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Abstract 
This paper deals with an important characteristic of the capital market: information effi-
ciency. With the use of geometric Brownian motion, we run several projections of stock 
prices based on varying amount of historic information and compare these projections with 
the real behavior of the stock prices, examining for predictability. This enables us to 
verify the condition of the weak-efficiency hypothesis in the form of a Markov process. We 
conduct the empirical part of our analysis in the environment of the Czech capital market, 
thus providing additional information on the development of transition economies. 

1.  Introduction 

Capital market efficiency is an important concept in modern financial theory 
and practice. Efficiency ensures that funds are transferred to such uses that yield 
the highest risk-adjusted returns through the exchange of financial assets between 
buyers and sellers with the least possible transaction costs. There is a clear analogy 
between the concept of an efficient market and that of a perfect market known from 
microeconomic theory. 

Information efficiency is defined by the condition that prices fully reflect all 
relevant information at every instant. The fulfilment of this condition results in prices 
evolving in a random way. The process of such a price evolution may be described 
by the concept of a random walk in a discrete-time setting or by the Brownian motion 
in a continuous-time context. If the condition of prices fully reflecting all relevant 
information holds, then we refer to the market as being strong efficient. Strong-form 
efficiency relates to the situation when prices fully reflect past and present infor-
mation, the latter regardless of the fact of whether it is publicly available. We think 
of a market as being semi-strong efficient when the prices fully reflect all past and 
publicly known present information. If the prices have absorbed the past information 
only, we refer to such a market as being weak-efficient. We will test the weak-effi-
ciency hypothesis in this paper. 

Information efficiency or the level of information efficiency has significant 
microeconomic and macroeconomic consequences. We have already mentioned that 
information efficiency is a necessary condition for funds to be allocated effectively. 
This, of course, has serious economic implications on both the micro and macro levels. 

* This paper is a part of a research project financed by IGA University of Economics, Prague. 
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On the micro level it is mainly the accessibility to new funds by firms and the pos-
sibility to invest funds. This, in turn, affects the macroeconomic output itself. The effi-
ciency and stability of the capital market is a necessary condition for the efficiency 
and stability of the economy as a whole. 

The concept of information efficiency plays a key role in one kind of micro-
economic decision-making processes – portfolio management. The materialization of 
the strong-form and semi-strong form efficiency prevents investors from earning re-
turns that systematically exceed those generated by the market index portfolio. Thus, 
portfolio management is reduced to its passive form only. In the latter form it is pos-
sible to earn extra yields by using private information, which is usually illegal. Under 
the circumstances of the weak form of information efficiency, it is possible to make 
use of the methods of fundamental analysis. In such a market the security prices re-
flect the past information only. If the market is proved efficient, regardless of the form, 
technical analysis as a means to systematically earn extra yields is always useless. 

There are many papers dealing with the issue of information efficiency. How-
ever, most of them take the rather statistical view of the problem, which, of course, 
requires the use of relatively longer time series. However, this might, in our opinion, 
cast some shadow on the results of the analyses as we consider the capital market to 
be under the process of swift evolution. Many authors agree on the fact that the Czech 
capital market is a weak-efficient one. Diviš and Teplý (2004) use the Cowles-Jones 
ratio, run tests and a variance-ratio test to show that the Czech capital market is at 
least weak-efficient. This is supported by Horská (2003) who uses the random walk 
model with drift and technical analysis approach (Alexander’s Filter test, Relative 
Strength Index). However, she proves by means of a regression model that the market 
is not semi-strong efficient. The weak efficiency had already been implied by Hanou-
sek and Ko enda (1997) with the use of a variance-ratio test. They draw an analogy 
between the tests run for the Latin-American countries and the Czech market as there 
were not enough data for the Czech market at that time. Podpiera (2000) examines 
the effectiveness of the Czech financial market. He makes use of the continuous de-
crease in the repo rate conducted by the Czech National Bank in the years 1998–1999. 
However, the sensitivity of the stock market to these changes was low, so no particu-
lar conclusions about the efficiency of the stock market may be drawn. The money mar-
ket showed signs of weak efficiency. Filá ek, Kapli ka and Vošvrda (1998) proved 
the market inefficient. 

In this paper we propose a possible way of examination of the concept of 
information efficiency and conduct the empirical analysis based on this approach in 
the environment of the Czech capital market. As our approach is rather technical, we 
feel it is necessary to provide a background to the way we handle the empirical ana-
lysis itself. Therefore, our paper is divided into four parts: theoretical framework, em-
pirical analysis methodology, empirical analysis and conclusion. 

In the second part – theoretical framework – we lay down the mathematical 
bases necessary for the approach we take later in the empirical part of the paper. In 
the following part 3 dedicated to the methodology of the empirical analysis we first 
turn our attention to the description and characterization of the data needed for the tests 
of the information efficiency and then on the tests themselves. We clearly state the prin-
ciples of the empirical approach as a whole and of each test to be taken later and re-
late them to the concept of information efficiency. In doing so, we formulate the ob-
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jective to be tested in the following part of our paper. In the fourth part we conduct 
the empirical analysis and mainly just present the output of the analysis. The output 
is subject to assessment in the last part 5 – the conclusion, where we draw com-
parisons between the results of the empirical analysis and our objectives formulated 
in the third and fourth parts of the paper. 

