M

t M t i
i

RVMA                                           (10) 

where the scaling constant (1– ˆ )2 ensures that the estimator is unbiased and con-
sistent for the integrated variance. Hansen, Large and Lunde (2008) provide a central 
limit theorem for (1)

,t MRVMA  and establish the M1/4 rate of convergence, which is 
known to be the best possible rate when estimating volatility from noisy data. 

The discussion of the issues associated with measuring volatility from noisy 
high-frequency data completes the methodology part of the paper. Before we turn to 
the empirical application we first carefully describe the data. 

4. Data Description and Preliminaries 
We employ 5-minute spot exchange rate mid-quotes covering the period from 

January 4, 2002 through December 30, 2008 for the case of EUR/CZK and EUR/PLN 
and from January 2, 2003 through December 30, 2008 for the case of EUR/HUF. 
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The mid-quotes are constructed by taking the average of the best bid and ask quotes 
available at the end of each 5-minute interval. The data was obtained from Olsen Fi-
nancial Technologies. 

Similarly to other FX markets, the EUR/CZK, EUR/HUF and EUR/PLN mar-
kets operate 24 hours per day. To avoid distortions associated with illiquidity and thin 
trading, we follow the usual approach in the literature and discard weekend periods 
from Friday 21:00 GMT (22:00 CET) until Sunday 21:00 GMT, as well as holidays. 
This leaves us with a total of 1,780, 1,507, and 1,762 trading days for the EUR/CZK, 
EUR/HUF and EUR/PLN exchange rates, respectively. 

We define a trading day on the interval from 21:00 GMT to 21:00 GMT of 
the following day as is common in the literature (e.g. Andersen, Bollerslev, Diebold 
and Labys, 2003). Since the trading activity in the foreign exchange markets exhibits 
substantial deterministic intraday variation, we resort to tick-time sampling for the pur-
poses of measuring daily volatility (e.g. Oomen, 2006). That is, for each day in the sam-
ple, the series of intraday prices are obtained by discarding duplicate quotes, and 
the intraday returns are then calculated from these generally irregularly-spaced prices. 
This procedure eliminates the zero intraday returns largely prevalent in periods of 
thin trading and makes the resulting irregularly-spaced intraday returns closer to 
being homoskedastic. Theory implies that this should generally improve the accuracy 
of volatility estimation (e.g. Oomen, 2006), and is particularly desirable when employ-
ing the moving-average based estimator (Hansen, Large and Lunde, 2008). 

We now proceed to discuss the problem of measuring daily volatility. The auto-
correlation functions (ACF) of the intraday returns, plotted in Figure 1 (left column), 

Figure 1 
Left: Volatility signature plots for the RV (defined in (5)) and the RVMA (lower line). The numbers 
on the x-axis correspond to 5, 10, 15, 20, 30, and 60 min sampling frequency. Right: ACF of
intra-day returns obtained by tick-time sampling. The first (second, third) row corresponds to 
the case of EUR/CZK (EUR/HUF, EUR/PLN) 5 min exchange rate returns, respectively. 
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all exhibit a significant negative spike at lag one, with essentially no statistically sig-
nificant autocorrelation at longer lags. This is consistent with the intraday returns 
having an MA(1) component induced by an i.i.d. microstructure noise contaminating 
the spot exchange rate. The usual realized variance estimator will be therefore substan-
tially upward biased at the 5-minute and perhaps even at lower sampling frequencies. 
Given the simple dynamics of the noise process implied by the ACF, the bias should 
be to a large extent corrected by the moving-average based estimator, RVMAt,M. 

To see this, we plot in Figure 1 (right column) the realized variance signature 
along with the average RVMAt,M. The bias of RVt,M, increasing in the sampling fre-
quency is clearly apparent from the plot. Even at frequencies as low as 30 minutes 
the usual realized variance still exhibits a large positive bias. In the rest of the paper, 
we therefore employ the moving-average based estimator as our preferred measure of 
volatility and to simplify the notation, we reserve RVt to denote RVMAt,M since no 
confusion should arise regarding the particular realized variance measure and sampl-
ing frequency used. 

The plots of EUR/CZK, EUR/HUF and EUR/PLN spot exchange rates and 
the corresponding daily returns are presented in Figure 2. The reader will immedi-
ately notice several periods of increased volatility that characterize the daily exchange 
rate returns. In particular, a significantly larger volatility around the last 120 days 
of the samples that mirrors a sharp depreciation of the currencies in the last quarter of 
2008, as well as an overall increase in uncertainty associated with the global economic 
downturn is common to all three currencies. Still, other periods of larger volatility 
can be discerned. For example, an increased exchange rate volatility is evident during 
the first 250 days of the sample of EUR/CKZ returns that reflects an episode of rela-
tively strong nominal appreciation of the Czech currency that started in 2001 and con- 

Figure 2 
Plots of daily spot rates, left, and of daily returns, right, for the case of EUR/CZK (first row), EUR/
/HUF (second row) and EUR/PLN (third row) exchange rates 
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tinued throughout 2002 and was driven mainly by market expectations of significant 
Euro-denominated privatization revenues being converted into the domestic currency 
(see Geršl (2004) for a full description of the underlying events). Similarly, strong 
downward pressures on Hungarian forint due to weak economic outcomes and mar-
ket doubts about the consistency of monetary policies resulted in a larger EUR/HUF 
volatility during the second half of 2003. 

5. Empirical Results 
5.1 Distribution of Daily Returns and Realized Variance 

We begin our analysis by looking at the properties of the raw daily returns. 
The statistics reported in Table 1 indicate that the daily returns exhibit excess kurto-
sis and are either slightly negatively (EUR/CZK) or positively skewed (EUR/HUF, 
EUR/PLN), relative to normal distribution. The EUR/HUF returns exhibit the largest 
degree of skewness and excess kurtosis among the three exchange rates. 

To investigate the distributional properties of daily returns standardized by re-
alized volatility, rt/(RVt)1/2 (also plotted in the right column of Figure 5), we run 
a battery of tests. Recall that (4) implies a sharp null hypothesis of standard normality 
and independence. Thus we first consider the moment-based test of Bontemps and 
Meddahi (2005), focusing on the first four moments of standardized returns. Under 
the null hypothesis, the standardized returns have zero mean, unit variance, zero skew-
ness and kurtosis equal to three. We focus on two versions of the test H1–4, which has 
as its null hypothesis that all four moments are equal to those of a standard normal, 
and H3–4, which only takes into account the third and fourth moment. The latter is 
asymptotically equivalent to the well-known Jarque-Bera test. H1–4 is asymptotically 
distributed as a 2(4) random variable, while H3–4 as a 2(2). 

Second, we employ the well-known Kolmogorov-Smirnov (KS) test for the null 
hypothesis of standard normality. Unlike the moment-based test, the KS test is a con-

Table 1  Descriptive Statistics
Descriptive statistics for daily returns, daily realized variance, daily logarithmic realized variance and 
daily returns standardized by realized volatility. The realized variance is calculated using the mov-
ing-average estimator. The sample runs from January 4, 2002 to December 30, 2008 for EUR/CZK 
and EUR/PLN, and from January 2, 2003 to December 30, 2008 for EUR/HUF 

Mean Std Dev Skew Kurt Min Max 

CZK rt -0.010 0.435 -0.389 13.30 -4.058 2.422 
 RVt 0.179 0.287 7.309 85.81 0.010 5.139 

log(RVt) -2.166 0.826 0.845 -4.246 -4.640 1.637 
rt /(RVt)1/2 -0.034 0.975 -0.046 3.028 -4.046 2.957 

HUF rt 0.008 0.618 1.700 22.45 -3.797 6.850 
RVt 0.370 0.816 10.64 162.5 0.011 16.75 
log(RVt) -1.594 0.967 0.587 4.029 -4.529 2.818 
rt /(RVt)1/2 -0.037 0.913 0.113 2.952 -2.769 3.012 

PLN rt 0.009 0.606 0.335 8.946 -4.640 3.747 
RVt 0.419 0.679 6.445 60.57 0.025 10.25 
log(RVt) -1.324 0.847 0.671 4.295 -3.705 2.327 
rt /(RVt)1/2 -0.041 0.946 -0.007 2.771 -3.110 3.356 
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sistent test, i.e. it has asymptotically unit power against all alternatives. The limiting 
distribution of the KS test statistic is non-standard and the critical values have to be 
simulated. 

Finally, we run the test developed by Hong and Li (2005) (HL) to test the null 
hypothesis of both standard normality and independence. Since this test is not wide- 
ly used a brief description is in order. The test is based on the observation that under 
the null, the joint distribution of rt/(RVt)1/2 and rt–k/(RVt–k)1/2 factorizes into the prod-
uct of two standard normal marginals for any k. Hong and Li (2005) propose to 
estimate the joint distribution by nonparametric methods and build a test statistic 
based on the integrated squared difference between the estimated joint density and 
the joint density under the null hypothesis. If the null hypothesis is true, the differ-
ence should be small. Under the alternative, the test statistic diverges. The limiting 
distribution of the HL test statistic is standard normal for any k and the test statistics 
are asymptotically independent across different k’s. A joint 2 test can be therefore 
easily constructed by taking the sum of squared HL test statistics for different k’s. 

Before we turn to the empirical results, it is worth mentioning that testing for 
normality and independence of returns standardized by realized volatility or any other 
consistent measure of integrated variance entails a measurement error problem. 
The null hypothesis is specified in terms of the unobserved standardized returns, that 
is, by the returns scaled by the true integrated volatility. Replacing the unobserved 
volatility by its sample counterpart induces a measurement error that may in turn 
affect the central limit of the test statistics. Žikeš (2008) recently studies this problem 
for the tests described above and establishes primitive conditions on the spot volatil-
ity process as well as the restrictions on the relative rate of growth of T and M such 
that the measurement error vanishes asymptotically. For finite T and M, important 
distortions may arise and this has to be kept in mind when interpreting the results of 
the tests. In other words, a rejection of the null hypothesis with relatively small M 
may indeed be a symptom of the measurement error, rather than a genuine feature of 
the data. 

Table 2 summarizes the results of the normality tests. Consistent with the pre-
diction of the model in equation (4), we find that the sharp null hypothesis of stand-
ard normality is not rejected by any of the tests at conventional significance levels for 
EUR/CZK. Both the moment-based test statistics as well as the Kolmogorov-Smir-
nov test statistics are well below their respective critical values. The excellent fit of 
the standard normal distribution for the standardized returns is also apparent from 
the relevant kernel density plot reported in Figure 3 (right column) and the last col-
umn of Table 1. The estimated density is essentially indistinguishable from N(0,1), 
with the mean, standard deviation, skewness and kurtosis appearing very close to 
those of a standard normal distribution.  