2.  Theoretical Framework 
In this part we will present the mathematical background of our empirical 

analysis. The general starting-point of our analysis is the m–dimensional Itô process, 
which we first state in matrix notation: 

d dt dX B          (1) 

where X is a m-dimensional column vector of Itô stochastic processes: 
1

...

m

dX

dX

 is a m-dimensional column vector of an adapted stochastic process: 
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and B is a n-dimensional column vector of the Brownian motion: 
1
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dB

dB

We assume that all necessary conditions, especially those about the integra-
bility of the functions  and  hold. This also implies that the multidimensional Itô 
integral contained in the multidimensional Itô process as defined by (1) exists. For 
the purpose of clarity, we state it as follows: 
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The multidimensional Itô process as defined by (1) based on the multidi-
mensional Itô integral (2) represent the theoretical basis of our approach. However, 
in the empirical part of our analysis we will operate only in one dimension. Thus, we 
can reduce the general forms (1) and (2) to one-dimensional notations. First, we will 
introduce the one-dimensional Itô process. We can think of this process as a sum of 
two integrals: the first one is an ordinary integral while the second one is a stochastic 
integral as defined by Itô. For our purposes we can interpret this in such a way that 
the first part is of a deterministic nature while the second part is of a stochastic na-
ture.1 Let’s define the one-dimensional Itô stochastic process as follows: 
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0 0
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Z t s ds s dB s        (3) 

where: t, s denotes time so that s < t,
denotes the state of the economy, 
and  are functions adapted to filtration t, which may be generated by 

the Brownian motion;  and  both satisfy the integrability condition,  
B denotes the Brownian motion. 

The second part of expression (3) is the one-dimensional Itô integral: 

0

( , ) ( , )
t

tI s dB s       (4) 

For the purpose of the empirical part of this paper, we will define the sto-
chastic differential equation, which is closely related to the Itô integral and the Itô 
process. The starting-point is the one-dimensional Itô process (3). If we consider two 
functions: µ(t, x) and (t, x) that satisfy certain conditions2 and a stochastic process X
(t, ), we can write a new Itô process which transforms the stochastic process X (t, )
into the stochastic process Z (t, ) as defined above (3): 

                      
0 0

( , ) , , , , ,
t t

Z t s X s ds s X s dB s                    (5) 

We can now consider the following stochastic equation and its solution in the form 
of an Itô process3:

         
0 0

( , ) , , , , ,
t t

X t s X s ds s X s dB s                   (6) 

      0
0 0
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X t X s X s ds s X s dB s             (7) 

The integral stochastic equation (6) may be rewritten as a stochastic differen-
tial equation: 
   , , , , , ( , )dX t t X t dt t X t dB t                  (8) 

The basic type of stochastic differential equation is a linear stochastic equa-
tion whose common example is the arithmetic Brownian motion4:

t tdX dt dB                                                   (9) 
where µ and  are constants. 

1 This is not necessarily true. Both parts may be of a stochastic nature, represented by stochastic processes. 
2 The conditions are: the linear growth condition and Lipschitz condition. 
3 The linear growth and Lipschitz conditions must be satisfied.  
4 Formally, (sole) Brownian motion is defined as, based on Shreve (2004, p. 94),: Let ( , F, P) be a pro-
bability space. For each  from , suppose there is a continuous function B(t) of t  0 that satisfies B(0) = 0
and that depends on . Then B(t), t  0, is a Brownian motion if for all 0 = t0 < t1 < … < tm the in-
crements: B(t1) – B(t0), B(t2) – B(t1), B(tm) – B(tm – 1) are independent and each of these increments is
normally distributed with E[B(ti + 1) – B(ti)] = 0 and Var[B(ti + 1) – B(ti)] = ti + 1 – ti.
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The first part of the expression (9) – µ is a drift parameter representing 
the deterministic characteristic of the evolution of stochastic process Xt,5 while 
the second part dBt represents the stochastic part of the process Xt.

In the empirical part of the paper we will use the concept of the geometric 
Brownian motion to model the security prices. The geometric Brownian motion is 
defined as follows: 

t t t tdX X dt X dB       (10) 

The geometric Brownian motion can be easily transformed into a linear sto-
chastic differential equation using the Itô formula: 

2
2

2

1
2t t

g g g gdY dt dB
t x x x

                        (11) 

where Yt = g(t, Xt) and  and  are variables. 
The Itô formula expresses one Itô process, for example one defined by Yt,

which is a function of another Itô process – Xt. With the help of the Itô formula we 
can transform the geometric Brownian motion into linear form. If we take Y = log X,
according to the Itô formula (11), we obtain: 

0g
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Let’s suppose that the variable  represents a drift parameter and the variable 
stands for volatility. Then we can state the geometric Brownian motion as follows: 

21log
2t td X dt dB       (12) 

This lognormal process can be rewritten as: 
2

0

1
2 t

t

t B
X X       (13) 

Let’s go back to the expression (10) for a moment. The geometric Brownian mo-
tion as expressed by equation (10) operates in a continuous time setting, which is 
useless for our purposes. Using an Euler discretization scheme (Euler approximation) 
we can restate expression (10) for use within a discrete-time setting. The principal of 
the Euler approximation is the replacement of the first derivative by the first diffe-
rence. Thus, we obtain: 

1t t t tX X t X B       (14) 

5 The drift parameter may, of course, be variable. However, we will consider it a constant. 
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The last question related to the security price modeling is concerned with 
the Brownian motion. Among the properties of the standard Brownian motion there 
is the fact that the stochastic increments are independent and normally distributed. In 
a discrete-time setting we can make use of this property in the way that we can model 
the stochastic increments using a simple function of a random number with the nor-
mal distribution. With regard to this fact and other characteristics of the standard Brow-
nian motion, we will restate the expression (14) in the following way: 

1t t t tX X X t X t       (15) 

where: Xt + 1 is the price of a security at time t+1,
Xt is the price of a security at time t,
µ is annualized return, 

t is a step in time [(t + 1) – (t)], 
 is annualized standard variation of returns, 
 is a random number with the normal distribution. 

The restatement (15) is fully operational in the sense that it may be used to 
model the evolution of a security price without any need of sophisticated mathema-
tical software. The use of expression (15) for the simulation of prices is based on 
the principles of the Monte Carlo method as described in Glasserman (2004). 

We have introduced the background to the way we will model the stock prices 
for the needs of our analysis. We will now proceed with the introduction of some other 
concepts necessary for the empirical part. In particular, we are concerned with the Mar-
kov and martingale processes. 

The key theoretical process when describing the weak efficiency of the capital 
market is a Markov process. Shreve (2004, p. 74) defines it as:  

Let ( , F, P) be a probability space, let T be a fixed positive number, and let 
F(t), 0  t  T be a filtration of sub- -algebras of F. Consider an adapted stochastic 
process X(t), 0  t  T. Assume that for all 0  s  t  T and for every non-negative, 
Borel-measurable function f, there is another Borel-measurable function g such that 
E[f(X(t))/F(s)] = g(X(s)). Then we say that X is a Markov process. 

This definition may be rewritten as follows: 
E [f (t, X (t))/F(s)] = f (s, X (s)), 0 s t  T     (16) 

In (16) we just stress the fact that the functions f and g depend on time, s and t.
Then, it is evident that we consider two different functions of X at different times 
and, therefore, it is not necessary to use the function g. We interpret (16) as the con-
dition by which the probability distribution of the process X at time t given the fil-
tration F(s), which here denotes the evolution of the process up to time s, depends 
only on the value of the process X at time s. If the stock prices follow the Markov 
process, the market is said to have no memory. There is no use trying to make better 
estimates of the probability distribution of future prices of, say, a stock, using the se-
ries of its past prices, regardless of its length.  

Another concept linked with the Markov process is a martingale. Shreve 
(2004, p. 74) defines it as follows:  
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Let ( , F, P) be a probability space, let T be a fixed positive number, and let 
F(t), 0  t  T be a filtration of sub- -algebras of F. Consider an adapted stochastic 
process M(t), 0  t  T. If E[M(t)/F(s)] = M(s) for all 0  s  t  T, we say this 
process is a martingale. It has no tendency to rise or fall. If E[M(t)/F(s)]  M(s) for 
all 0  s  t  T, we say this process is a submartingale. It has no tendency to fall; it 
may have a tendency to rise. If E[M(t)/F(s)]  M(s) for all 0  s  t  T, we say this 
process is a supermartingale. It has no tendency to rise; it may have a tendency to 
fall. 

If a process is a martingale it is a fair game. Every martingale is a Markov pro-
cess, though not every Markov process is a martingale. Brownian motion is a martin-
gale, which may be proved as follows, based on Shreve (2004, p. 98):  
Let 0  s  t be given.  

Then:                              E[B(t)/F(s)]=E[(B(t)–B(s)+B(s))/F(s)] 

=E[(B(t)–B(s))/F(s)+E[(B(s)/F(s)] 

=E[B(t)–B(s)]+B(s) 

=B(s)6

Therefore, a Brownian motion is also a Markov process.7  Now, let’s return to 
expression (13) for a moment. The process: 

21( ) exp ( )
2

H t B t t

is a (exponential) martingale. We could prove this along the same lines as in the case 
of a simple Brownian motion.8  Thus, the process described by expression (13) has 
this property together with the fact it has a mean rate of return µ. This upward drift 
(generally, it is positive) indicates that the process is a submartingale. From what has 
already been discussed it follows that it has a Markov property. 

In the next part of this paper we use the theoretical concepts introduced here 
to describe the methodology of the testing. 

3.  Methodology 
As already implied in the previous part, we build our analysis on the theory of 

stochastic processes. We introduced the Itô process, which represents the basis for the ac-
tual price modeling used in this paper. The model to be used for the analysis of the be-
haviour of stock prices was derived using the process of simplification and discre-
tization of the general multi-dimensional Itô process. Thus, we introduced the tech-
nique of stock price modeling and together with the definition of the Markov process 
and martingale we set the stage for the empirical part of the analysis. Here we will 
focus on the definition of the object of the empirical analysis. 

6 We used the fact of linearity of conditional expectations and independence of conditional expectations.
For more, see (Shreve, 2004, pp. 69–70). 
7 Formal proof is in (Shreve, 2004, pp. 107–108). 
8 Formal proof is in (Shreve, 2004, p. 109). 
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Reflecting back on the ideas brought up in the introduction, we set the ob-
jective of this paper as the verification of the weak-efficiency hypothesis both in theo-
retical and empirical terms, the latter carried out under the conditions of the Czech 
capital market. The concept of the Itô process specified by the special case of the geo-
metric Brownian motion represents a useful tool for stock price modelling for two 
reasons. First, it takes account of the fact that stock prices tend to rise from the long- 
-term point of view and, second, it contains the key idea behind the behaviour of 
stock prices which is the stochastic nature of the price process.  

We have already stated that a market is weak-efficient if it is impossible, 
using information on the past evolution of prices, to produce better estimates of 
future development of prices and thus to systematically earn extra profits. The key 
idea of our empirical approach rests on exploitation of the discretized geometric 
Brownian motion (15) to model future prices while changing the drift and volatility 
parameters according to the amount of past information (prices) considered. The ran-
dom number with normal distribution  in (15) is generated by a generator of pseudo-
numbers with normal distribution.9 The comparison of the projections and real deve-
lopment of prices under the various drift and volatility parameters shows how much 
the predictability of future prices is sensitive to the amount of past information. 

First we will introduce the data which were necessary to run the tests. As we 
have already mentioned, we tested the hypothesis of the information efficiency under 
the conditions of the Czech capital market. We limited the environment to stocks which 
are subject to trading on the Prague Stock Exchange (PSE). There are 36 firms whose 
stocks are traded on the PSE. However, we only considered 33 of them because three 
firms did not meet our requirements for the data necessary to run the tests. 