The HL test fails to detect any dependence in the time series of the standard-
ized residuals up to lag 5. The p-value corresponding to lag 2 is close to 5%, which 
may suggest some dependence between rt/(RVt)1/2 and rt–2/(RVt–2)1/2. However, given 
that we run the test for a number of lags, the relevant test statistics to look at is 
the one for the joint test HLjoint, which has a p-value of 0.425 and thus clearly fails to 
reject the null hypothesis of standard normality and independence. The conclusion of 
the HL test is further corroborated by the autocorrelation function for the standard- 
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ized returns plotted in Figure 4 (right column). All autocorrelation coefficients plot-
ted there remain within the confidence bands, indicating no omitted dynamics. 

Turning to the standardized returns of EUR/HUF and EUR/PLN we find that 
the test based on the first four Hermite polynomials H1–4, rejects the null hypothe- 
sis of standard normality. In case of EUR/HUF, the same conclusion is obtained by 
the other tests as well, except for the test based on the third and fourth Hermite poly-
nomials (H3–4). This suggests that the rejection of the null hypothesis may be due to 
the mean and/or standard deviations of the standardized returns deviating from zero 
and one, respectively. Looking at the descriptive statistics reported in Table 1 we in-
deed observe that the standard deviation of rt/(RVt)1/2 is smaller than one, while 
the mean appears to be indistinguishable from zero.  

To see if the departure of the standard deviation from one is responsible for 
the rejection of the sharp null hypothesis of standard normality, we next run the nor-
mality test on studentized standardized returns obtained by de-meaning and dividing 
the original standardized returns by their sample standard deviation. This of course 
introduces a parameter uncertainty problem since we do not know the true mean and 
standard deviation. Fortunately, all tests but the KS test employed here are robust to 
this problem and hence valid inference is obtained by replacing the true parameters 
by consistent estimates. In case of the KS test, we use the Lilliefors approximate crit- 

Table 2  Tests for Normality and Independence of Standardized Returns
Left panel reports tests for standardized returns, rt /(RVt)1/2, while the right panel reports tests for 
standardized returns that were studentized by sample mean and standard deviation. H1–4 de-
notes a test statistic for the null hypothesis of standard normality based on the first four Hermite 
polynomials. Similarly, H3–4 denotes a test statistic for the null hypothesis of normality based on 
the third and fourth Hermite polynomials. KS denotes the Kolmogorov-Smirnov test statistic for 
the null hypothesis of standard normality and HLk the test statistic for the null hypothesis of both 
standard normality and independence in the standardized returns at lag k or a joint test. P-values
are reported in parentheses, except for the KS test, where we report the 5% critical values in-
stead. We denote by * the test statistic that exceeds its 5% critical value. 

A. Std. Returns B. Studentized Std. Returns 
CZK HUF PLN CZK HUF PLN 

H1–4 
4.682 

(0.321) 
25.50* 
(0.000) 

14.01* 
(0.007) 

– – –

H3–4
0.521 

(0.771) 
2.821 

(0.244) 
1.683 

(0.431) 
0.679 

(0.712) 
3.339 

(0.188) 
3.851 

(0.146) 

KS 0.982 
(1.36) 

1.853* 
(1.36) 

1.050 
(1.36) 

0.445 
(0.89) 

0.647 
(0.89) 

0.583 
(0.89) 

HL1
1.183 

(0.118) 
3.538* 

(0.000) 
0.879 

(0.190) 
0.494 

(0.311) 
-0.017 
(0.507) 

0.180 
(0.429) 

HL2 
1.611 

(0.054) 
3.471* 

(0.000) 
0.977 

(0.164) 
0.848 

(0.198) 
0.073 

(0.471) 
0.048 

(0.481) 

HL3
-0.132 
(0.553) 

2.607* 
(0.005) 

-0.785 
(0.784) 

-0.907 
(0.818) 

-0.766 
(0.778) 

-1.819 
(0.966) 

HL4
0.874 

(0.191) 
3.006* 

(0.001) 
0.432 

(0.333) 
0.104 

(0.458) 
-0.460 
(0.677) 

-0.503 
(0.693) 

HL5
1.195 

(0.116) 
3.362* 

(0.000) 
1.794* 

(0.036) 
0.483 

(0.315) 
0.204 

(0.419) 
0.757 

(0.224) 

HLjoint 
6.201 

(0.287) 
51.70* 
(0.000) 

5.748 
(0.332) 

2.029 
(0.845) 

0.845 
(0.974) 

4.172 
(0.525) 
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ical value. The results are reported in Panel B of Table 2. Clearly, the null hypothesis 
of normality and independence is not rejected by any test, confirming our initial con-
jecture regarding the departure from the sharp null of standard normality. 