We used prices of those stocks for the years 2003 and 2004 to carry out five 
simulations, each having fifty paths.10 Each simulation projects the evolution of a par-
ticular stock price for the year 2005. The simulations differ in the amount of past 
information which was used to project the evolution of the stock price in the year 
2005. Simulation 1 is based on the years 2003 and 2004, Simulation 2 on the year 
2004, Simulation 3 on the second half of the year 2004, Simulation 4 on only 
the last change of price (i.e. between the last trading day of the year 2004 and first 
trading day of the year 2005) and, finally, Simulation 5 with no drift. For the pur-
pose of clarity we again describe the differences between the simulations in the fol-
lowing section. 

Regarding the model derived in the previous section – expression (15), the data 
from the particular periods were used to compute the drift and volatility. In the case 
of Simulation 5, volatility based on the 2004 data was used (computation of volatility 
based on one trading day is impossible). This might seem to be imprecise, but there 
are only slight differences in the volatility computations based on various time inter-
vals. We can conclude that the volatility whose computation is based on past data is 
quite a stable measure. 

9 All sorts of pseudonumber generators are used in Monte Carlo simulations (for more see (Glasserman,
2004)). We used the pseudogenerator supplemented with an Excel spreadsheet. 
10 Increasing the number of simulated paths enhances the quality of the simulation as a whole. However,
increasing the number of paths also makes the simulation and files hardly manageable (with respect to
the particular software used). The number we chose is a compromise between these two factors. 
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The varying amount of information which serves for the computation of 
the drift and volatility, which are inserted into the model derived in the previous part, 
enables us to examine the effect of this varying amount of information on the pos-
sibility to predict future prices and thus systematically earn extra returns.  

Now we focus on the methods we use to measure our capability to predict fu-
ture prices. We use four tests. 

The first test – Probability Distribution Test A – uses the simulated daily 
prices to compute average monthly prices. Each simulation consists of 50 paths. Let 

j
ip  be a series which is a j-th projection, 1,50j , of prices for i-th stock, 

1,33i , given a particular month. Such a series has k elements according to the par-
ticular month. Averaging these elements, we obtain an average projected price for j-th 
projection and i-th stock. Taking account of all 50 projections, we get a set of 50 ave-
rage projected prices for i-th stock and a particular month. Using Sturges’s rule11 we 
divide the set into seven intervals and assess whether or not the real average price for 
the particular stock and month fits the interval with the highest frequency. Based on 
these findings, we compute the probability with which the real average monthly prices 
fit, generally speaking, the prediction. 

The second test – Probability Distribution Test B – has a similar background. 
Let j

ip  be a series which is a j-th projection, 1,50j , of prices for i-th stock, 

1,33i , given a particular month. Such a series has k elements according to the par-
ticular month. Averaging these elements, we obtain an average projected price for j-th 
projection and i-th stock. Taking account of all 50 projections and computing their 
average, we get the average projected price for a particular month and stock. We 
use this average projected price to create an interval whose borders are computed 
in such a way that the lower limit equals the average value less one percent 
of the value and the upper limit equals the average value plus one percent of 
the value: 0,01 , 0,01i i i ip p p p , where pi is the average projected monthly price 
for i-th stock. We assess whether or not the real monthly averages fit the interval. 
Thus, we obtain the probability of our capability to predict the monthly average 
prices.

The third test, in the form of two subtests – Correlation Tests A and B, moves from 
monthly to daily prices. Let j

ip  be a series which is a j-th projection, 1,50j , of 

prices for i-th stock, 1,33i  for the whole period, the year 2005. We compute 
the daily average projected prices and correlate them with the actual daily prices.12

Afterwards, using the average daily data, we compute growth indices (day-over-day 
indices) and correlate them with real growth indices. Both of the variants measure 
our capability to predict daily prices. 

11
101 3, 3 log ( )k n , where k is the number of intervals and n is the number of observations. 

12 COV( , )
XY

X Y

X Y
, where COV stands for covariation and denotes standard deviation. 
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The fourth test – Relative Discrepancies Test – is focused on the predictability of
the very first projected price. Let j

ip be a series which is a j-th projection, 1,50j ,

of prices for i-th stock, 1,33i for the whole period, the year 2005. We take the 50 pro-
jections for the first trading day of 2005 and compute the relative difference between 
the projected and real prices: 

p r
i i

i r
i

p p
rd

p

where rdi stands for a relative difference for the i-th stock, while pp and pr are 
the projected and real prices, respectively. Then we average these relative differences 
for each stock to get an average relative difference for the particular simulation. 
Comparing across simulations, it shows how the capability to predict the first of all 
the simulated prices varies with the amount of past information used. We use this test 
because it directly follows the definition of the Markov process as stated by expres-
sion (16). 

In a nutshell, we assess the predictability of the evolution of future prices and 
its dependence on the information set. 

In the following section we present the results of the tests. However, we do 
not focus on the interpretation of the results in the following part. The output of 
the empirical analysis is to be assessed in the final part of the paper. 

Appendix 1 contains tables with the detailed results of the tests which were 
run.

4.  Empirical Analysis 
In this section we will present the results of the analysis of the weak-form 

efficiency hypothesis we performed in the environment of the Czech capital market. 
The results will be presented in the following way. As previously mentioned, 

we ran five simulations. Simulation 1, whose estimates of drift and volatility are 
based on 2003 and 2004 data; Simulation 2, which draws from the year 2004; Simula-
tion 3, whose estimates are based on data from the second half of 2004; Simulation 4, 
whose estimate of drift is based on the last relative change in price and estimate of 
volatility based on 2004 data; and Simulation 5, which is driftless while the volatility 
estimation is based on 2004 data. The output of the analysis will be given for each si-
mulation in turn. In each case we will present the results for all the four tests in turn.  

Let’s turn our attention to the results of the tests for Simulation 1. From Pro-
bability Distribution Test A we can see that the probability of the real average 
monthly prices fitting the interval with the highest frequency is 20.5 %. In five cases 
out of 33 there is no match. The variability of the probabilities measured by standard 
deviation is 15.5. With regard to the results of Probability Distribution Test B, we see 
that the probability with which the real average monthly prices fit the target interval 
is 12.9 %. The variability of the probabilities measured by standard deviation is 18.2 
and in 14 cases (out of 33) there is no match. Let’s now focus on the Correlation 
Test. There is a correlation of 0.2251 between the absolute projected and real prices; 
on the other hand, the correlation coefficient between the growth indices of real and 
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projected daily prices is only 0.0160. The last test was the Relative Discrepancies 
Test, which measures the average percentage discrepancy between the projected price 
and the real price for the first trading day of 2005. The average relative discrepancy 
for Simulation 1 is 0.46. 

We will proceed with the results of the tests for Simulation 2. The probability 
with which the real average monthly prices fit the interval with the highest frequency 
is 25.2 %. This information is derived from Probability Distribution Test A. The stan-
dard deviation of the probabilities is 26.1 and in ten cases there is no match. The pro-
bability of the real average monthly prices fitting the target interval is 14.6 % – 
the result of Probability Distribution Test B. The standard deviation of the pro-
babilities is 24.1 and there are 14 cases with no match. With regard to the Correlation 
Test, we can see that the correlation coefficient between the absolute projected and 
real prices is 0.2399 while the one between the growth indices is –0.0112. The ave-
rage relative discrepancy for Simulation 2 is 0.43. 

Let’s now focus on Simulation 3. From the results of Probability Distribution 
Test A we can read that the probability of the real average monthly prices fitting 
the interval with the highest frequency is 24.7 %. The variability of the probabilities 
measured by standard deviation is 29.8. There are nine cases with no match. From 
the output of Probability Distribution Test B we can see that the probability with 
which the real average monthly prices fit the target interval is 19.9  %. The standard 
deviation of the probabilities is 30.5 and in 15 cases there is no match. The cor-
relation coefficient between the absolute real and projected daily prices is 0.1869 
while the one between the growth indices is 0.0030. The average relative discrepancy 
for Simulation 3 is 0.47. 

The main results for Simulation 4 are as follows: the output of Probability 
Distribution Test A states that the probability with which the real average monthly 
prices fit the interval with the highest frequency is 25.0 %. The standard deviation of 
the individual probabilities is 28.4 and there are ten cases with no match. From 
the output of Probability Distribution Test B we can see that the probability of the real 
average monthly prices fitting the target interval is 18.7 %. The variability of the pro-
babilities measured by standard deviation is 28.3. There are 15 cases with no match. 
The correlation coefficient between the absolute real and projected prices is –0.0407 
and the one between growth indices is –0.0018. The average relative discrepancy for 
Simulation 4 is 0.53. 

Finally, we will present the results of the test for Simulation 5. Taking into 
account the output of Probability Distribution Test A, we can conclude that the pro-
bability with which the real average monthly prices fit the interval with the highest 
frequency is 26.3 %. The standard deviation of the individual probabilities is 27.4. 
There is no match in ten cases. From the results of Probability Distribution Test B it 
can be concluded that the probability with which the real average monthly prices fit 
the target interval is 22.2 %. The variability of the individual probabilities measured 
by standard deviation is 30.3 and there are 13 cases with no match. With regard to 
the output of the Correlation Test, we can see that the correlation coefficient between 
the absolute real and projected prices is –0.0369 and the correlation coefficient be-
tween the growth indices is –0.0034. The average relative discrepancy for Simulation 
5 is 0.39. 
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We remind the reader of the fact that the detailed presentation of the output of 
the tests can be found in Appendix 1. In the last section we focus on the interpretation 
of the results presented in this part. 

5.  Conclusion 
To make the interpretation as clear as possible we will summarize the most 

important output of the empirical analysis presented in the previous section in figures. 
Figure 1 depicts the average probability of the real average monthly prices fitt-

ing the interval with the highest frequency according to Probability Distribution Test A. 
In Figure 1 we can see that the average probability with which the real ave-

rage monthly values fit the interval with the highest frequency is between 20.5 % and 
26.3 %. First, this means that our capability of predicting future prices is very low. 
We must take account of the fact that it is not the probability of predicting values 
which is depicted in the Figure 1 but the probability of fitting the highest-frequency 
interval with the real value. The interval spread varies from firm to firm and in time. 
A high percentage could be interpreted as being able to predict the behaviour of fu-
ture prices, but even this is not the case; we do not consider a probability of 20 % to 
be high. 

The second point to be made is that the average probability of being able to 
predict the evolution of future prices is not affected by the information set on which 

FIGURE 1  Probability Distribution Test A 

FIGURE 2  Probability Distribution Test B 
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the estimates of drift and volatility are made. Of course, we do not mean that there is 
no variability in the average probabilities, but the variability is low. Furthermore, we 
cannot interpret the results by claiming that with a broader information set the ability 
to predict the evolution of future prices is better. The highest probability comes from 
Simulation 5, which is driftless. 

Let’s now turn our attention to Probability Distribution Test B. Figure 2 de-
picts its main results. 