Turning to realized variance, Figure 3 (left column) presents the nonparamet- 
ric estimates of the density of logarithmic realized variance for the three exchange 
rates, while Table 1 provides additional information. We observe that even after taking 
the logarithmic transformation the distribution of realized variance exhibits positive 
skewness. This has important implications for modeling and forecasting the distribution 
of future volatility and will be explicitly taken into account when constructing a joint 
model for returns and volatility in the next section of the paper. To test the null hypo- 

Figure 3  Estimated Kernel Densities for the Daily Logarithmic Realized Variance  
(log (RV)), left, and Daily Standardized Returns (rt/(RV)1/2), right 
constructed using EUR/CZK (first row), EUR/HUF (second row), and EUR/PLN 
exchange rate returns (third row) 
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thesis of normality of logarithmic realized variance formally, we employ the test based 
on the third and fourth Hermite polynomials (H3–4) constructed using the Newey-West 
weighting matrix. This test is valid in the presence of parameter uncertainty as well as 
dependence in the logarithmic realized variance, unlike the other tests we used before. 
The test statistics read 103.8, 56.6 and 50.3 for EUR/CZK, EUR/HUF and EUR/PLN, 
respectively, clearly rejecting the null hypothesis. Therefore neither the realized vari-
ance nor its logarithmic transformation follows the normal distribution. 

Finally, we examine the dynamics of realized variance. Figure 5 reveals 
the well-known volatility clustering effect. In line with the developments in the CEE 
FX markets, some of which were mentioned in the previous section, the clusters are 
clearly evident during the first 250 days of the EUR/CZK and EUR/HUF sample pe-
riods, as they are during the last 120 days of the samples for all three exchange rates. 
The plots of autocorrelation functions in Figure 4 (left column) corroborate this find-
ing. In line with existing empirical evidence for other foreign exchange rates, the auto-
correlation functions of the realized volatility for all three currencies decay very 
slowly, which is consistent with long-memory type of dynamics. 

5.2 A Model for Daily Returns and Realized Variance 
Motivated by the empirical results reported in the previous sections, we now 

turn to modeling the joint behavior of daily returns and realized variance. A success-
ful empirical model must be able to capture the distributional and dynamic properties 
of returns and volatility observed in the data. At the same time, it should be suf-
ficiently parsimonious to avoid issues associated with over-fitting and complicated 
estimation procedures. 

After initial experimentation, we propose the following model: 

Figure 4 ACF Plots of Daily Realized Variance (RV), left, and of Daily Standardized 
Returns (rt/(RV)1/2), right
for the case of EUR/CZK (first row), EUR/HUF (second row), and EUR/PLN 
exchange rate returns (third row) 
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and t ~ N(0,1), t ~ SkewedT( , ), both i.i.d. The model has three equations. 
The first equation describes the evolution of daily returns. Since we found no serial 
correlation in the daily return series, we do not include any dynamics in the mean 
equation. Consistent with the observation that the daily returns standardized by daily 
realized volatility are approximately Gaussian, we assume that the return innovations 
follow the normal distribution.  

The second equation represents the well-known heterogeneous autoregressive 
model (HAR) for logarithmic realized variance originally proposed by Corsi (2009). 
While not a genuine long-memory model, the HAR model captures remarkably well 
the persistent dynamics typically found in the time-series of realized variances across 
different asset classes (see Andersen, Bollerslev and Dobrev, 2007, Corsi, Mittnik, 
Pigorsch and Pigorsch, 2008, and Bollerslev, Kretschmer, Pigorsch and Tauchen, 

Figure 5  Plots of Daily Realized Variance (RV), left, and of Daily Standardized 
Returns (rt/(RV)1/2), right
for the case of EUR/CZK (first row), EUR/HUF (second row), and EUR/PLN 
exchange rate returns (third row) 
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2009, among others). Writing the model in terms of the logarithm of realized vari-
ance as opposed to realized variance itself has the obvious advantage of avoiding 
issues associated with possibly negative coefficient estimates.  

Following Corsi, Mittnik, Pigorsch and Pigorsch, 2008, we generalize the model 
by allowing for conditional heteroskedasticity of the volatility innovations. This al-
lows us to capture the volatility-of-volatility effect, i.e. the empirical observation that 
the volatility of volatility tends to increase when volatility itself increases. In the in-
terest of parsimony, we adopt a simple GARCH(1,1) specification for the conditional 
variance of the logarithmic realized variance and let the innovation process follow 
the skewed Student-t distribution proposed by Hansen (1994). Again, a specification 
test will be provided to check the adequacy of this assumption.  

We employ the method of maximum likelihood to estimate the parameters of 
the model. We obtain initial consistent estimates by estimating the mean equation sep-
arately from the equation for realized variance. This is equivalent to joint maximum 
likelihood estimation under the assumption of independence between t and t. 

Table 3 reports the maximum likelihood estimates for both the mean and 
the realized variance equations along with the corresponding standard errors and  
p-values as well as a set of specification tests for the residuals from the HAR-GARCH 
part of the model. 

Starting with the HAR equation, we observe that the coefficient estimates on 
daily, weekly, and monthly variance components are all highly significant, a finding 
that corresponds to the results obtained in the previous applications of the HAR model 
for realized variance in the literature. In case of EUR/HUF, two lags of the logarithm 
of realized variance are used in equation (12) to improve the overall fit of the model. 
In terms of magnitude, the relative impact of the daily, weekly and monthly variance 
components differs across the exchange rates. Specifically, in case of EUR/CZK 
the monthly variance component seems to have the largest impact on current realized 
variance followed by the weekly and daily components. However, it is the daily 
component for EUR/HUF and the weekly component for EUR/PLN that seem to 
affect the current realized variance of the respective currencies the most.  