The results show that the spread of the probabilities is broader. However, 
there seems to be a trend in the average probability values with respect to the amount 
of information which was taken into consideration in the process of modelling the evo-
lution of future prices. It seems that the less past information is used, the higher 
the probability. We do not think this is conclusive. We cannot claim that the predic-
tability grows with the amount of past information considered going to zero because 
the average probability for Simulation 3 is higher than that for Simulation 4, which 
clearly contradicts the seeming negative relationship between the average probability 
and the amount of information. We conclude that the results of the first and second 
test are much the same. 

We will proceed with the results of the Correlation Test, which are summa-
rized in Figures 3 and 4.

First we will discuss the results of the correlation test between absolute va-
lues. The correlation coefficients between the real and average projected daily pri-
ces as such are low. However, we can see that the correlation coefficient is much 
higher for Simulations 1, 2 and 3 than for Simulations 4 and 5. This might imply that 

FIGURE 3  Correlation Test A 

FIGURE 4  Correlation Test B 
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the ability to predict future prices is low taking account only the very latest infor-
mation (or no information as far as drift is concerned – Simulation 5). Nevertheless, 
it is important to point out the fact that higher correlation in absolute prices does not 
mean higher predictability. The test measures how similar the evolutions of the abso-
lute real and projected prices are, not how close the absolute prices are. To be able to 
make conclusions about the predictability of daily prices, one must consider the cor-
relation of absolute values together with relative values – the growth indices. This is 
depicted in Figure 4.

We can see that the correlation of the growth indices is very low regardless of 
the information set which the simulation is based on. Taking these two correlation 
analyses together we can say that the ability to predict daily prices is extremely low 
and, with respect to Figure 3 and 4, is significantly affected by the amount of infor-
mation considered. However, only Correlation Test A indicates a possible positive 
relationship between the amount of information and the quality of prediction. 

Now we turn our attention to the last, fourth, test (Figure 5). The relative discre-
pancies range from 0.39 to 0.53. There is no clear relationship between the amount of 
past information and the relative discrepancies – quality of prediction. 

Let’s now use these partial considerations to draw conclusions on the objec-
tive of the empirical analysis. 

The key question was whether the varying amount of past information used to 
project future prices influences the quality of prediction. Only Correlation Test A 
examining the correlation between real and predicted prices in absolute terms in-
dicates that using the past information improves the quality of prediction. However, 
it is important to stress the fact that by no means does it necessarily mean that it 
improves the opportunities to systematically earn extra yields. No other test supports 
this. 

We conclude our paper with this finding: the behaviour of stock prices on 
the Czech capital market is in line with the concept of the weak-form efficient market 
as we consider the very condition in the form of the Markov process fulfilled. Thus, 
we consider the possibility to systematically earn extra returns using the techniques 
of technical analysis in the conditions of the Czech capital market improbable.  

FIGURE 5  Relative Discrepancies Test 
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APPENDIX

Probability Distribution Test A 

Firm/Simulation Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5 

eská námo ní plavba 41.7 58.3 66.7 66.7 58.3 

eská zbrojovka 25.0 0.0 0.0 33.3 16.7 

EZ 33.3 66.7 8.3 58.3 0.0 

Energoaqua 33.3 33.3 16.7 8.3 16.7 

Erste Bank 0.0 0.0 0.0 0.0 25.0 

Jiho eské papírny V t ní 16.7 33.3 16.7 16.7 25.0 

Jiho eská plynárenská 25.0 16.7 91.7 66.7 66.7 

Jihomoravská plynárenská 16.7 75.0 75.0 75.0 75.0 

Komer ní banka 0.0 33.3 25.0 50.0 50.0 

Kotva 0.0 8.3 8.3 33.3 8.3 

Lázn  Teplice v echách 16.7 41.7 33.3 8.3 0.0 

Lé ebné lázn  Jáchymov 8.3 33.3 100.0 58.3 75.0 

Paramo 25.0 0.0 0.0 0.0 33.3 

Philip Morris R 33.3 41.7 8.3 8.3 41.7 

Pražská energetika 58.3 8.3 0.0 0.0 8.3 

Pražská plynárenská 33.3 0.0 0.0 25.0 33.3 

Pražské služby 16.7 100.0 100.0 100.0 100.0 

RM-S Holding 50.0 16.7 41.7 25.0 25.0 

Severo eská plynárenská 16.7 50.0 33.3 16.7 16.7 

Setuza 25.0 33.3 16.7 0.0 0.0 

Slezan Frýdek Místek 25.0 8.3 16.7 8.3 50.0 

Severomoravská plynárenská 25.0 25.0 41.7 66.7 58.3 
Severomoravské vodovody 
a kanalizace Ostrava 8.3 0.0 8.3 8.3 8.3 

Spolana 0.0 0.0 0.0 0.0 0.0 
Spolek pro chemickou a hutní 
výrobu 41.7 0.0 16.7 0.0 0.0 

Stavby silnic a železnic 0.0 25.0 25.0 8.3 0.0 

St edo eská energetická 8.3 66.7 16.7 0.0 25.0 

St edo eská plynárenská 8.3 33.3 8.3 8.3 8.3 

Telefonica 16.7 8.3 33.3 0.0 0.0 

Toma 8.3 0.0 0.0 58.3 41.7 

Unipetrol 41.7 0.0 0.0 16.7 0.0 

Východo eská plynárenská 8.3 0.0 0.0 0.0 0.0 

Západo eská plynárenská 8.3 16.7 8.3 0.0 0.0 

Average percentage 20.5 25.2 24.7 25.0 26.3 
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Probability Distribution Test B 

Firm/Simulation Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5 

eská námo ní plavba 50.0 66.7 58.3 66.7 58.3 

eská zbrojovka 0.0 8.3 0.0 41.7 41.7 

EZ 0.0 0.0 0.0 16.7 0.0 

Energoaqua 33.3 25.0 0.0 8.3 8.3 

Erste Bank 8.3 8.3 0.0 0.0 8.3 

Jiho eské papírny V t ní 8.3 0.0. 0.0 0.0 0.0 

Jiho eská plynárenská 50.0 50.0 91.7 91.7 91.7 

Jihomoravská plynárenská 75.0 75.0 75.0 75.0 75.0 

Komer ní banka 8.3 8.3 0.0 8.3 8.3 

Kotva 41.7 16.7 41.7 41.7 41.7 

Lázn  Teplice v echách 0.0 0.0 8.3 0.0 0.0 

Lé ebné lázn  Jáchymov 8.3 8.3 100.0 33.3 75.0 

Paramo 0.0 0.0 0.0 0.0 8.3 

Philip Morris R 8.3 8.3 0.0 0.0 8.3 

Pražská energetika 0.0 0.0 0.0 0.0 0.0 

Pražská plynárenská 16.7 8.3 8.3 50.0 50.0 

Pražské služby 0.0 100.0 100.0 100.0 100.0 

RM-S Holding 0.0 0.0 25.0 0.0 0.0 

Severo eská plynárenská 8.3 25.0 25.0 16.7 16.7 

Setuza 8.3 0.0 0.0 8.3 8.3 

Slezan Frýdek Místek 16.7 8.3 16.7 25.0 33.3 

Severomoravská plynárenská 16.7 8.3 0.0 8.3 66.7 
Severomoravské vodovody 
a kanalizace Ostrava 25.0 8.3 8.3 8.3 8.3 

Spolana 0.0 0.0 0.0 0.0 0.0 
Spolek pro chemickou a hutní 
výrobu 0.0 0.0 8.3 0.0 0.0 

Stavby silnic a železnic 16.7 8.3 16.7 0.0 0.0 

St edo eská energetická 8.3 16.7 8.3 8.3 16.7 

St edo eská plynárenská 16.7 25.0 16.7 0.0 0.0 

Telefonica 0.0 0.0 25.0 0.0 0.0 

Toma 0.0 0.0 0.0 0.0 8.3 

Unipetrol 0.0 0.0 0.0 8.3 0.0 

Východo eská plynárenská 0.0 0.0 0.0 0.0 0.0 

Západo eská plynárenská 0.0 0.0 25.0 0.0 0.0 

Average percentage 12.9 14.6 19.9 18.7 22.2 
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Correlation Coefficients 

Firm/Simulation Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5 

eská námo ní plavba 0,3491 0,0000 0,0000 0,0000 0,0000 

eská zbrojovka -0,9209 -0,9213 -0,9170 -0,4431 0,3969 

EZ 0,9458 0,9446 0,9480 0,9506 0,3684 

Energoaqua 0,5490 0,5199 0,5551 0,3924 0,1111 

Erste Bank -0,2787 -0,7546 -0,6794 -0,7319 -0,6050 

Jiho eské papírny V t ní -0,3933 -0,7328 -0,6978 -0,2647 0,1326 

Jiho eská plynárenská -0,3623 0,3695 - -0,2507 0,0800 

Jihomoravská plynárenská -0,8113 - - - - 

Komer ní banka -0,0378 0,0782 0,0574 0,5291 -0,0828 

Kotva 0,8449 0,8392 -0,8374 -0,8476 -0,6813 

Lázn  Teplice v echách -0,6628 -0,6413 -0,6556 -0,7270 0,3662 

Lé ebné lázn  Jáchymov 0,0000 0,0000 1,0000 0,0000 0,0000 

Paramo -0,8352 -0,8274 -0,8307 -0,5853 -0,1974 

Philip Morris R -0,1167 0,1782 -0,3309 -0,1344 -0,3257 

Pražská energetika 0,9629 0,9619 0,9220 -0,4992 -0,9352 

Pražská plynárenská 0,8567 0,8683 0,8610 -0,7961 -0,0208 

Pražské služby - - - - - 

RM-S Holding 0,7709 -0,7663 0,9220 0,8691 -0,6441 

Severo eská plynárenská 0,6672 0,8209 0,7397 0,0326 0,6075 

Setuza 0,6258 0,6365 0,6135 -0,4610 -0,4123 

Slezan Frýdek Místek -0,0858 0,1071 -0,0719 -0,1291 0,0145 

Severomoravská plynárenská -0,5653 -0,6774 -0,6900 0,1518 0,6275 
Severomoravské vodovody 
a kanalizace Ostrava 0,1648 -0,0004 -0,0093 0,0599 0,1153 

Spolana 0,1744 0,4927 0,0562 0,0227 0,0422 
Spolek pro chemickou a hutní 
výrobu 0,5271 0,5597 0,4986 0,1554 -0,4827 

Stavby silnic a železnic 0,8891 0,8654 0,8588 0,1642 -0,6104 

St edo eská energetická 0,1564 0,0812 0,1135 0,0558 0,2062 

St edo eská plynárenská 0,8338 0,8675 0,8546 -0,8894 0,7248 

Telefonica 0,9205 0,9197 0,9474 0,8750 -0,4728 

Toma 0,1534 0,1408 0,1639 0,1588 0,1453 

Unipetrol 0,8516 0,8762 0,8649 0,8739 0,4665 

Východo eská plynárenská 0,2761 0,9068  0,6414 -0,4846 

Západo eská plynárenská 0,7536 0,7246 0,7702 -0,4353 0,4063 
Average correlation 
coefficient 0,2251 0,2399 0,1869 -0,0407 -0,0369 
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Correlation Coefficients (indices) 