The dynamics of the relative impact of different variance components on the cur-
rent (realized) variance carries important information about the developments in 
the attitudes of the market participants towards short-, medium-, and long-term var-
iance. For example, an upward trend present in the coefficient estimates on the long- 
-term variance component informs us of an increasing degree of persistence of 
the long-term uncertainty in the market. In parallel, this may lead to a growing in-
fluence of the long-term term volatility on the short term volatility (Müller, Daco-
rogna, Dav, Olsen, Pictet and von Weizsacker, 1997). The economic intuition here is 
simple: as long-term volatility directly affects the expectations about the future mar-
ket trends and risk, the short-term FX market participants use the information that it 
contains to adjust their trading behavior, thereby causing the volatility to increase in 
the short-term (Corsi, 2009). 

To see whether the parameters of the HAR model are stable over time or if 
they undergo some structural changes, we plot in Figure 6 recursive parameter esti-
mates with 95% confidence intervals. For each of the three exchange rates we observe 
a clear tendency for the coefficient estimates on the monthly variance component to 
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increase over time, while the other coefficients exhibit relatively stable behavior. 
This implies that the persistence of the realized variance increases over time: while 
towards the beginning of the sample the monthly component is small and statistically 
insignificant, it gradually increases and becomes highly significant as we add more 
recent observations. The dynamics of realized variance of the CE exchange rates thus 
increasingly resembles those of major exchange rates such as EUR/USD and USD/ 
/JPY. 

Turning to the variance equation in the HAR-GARCH model, we note highly 
significant estimates of ARCH and GARCH coefficients for all three exchange rates 
that capture the clustering of volatility of realized volatility. In particular, the GARCH 
coefficient estimate informs us of a relatively large and positive effect of the previous 
period volatility on the current volatility of realized volatility. The highly significant 

Table 3  Estimation Results for the HAR-GARCH Model
Parameter estimates and diagnostics for the HAR-GARCH model. In panels (A)–(D), all co-
efficients are significant at 1% level, except where denoted by superscript b (significant at 
5%), or d (insignificant at conventional levels). In panel (E), the diagnostic statistics pertain 
to the scaled residuals ( ˆ t, ˆ t) from the HAR-GARCH model. 
Q(20) and Q2(20) represent the Ljung-Box Q-statistics for the null hypothesis of no auto-
correlation up to lag 20 in the raw and squared standardized residuals. Similarly, LM (20) 
represents Engle's LM test for ARCH effects up to lag 20 in the standardized residual se-
ries. Rj represents Patton's (2006) goodness-of-fit test statistic for correct specification of 
the dependence structure of ( ˆ t, ˆ t). The corresponding p-values are given in parentheses. 

CZK HUF PLN 
Coeff. S.E. Coeff. S.E. Coeff. S.E. 

A. Mean Equation
 -0.010d (0.010)   0.008d (0.015) 0.009d (0.014) 

B. HAR Equation
0 -0.151 (0.045) -0.108 (0.034) -0.058b (0.025) 
1 0.243 (0.029) 0.371 (0.031) 0.234 (0.028) 
2 – – 0.094 (0.029) 
3 0.298 (0.049) 0.294 (0.047) 0.381 (0.055) 
4 0.392 (0.045) 0.271 (0.040) 0.246 (0.037) 

C. GARCH Equation

0.070 (0.026)  0.062b (0.032) 0.014d (0.010) 
 0.091 (0.027) 0.070 (0.027) 0.029b (0.013) 
 0.668 (0.107) 0.749 (0.098) 0.910 (0.052) 
 0.124 (0.036) 0.245 (0.041) 0.213 (0.036) 
 10.42 (2.087) 9.018 (2.199) 8.881 (1.798) 

D. Dependence Structure 
 – 0.278 (0.035) 0.124 (0.024) 

E. Diagnostics 
R2 0.549 0.626 0.666 
Q(20) 26.20 (0.159)   21.20 (0.385) 16.64 (0.676) 
Q2(20 24.62 (0.136) 23.78 (0.162) 20.26 (0.318) 
LM(20) 1.212 (0.234) 1.265 (0.193) 0.944 (0.530) 
Rj – 4.003 (0.779) 2.960 (0.889) 
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estimates of the asymmetry and the tail coefficients for the skewed Student-t dis-
tribution provide a preliminary indication of the validity of our initial assumption about 
the shape of the distribution of HAR innovations. In particular, the asymmetry para- 

Figure 6  Recursive Parameter Estimates from the HAR Equations 
Top, middle and bottom parts of the figures correspond to the EUR/CZK, EUR/HUF and EUR/
/PLN exchange rates, respectively. In each figure, the center line represents the parameter
estimates, while the two outer lines depict the 95% confidence interval. We use log (RV)[-1]
and log (RV)[-2] to denote the first and the second lag of the logarithmic realized variance,
respectively and log (RV)[5] and log (RV)[22] the 5-day and the 22-day logarithmic realized 
variances. There are 1,508, 1,235, and 1,490 coefficient estimates for the EUR/CZK, EUR/HUF 
and EUR//PLN, respectively. 
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meter is positive implying positive skewness of the HAR innovations. The estimated 
numbers of degrees of freedom fall in the 8.9 to 10.4 range for the three exchange 
rates, implying that the HAR innovations exhibit substantially thicker tails than 
the normal distribution.  