Firm/Simulation Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5 

eská námo ní plavba 0,0086 - - - - 

eská zbrojovka 0,0713 -0,0465 0,0041 -0,0559 0,0390 

EZ -0,0486 -0,0322 0,0071 -0,0031 -0,1150 

Energoaqua -0,1232 -0,0530 -0,0220 0,0452 -0,0114 

Erste Bank 0,0588 0,0023 -0,0430 -0,0308 -0,0062 

Jiho eské papírny V t ní 0,0089 0,1144 0,0150 0,0413 -0,0147 

Jiho eská plynárenská 0,0092 -0,0675 - 0,0142 0,0546 

Jihomoravská plynárenská -0,0354 - - - - 

Komer ní banka 0,0073 -0,0085 0,0941 -0,0163 0,0549 

Kotva -0,0361 0,0587 0,0280 -0,0986 0,0843 

Lázn  Teplice v echách 0,0209 0,0048 -0,0014 0,0262 0,1724 

Lé ebné lázn  Jáchymov - - - - - 

Paramo 0,0736 -0,0868 -0,1093 0,0627 0,0375 

Philip Morris R 0,0743 0,0102 -0,0661 0,1221 -0,0397 

Pražská energetika -0,0272 0,0046 -0,0056 -0,1670 -0,0755 

Pražská plynárenská -0,0974 -0,0213 -0,0523 -0,0723 -0,0289 

Pražské služby - - - - - 

RM-S Holding 0,0950 0,0069 -0,0622 -0,0396 0,0209 

Severo eská plynárenská 0,0088 -0,1313 -0,0066 -0,0471 0,0373 

Setuza 0,0242 -0,1013 -0,0620 0,0108 0,0646 

Slezan Frýdek Místek 0,0309 -0,0251 0,0370 0,0116 0,0157 

Severomoravská plynárenská -0,0171 0,0228 0,0394 0,0313 -0,0103 
Severomoravské vodovody 
a kanalizace Ostrava 0,1286 0,0037 -0,0262 -0,0283 -0,1214 

Spolana 0,0481 0,0283 -0,0294 -0,0122 -0,0519 
Spolek pro chemickou a hutní 
výrobu -0,0158 -0,0085 -0,0441 -0,0290 -0,0752 

Stavby silnic a železnic 0,0212 -0,0334 0,0714 0,1165 -0,0519 

St edo eská energetická 0,0982 -0,0608 0,1443 0,0302 0,0369 

St edo eská plynárenská -0,0098 -0,0502 0,0711 -0,0913 -0,0389 

Telefonica 0,0296 -0,0504 0,1629 0,0455 0,0365 

Toma 0,0564 -0,0016 0,0155 0,0922 -0,0328 

Unipetrol 0,0575 -0,0060 -0,0939 0,0620 -0,0847 

Východo eská plynárenská -0,1027 0,1066 - -0,0097 0,0006 

Západo eská plynárenská 0,0777 0,0949 0,0157 -0,0621 0,0059 
Average correlation 
coefficient 0,0160 -0,0112 0,0030 -0,0018 -0,0034 
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Relative Discrepancies 

Firm/Simulation Simulation 1 Simulation 2 Simulation 3 Simulation 4 Simulation 5 

eská námo ní plavba 0,02 0,00 0,00 0,00 0,00 

eská zbrojovka 0,33 0,07 0,25 0,01 0,02 

EZ 1,95 1,61 1,86 1,39 2,17 

Energoaqua 0,30 0,16 0,22 0,04 0,05 

Erste Bank 2,68 2,71 2,40 2,20 2,05 

Jiho eské papírny V t ní 0,19 0,58 1,40 0,15 0,39 

Jiho eská plynárenská 0,01 0,01 0,00 0,00 0,01 

Jihomoravská plynárenská 0,00 0,00 0,00 0,00 0,00 

Komer ní banka 2,12 1,72 2,03 2,71 2,17 

Kotva 0,03 0,01 0,00 0,01 0,10 

Lázn  Teplice v echách 0,09 0,30 0,16 0,18 0,13 

Lé ebné lázn  Jáchymov 0,02 0,00 0,00 0,01 0,04 

Paramo 0,13 0,27 0,49 4,92 0,28 

Philip Morris R 1,41 1,78 1,26 0,84 1,83 

Pražská energetika 0,02 0,06 0,14 0,04 0,08 

Pražská plynárenská 0,03 0,08 0,13 0,07 0,06 

Pražské služby 0,03 0,00 0,00 0,00 0,00 

RM-S Holding 0,14 0,16 0,08 0,02 0,21 

Severo eská plynárenská 0,06 0,10 0,05 0,04 0,02 

Setuza 0,30 0,13 0,24 0,19 0,21 

Slezan Frýdek Místek 0,04 0,12 0,04 0,03 0,07 

Severomoravská plynárenská 0,18 0,03 0,06 0,20 0,15 
Severomoravské vodovody 
a kanalizace Ostrava 0,04 0,07 0,07 0,06 0,02 

Spolana 0,18 0,11 0,41 0,10 0,09 
Spolek pro chemickou a hutní 
výrobu 0,68 0,17 0,33 0,20 0,07 

Stavby silnic a železnic 0,16 0,03 0,42 1,88 0,06 

St edo eská energetická 0,27 0,13 0,56 0,02 0,05 

St edo eská plynárenská 0,08 0,37 0,06 0,19 0,21 

Telefonica 2,04 1,80 1,83 0,90 1,73 

Toma 0,54 0,55 0,32 0,20 0,25 

Unipetrol 0,96 0,79 0,75 0,71 0,31 

Východo eská plynárenská 0,10 0,10 0,00 0,00 0,08 

Západo eská plynárenská 0,01 0,01 0,07 0,05 0,03 

Average discrepancy 0,46 0,43 0,47 0,53 0,39 