The residual diagnostics performed on the simple and squared standardized 
residuals from the HAR-GARCH equations confirm that our model provides an ade-
quate fit to the data. Specifically, the Ljung-Box statistics verifies that neither raw 
nor squared residuals are serially correlated while Engle’s LM test provides evidence 
of no remaining ARCH effects in the residual series.  

We check the adequacy of the assumption of a skewed Student-t distribution 
for the innovation term in the HAR equation by plotting the kernel density estimate 
for the standardized residuals from the HAR-GARCH part of the model against a skew-
ed Student-t density implied by the corresponding parameter estimates (Figure 7, left 
column). We find that for each of the three exchange rates, the latter provides a near-
ly perfect match to the residual kernel density estimate demonstrating that the as-
sumption of a skewed Student-t distributed error term is indeed legitimate.  

Finally, we examine the validity of the assumption that the innovation terms 
in the return and HAR equations ( t, t) are independent. Contrary to our initial as-
sumption we find a small but statistically significant dependence between the two 
series in case of EUR/HUF and EUR/PLN. This means that the periods of depreci-
ation of PLN and HUF w.r.t. EUR are associated with high unexpected volatility. In 
case of EUR/CZK, the linear correlation coefficient is statistically indistinguishable 
from zero.  

To get an idea about the structure of dependence between the return and 
volatility innovations, we show in Figure 7 (right column) a scatter plot of the resid-
uals transformed into uniform variates by their respective estimated marginal distribu-
tion functions; that is, we plot 1,

ˆ ˆˆ ( )t tF  against 2,
ˆ ˆˆ ( )t tF . This transformation 

ensures that we focus on the dependence structure of ( t, t), free from the effects of 
the marginal distributions. If the two innovation processes ( t, t) are independent, 
( 1,ˆ t , 2,ˆ t ) should be approximately uniformly distributed on [0,1]2. The scatter plots 
show that this is the case of EUR/CZK. For EUR/HUF and EUR/PLN we observe 
slight positive dependence, which appears to be asymmetric in the former case: the in-
novations seem to be more dependent in the upper tail (upper right corner) than in 
the lower tail. Thus large depreciations of HUF tend to be accompanied by large 
unexpected volatility.  

To incorporate these features into our model, we describe the dependence struc-
ture of the two innovation terms, t and t, using copulas. By the theorem due to Sklar 
(1959), any bivariate distribution function Fx,y(wx, wy) with continuous marginal dis-
tributions, Fx(wx), Fy(wy) can be written as 

, ( , ) ( ( ) ( ))x y x y x x y yF w w C F w F w  

where C(u,v), (u,v)  [0,1]2, is a copula function satisfying certain properties (see 
e.g. Cherubini, Luciano and Vecchiato (2004) for an introduction to copulas in 
the context of financial modeling). Conversely, any copula together with arbitrary 
continuous marginal distribution functions yields a proper bivariate distribution 
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function. It is this latter property that we exploit here: given the excellent fit of 
the normal and skewed Student-t distributions for t and t, respectively, we select 
an appropriate copula to link them together to obtain their joint distribution. 

Following standard testing procedures, we find that the rotated Clayton and 
the Gaussian copulas, described in greater detail in the Appendix, provide suitable 
characterizations of the dependence structures of the EUR/HUF and EUR/PLN in-
novations, respectively. The maximum likelihood parameter estimates for the corre-
sponding copula models are reported in Panel D of Table 3, along with a goodness- 

Figure 7 
Left: Kernel density estimates for the standardized residuals from the HAR-GARCH equa-
tions vs. skewed Student-t density implied by the parameter estimates. Right: Scatter plots 
of standardized returns (y-axis) vs. standardized residuals from the HAR-GARCH equations,
both transformed into uniform marginals by empirical CDF. The first (second, third) row corre-
sponds to the case of EUR/CZK (EUR/HUF, EUR/PLN) exchange rate returns, respectively. 



354                                  Finance a úv r – Czech Journal of Economics and Finance, 59, 2009, no. 4 

-of-fit test due to Patton (2006) used to assess their statistical adequacy. We find that 
the dependence between the bivariate innovations is well described by the proposed 
copula specifications. The estimated parameters are statistically significant but indi-
cate rather week dependence and hence the loss in efficiency from estimating our 
model equation-by-equation is probably quite small. Although straightforward, we do 
not further pursue the joint estimation of the model for this reason.  

5.3 Forecasting Exercise 
Given the satisfactory performance of the HAR-GARCH model in-sample, we 

proceed to evaluate its performance out-of-sample. As part of the analysis, we also 
investigate whether explicitly allowing for conditional heteroskedasticity in the inno-
vations of realized volatility improves on the accuracy of the simple HAR model. 
This is motivated by the fact that despite yielding better fit in-sample, the HAR- 
-GARCH model entails more parameters and hence potentially more serious para-
meter uncertainty problem than a simple HAR model, which may in turn adversely 
affect its forecasting performance.  

We employ a Mincer-Zarnowitz (1969) regression (MZ) to assess the fore-
casting performance of the individual models. The MZ regression involves regressing 
the realized variance for time t, RVt, on a constant and the volatility forecast at time t 
obtained using the information available at time t – 1, ht|t–1. Thus we estimate 

                                           | 1 | 1t t t t tRV h e                                       (14) 

If the forecasting model performs well, the forecast is unbiased and the error 
of the forecast is small; in other words,  = 0 and  = 1, and the R2 implied by (16) is 
high. In our study we assess the performance of the models in forecasting logarithmic 
realized variance (obtained directly from equation (12)) as well as the squared root of 
realized variance and the realized variance itself, both obtained from the model for 
the log (RVt) by taking the appropriate exponential transformation.  

To help us differentiate between the forecasting performances of the HAR- 
-GARCH vs. simple HAR models, we rely on two parametric loss functions, MSE 
and QLIKE, defined as: 

                                     2
| 1 | 1: ( , ) ( )t t t t t tMSE L RV h RV h                             (15) 

                               | 1 | 1: ( , ) (log( ) )t t t t t tQLIKE L RV h h RV                       (16) 

Now commonly applied in the volatility forecasting literature, both MSE and 
QLIKE are known to deliver consistent rankings of realized variance forecasts when 
a noisy, but conditionally unbiased proxy is used in place of latent volatility (Patton, 
2008). In addition, we note that while MSE penalizes both the positive and the neg-
ative forecast errors equally, the QLIKE imposes larger penalty when the volatility 
forecast underestimates the realized quantity, so that using the latter is of interest if 
underestimating future volatility is more costly. 

Table 4 reports the coefficient estimates from the Mincer-Zarnowitz regres-
sions based on the forecasts of log (RV), RV, and (RV)1/2 obtained from HAR and 
HAR-GARCH models for logarithmic realized variance. As in case of the forecast 
evaluations further in the text, the regressions are based on 250 forecasts of daily 
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realized variance obtained for each of the three exchange rates via a rolling fore-
casting scheme. Specifically, we use the first T = 1,508 (EUR/CZK), 1,235 (EUR/ 
/HUF) and 1,490 (EUR/PLN) observations of daily realized variance to obtain the fore-
cast for T + 1. The remaining 249 forecasts are then obtained by rolling the fixed 
estimation window forward and re-estimating the parameters of the model each time.  

We observe that in case of both HAR and HAR-GARCH models, the fore-
casts produced by the models are unbiased across the three exchange rates, with 
the estimated ’s being statistically indistinguishable from zero and the estimated ’s 
being approximately equal to one. The only exception is the forecast of the loga-
rithmic realized variance for EUR/PLN, but even there the intercept is significantly 
different from zero only marginally. We add that the same results hold for the three 
forms of realized variances being forecasted (Panels A to C).  

We next notice a relatively high explanatory power (measured by R2) across 
the models. Discussed in terms of the form of realized variance being forecasted, 

Table 4  Evaluation of HAR and HAR-GARCH Out-of-Sample Forecasts
Estimated intercept ( ) and slope ( ) coefficient in the Mincer-Zarnowitz regression of real-
ized variance on its forecast, with heteroskedasticity consistent standard errors in paren-
theses. R2 denotes the usual coefficient of determination in a linear regression. MSE and 
QLIKE are calculated according to formulas (15) and (16), respectively. Superscripts b (c) at 
the MSE and QLIKE denote the cases when the model produces significantly better fore-
casts than its competitor at 5% (10%) levels, respectively, based on the Giacomini-White test 
of equal predictive accuracy. The evaluation is based on 250 rolling forecasts of the logarith-
mic realized variance, log(RVt), realized variance, RVt, and realized volatility, (RVt)1/2, for each 
of the three exchange rates. 

CZK HUF PLN 
HAR HAR-G HAR HAR-G HAR HAR-G 

A. Forecasts of RVt

0.037 
(0.043) 

0.030 
(0.044) 

-0.028 
(0.091) 

-0.052 
(0.098) 

0.061 
(0.043) 

0.059 
(0.044) 

1.223 
(0.192) 

1.254 
(0.198) 

1.400 
(0.238) 

1.454 
(0.254) 

1.209 
(0.128) 

1.219 
(0.134) 

R2 0.412 0.411 0.448 0.448 0.654 0.650 
MSE 0.214 0.216 1.628 1.650 0.907 0.923 
QLIKE 0.064 0.064 0.562 0.563 0.134b 0.136 

B. Forecasts of (RVt)1/2

0.030 
(0.047) 

0.021 
(0.048) 

-0.010 
 (0.065) 

-0.023 
 (0.068) 

-0.011 
 (0.032) 

-0.012 
  (0.032) 

1.054 
(0.101) 

1.072 
(0.103) 

1.113 
(0.110) 

1.134 
(0.114) 

1.105 
(0.067) 

1.108 
(0.070) 

R2 0.555 0.555 0.619 0.618 0.808 0.805 
MSE 0.045 0.046 0.105 0.106 0.076 0.077 
QLIKE 0.537 0.538 0.763 0.765  0.550b 0.552 

C. Forecasts of log(RVt)
0.092 

(0.091) 
0.106 

(0.092) 
0.085 

(0.064) 
0.095 

(0.065) 
0.115 

(0.064) 
0.118 

(0.065) 
0.966 

(0.057) 
0.975 

(0.058) 
0.974 

(0.054) 
0.982 

(0.056) 
1.048 

(0.035) 
1.046 

(0.036) 
R2 0.610 0.609 0.659 0.658 0.839 0.839 
MSE 0.296 0.297 0.327 0.329   0.293c 0.294 
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the models achieve the best results with the logarithmic realized variance (Panel A), 
in which case the R2 is found to be just over 0.60 for EUR/CZK and nearly 0.84 for 
the EUR/PLN case. The explanatory power of the models seem to deteriorate by 5 
and 30 percentage points on average in case of the forecasts of realized volatility 
(Panel C) and the realized variance (Panel B), respectively. The relatively worse per-
formance for the realized variance forecasts is hardly surprising, given the fact that 
the time series of RVt exhibits several “outliers” associated with periods of high 
volatility and/or potential jumps in the exchange rates. These outliers tend to be 
attenuated by taking the square root and especially logarithmic transformations re-
sulting into better forecasting performance.  

Comparing the relative performance of the simple HAR versus the more 
elaborate HAR-GARCH model, we observe that the former provides consistently 
albeit marginally better forecasting power across all three exchange rates and loss 
functions, the only exception being the forecasts of realized variance (Panel B) for 
EUR/HUF. To see whether the difference between the competing models is statisti-
cally significant we employ a test developed by Giacomini and White (2006). Note 
that this test is valid despite the fact that the two models are nested. This is due to 
the non-vanishing parameter estimation error implied by the rolling forecasting 
scheme, which prevents the test statistics from degenerating in the limit. Based on 
the Giacomini-White test we find that the HAR and HAR-GARCH perform equally 
well in forecasting the various volatilities of EUR/CZK and EUR/HUF. Some statis-
tically significant difference is detected for EUR/PLN when the QLIKE loss function 
is employed, with the simple HAR beating the more complicated HAR-GARCH.  

To summarize our forecasting exercise, we find that despite the HAR-GARCH 
model having a better in-sample fit, the simple HAR model offers equally or in some 
cases even significantly better forecasting performance. The fact that the simple 
HAR can be estimated by ordinary least squares makes it a particularly attractive 
forecasting model.  

6. Conclusion 
Our study extends the current understanding of the Central European ex-

change rates behavior by describing the conditional distribution and dynamics of 
EUR/CZK, EUR/HUF, and EUR/PLN exchange rate returns and volatility in the pe-
riod from 2002 to 2008. Relying on model-free nonparametric measures of ex-post 
volatility based on the use of 5-minute intraday returns, our approach contrasts with 
the existing literature that almost invariably employs a parametric framework to 
model the exchange rate volatility.  

Our findings show that daily returns on the EUR/CZK, EUR/HUF and EUR/ 
/PLN exchange rates are approximately normally distributed and independent over 
time, when properly scaled by model-free estimates of daily volatility. Given the pro-
perties of the 5-minute intraday returns, we find that a relatively simple correction to 
the realized variance suffices to account for the bias arising from the microstructure 
noise contaminating the data. The resulting daily realized variance exhibits substan-
tial positive skewness and very persistent, long-memory type of dynamics.  

We estimate a simple time series model for daily returns, realized variance 
and the time-varying volatility of realized variance. We show that the particular spec-



Finance a úv r – Czech Journal of Economics and Finance, 59, 2009, no. 4                                  357 

ification of the model that we suggest captures very well all salient features of 
the data and can be successfully employed for constructing point as well as density 
forecasts of future volatility. It can also serve very well as an auxiliary model for es-
timating stochastic volatility models often employed in derivatives pricing. The results 
from an out-of-sample forecasting exercise provide evidence of excellent forecasting 
performance of the HAR-GARCH model, especially in forecasting the logarithmic 
realized variance. It remains to be noted that a simple and computationally less de-
manding HAR model performs at least as well as and sometimes even better than 
the HAR-GARCH model.  

Our findings provide a natural starting point for future investigation of the Cen-
tral European exchange rates. The flexible and computationally simple non-para-
metric approach for measuring ex-post volatility that we employ can be used in areas 
ranging from volatility forecasting, to testing the efficiency of central bank’s inter-
vention along the lines of Beine, Lahaye, Laurent, Neely and Palm (2006), or 
analyzing the response of the volatility of the exchange rate to macroeconomic 
announcements (jumps). The simple, but highly empirically successful model for 
daily returns and volatility we propose in this paper could be employed to investigate 
and compare alternative continuous-time models and their ability to accurately price 
derivative securities written on the Czech koruna, Hungarian forint and Polish z oty 
exchange rates. 
 
APPENDIX

Copulas
In Section 5.2 we employ the rotated Clayton and the Gaussian copulas to 

model the dependence between the two innovation processes in the HAR-GARCH 
model. The rotated Clayton copula CRC (u,v| ) is given by 

                                  1/( , | ) 1 ( 1)RCC u v u v u v  

where   [0, ) governs the degree of dependence. The structure of dependence 
implied by the rotated Clayton copula is asymmetric in the sense that upper-tail 
extreme events are more dependent than lower-tail extremes. 

The Gaussian copula CG (u,v| ) reads 

                                        1 1( , | ) ( ), ( )( )GC u v u v  

where  denotes the joint distribution function of a bivariate standard normal vector 
with correlation  and  denotes the univariate standard normal distribution function. 
Contrary to the rotated Clayton copula, the dependence structure associated with 
the Gaussian copula is symmetric. 
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